raylib/src/textures.c

3482 lines
137 KiB
C
Raw Normal View History

/**********************************************************************************************
*
* raylib.textures - Basic functions to load and draw Textures (2d)
*
* CONFIGURATION:
2014-09-03 18:51:28 +04:00
*
2017-03-25 14:01:01 +03:00
* #define SUPPORT_FILEFORMAT_BMP
* #define SUPPORT_FILEFORMAT_PNG
* #define SUPPORT_FILEFORMAT_TGA
2017-03-25 14:01:01 +03:00
* #define SUPPORT_FILEFORMAT_JPG
* #define SUPPORT_FILEFORMAT_GIF
2017-03-25 14:01:01 +03:00
* #define SUPPORT_FILEFORMAT_PSD
2018-12-18 20:18:40 +03:00
* #define SUPPORT_FILEFORMAT_PIC
* #define SUPPORT_FILEFORMAT_HDR
2017-03-25 14:01:01 +03:00
* #define SUPPORT_FILEFORMAT_DDS
* #define SUPPORT_FILEFORMAT_PKM
* #define SUPPORT_FILEFORMAT_KTX
* #define SUPPORT_FILEFORMAT_PVR
* #define SUPPORT_FILEFORMAT_ASTC
2018-12-18 20:18:40 +03:00
* Select desired fileformats to be supported for image data loading. Some of those formats are
* supported by default, to remove support, just comment unrequired #define in this module
*
* #define SUPPORT_IMAGE_EXPORT
* Support image export in multiple file formats
*
* #define SUPPORT_IMAGE_MANIPULATION
2017-03-25 14:01:01 +03:00
* Support multiple image editing functions to scale, adjust colors, flip, draw on images, crop...
* If not defined only three image editing functions supported: ImageFormat(), ImageAlphaMask(), ImageToPOT()
*
2017-09-18 01:59:22 +03:00
* #define SUPPORT_IMAGE_GENERATION
2018-07-29 14:03:08 +03:00
* Support procedural image generation functionality (gradient, spot, perlin-noise, cellular)
2017-09-18 01:59:22 +03:00
*
* DEPENDENCIES:
2016-11-16 20:46:13 +03:00
* stb_image - Multiple image formats loading (JPEG, PNG, BMP, TGA, PSD, GIF, PIC)
* NOTE: stb_image has been slightly modified to support Android platform.
* stb_image_resize - Multiple image resize algorythms
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2014-2018 Ramon Santamaria (@raysan5)
2014-09-03 18:51:28 +04:00
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
2014-09-03 18:51:28 +04:00
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
2014-09-03 18:51:28 +04:00
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
2017-03-25 14:01:01 +03:00
2018-05-17 01:04:36 +03:00
#include "raylib.h" // Declares module functions
// Check if config flags have been externally provided on compilation line
#if !defined(EXTERNAL_CONFIG_FLAGS)
#include "config.h" // Defines module configuration flags
#endif
#include <stdlib.h> // Required for: malloc(), free()
#include <string.h> // Required for: strlen()
2018-12-18 20:18:40 +03:00
#include <stdio.h> // Required for: FILE, fopen(), fclose(), fread()
#include "utils.h" // Required for: fopen() Android mapping
2016-03-27 19:32:36 +03:00
#include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 3.3 or ES2
// Required for: rlLoadTexture() rlDeleteTextures(),
// rlGenerateMipmaps(), some funcs for DrawTexturePro()
2015-08-30 18:44:14 +03:00
2017-03-25 14:01:01 +03:00
// Support only desired texture formats on stb_image
#if !defined(SUPPORT_FILEFORMAT_BMP)
#define STBI_NO_BMP
#endif
#if !defined(SUPPORT_FILEFORMAT_PNG)
#define STBI_NO_PNG
#endif
#if !defined(SUPPORT_FILEFORMAT_TGA)
#define STBI_NO_TGA
#endif
#if !defined(SUPPORT_FILEFORMAT_JPG)
#define STBI_NO_JPEG // Image format .jpg and .jpeg
#endif
#if !defined(SUPPORT_FILEFORMAT_PSD)
#define STBI_NO_PSD
#endif
#if !defined(SUPPORT_FILEFORMAT_GIF)
#define STBI_NO_GIF
#endif
2018-12-18 20:18:40 +03:00
#if !defined(SUPPORT_FILEFORMAT_PIC)
#define STBI_NO_PIC
#endif
2017-03-25 14:01:01 +03:00
#if !defined(SUPPORT_FILEFORMAT_HDR)
#define STBI_NO_HDR
#endif
// Image fileformats not supported by default
#define STBI_NO_PIC
#define STBI_NO_PNM // Image format .ppm and .pgm
2018-12-18 20:18:40 +03:00
#if (defined(SUPPORT_FILEFORMAT_BMP) || \
defined(SUPPORT_FILEFORMAT_PNG) || \
defined(SUPPORT_FILEFORMAT_TGA) || \
defined(SUPPORT_FILEFORMAT_JPG) || \
defined(SUPPORT_FILEFORMAT_PSD) || \
defined(SUPPORT_FILEFORMAT_GIF) || \
defined(SUPPORT_FILEFORMAT_PIC) || \
2017-03-25 14:01:01 +03:00
defined(SUPPORT_FILEFORMAT_HDR))
#define STB_IMAGE_IMPLEMENTATION
2017-05-03 15:16:53 +03:00
#include "external/stb_image.h" // Required for: stbi_load_from_file()
2017-03-25 14:01:01 +03:00
// NOTE: Used to read image data (multiple formats support)
#endif
2018-03-16 00:24:05 +03:00
#if defined(SUPPORT_IMAGE_EXPORT)
#define STB_IMAGE_WRITE_IMPLEMENTATION
2018-09-17 18:06:58 +03:00
#include "external/stb_image_write.h" // Required for: stbi_write_*()
#endif
2017-03-25 14:01:01 +03:00
#if defined(SUPPORT_IMAGE_MANIPULATION)
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include "external/stb_image_resize.h" // Required for: stbir_resize_uint8()
// NOTE: Used for image scaling on ImageResize()
#endif
2018-12-18 20:18:40 +03:00
#if defined(SUPPORT_IMAGE_GENERATION)
#define STB_PERLIN_IMPLEMENTATION
#include "external/stb_perlin.h" // Required for: stb_perlin_fbm_noise3
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
// Nop...
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
// It's lonely here...
2014-03-25 15:40:35 +04:00
//----------------------------------------------------------------------------------
// Other Modules Functions Declaration (required by text)
//----------------------------------------------------------------------------------
// ...
2014-03-25 15:40:35 +04:00
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
2017-03-25 14:01:01 +03:00
#if defined(SUPPORT_FILEFORMAT_DDS)
static Image LoadDDS(const char *fileName); // Load DDS file
2017-03-25 14:01:01 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_PKM)
static Image LoadPKM(const char *fileName); // Load PKM file
2017-03-25 14:01:01 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
static Image LoadKTX(const char *fileName); // Load KTX file
static int SaveKTX(Image image, const char *fileName); // Save image data as KTX file
2017-03-25 14:01:01 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_PVR)
static Image LoadPVR(const char *fileName); // Load PVR file
2017-03-25 14:01:01 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_ASTC)
static Image LoadASTC(const char *fileName); // Load ASTC file
2017-03-25 14:01:01 +03:00
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Load image from file into CPU memory (RAM)
Image LoadImage(const char *fileName)
{
2017-04-30 14:03:31 +03:00
Image image = { 0 };
2014-09-03 18:51:28 +04:00
2019-02-14 13:32:23 +03:00
#if defined(SUPPORT_FILEFORMAT_PNG)
if ((IsFileExtension(fileName, ".png"))
2019-02-14 13:32:23 +03:00
#else
if ((false)
#endif
2017-03-25 14:01:01 +03:00
#if defined(SUPPORT_FILEFORMAT_BMP)
|| (IsFileExtension(fileName, ".bmp"))
2017-03-25 14:01:01 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_TGA)
|| (IsFileExtension(fileName, ".tga"))
2017-03-25 14:01:01 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_JPG)
|| (IsFileExtension(fileName, ".jpg"))
2017-03-25 14:01:01 +03:00
#endif
2018-12-18 20:18:40 +03:00
#if defined(SUPPORT_FILEFORMAT_GIF)
|| (IsFileExtension(fileName, ".gif"))
#endif
2018-12-18 20:18:40 +03:00
#if defined(SUPPORT_FILEFORMAT_PIC)
|| (IsFileExtension(fileName, ".pic"))
#endif
2017-03-25 14:01:01 +03:00
#if defined(SUPPORT_FILEFORMAT_PSD)
|| (IsFileExtension(fileName, ".psd"))
#endif
)
2014-09-03 18:51:28 +04:00
{
int imgWidth = 0;
int imgHeight = 0;
int imgBpp = 0;
2018-03-16 00:24:05 +03:00
2017-04-16 15:06:04 +03:00
FILE *imFile = fopen(fileName, "rb");
2018-03-16 00:24:05 +03:00
2017-06-12 15:21:50 +03:00
if (imFile != NULL)
{
2018-12-18 20:18:40 +03:00
// NOTE: Using stb_image to load images (Supports multiple image formats)
2017-06-12 15:21:50 +03:00
image.data = stbi_load_from_file(imFile, &imgWidth, &imgHeight, &imgBpp, 0);
2018-03-16 00:24:05 +03:00
2017-06-12 15:21:50 +03:00
fclose(imFile);
image.width = imgWidth;
image.height = imgHeight;
image.mipmaps = 1;
if (imgBpp == 1) image.format = UNCOMPRESSED_GRAYSCALE;
else if (imgBpp == 2) image.format = UNCOMPRESSED_GRAY_ALPHA;
else if (imgBpp == 3) image.format = UNCOMPRESSED_R8G8B8;
else if (imgBpp == 4) image.format = UNCOMPRESSED_R8G8B8A8;
}
}
#if defined(SUPPORT_FILEFORMAT_HDR)
else if (IsFileExtension(fileName, ".hdr"))
{
int imgBpp = 0;
2018-03-16 00:24:05 +03:00
FILE *imFile = fopen(fileName, "rb");
2018-03-16 00:24:05 +03:00
2017-05-09 23:32:21 +03:00
stbi_set_flip_vertically_on_load(true);
2018-03-16 00:24:05 +03:00
// Load 32 bit per channel floats data
2017-05-08 13:50:24 +03:00
image.data = stbi_loadf_from_file(imFile, &image.width, &image.height, &imgBpp, 0);
2018-03-16 00:24:05 +03:00
2017-05-09 23:32:21 +03:00
stbi_set_flip_vertically_on_load(false);
2017-05-08 13:50:24 +03:00
fclose(imFile);
2018-03-16 00:24:05 +03:00
2017-05-08 13:50:24 +03:00
image.mipmaps = 1;
2018-03-16 00:24:05 +03:00
if (imgBpp == 1) image.format = UNCOMPRESSED_R32;
else if (imgBpp == 3) image.format = UNCOMPRESSED_R32G32B32;
else if (imgBpp == 4) image.format = UNCOMPRESSED_R32G32B32A32;
2018-03-16 00:24:05 +03:00
else
{
TraceLog(LOG_WARNING, "[%s] Image fileformat not supported", fileName);
UnloadImage(image);
}
}
#endif
2017-03-25 14:01:01 +03:00
#if defined(SUPPORT_FILEFORMAT_DDS)
else if (IsFileExtension(fileName, ".dds")) image = LoadDDS(fileName);
2017-03-25 14:01:01 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_PKM)
else if (IsFileExtension(fileName, ".pkm")) image = LoadPKM(fileName);
2017-03-25 14:01:01 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
else if (IsFileExtension(fileName, ".ktx")) image = LoadKTX(fileName);
2017-03-25 14:01:01 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_PVR)
else if (IsFileExtension(fileName, ".pvr")) image = LoadPVR(fileName);
2017-03-25 14:01:01 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_ASTC)
else if (IsFileExtension(fileName, ".astc")) image = LoadASTC(fileName);
2017-03-25 14:01:01 +03:00
#endif
else TraceLog(LOG_WARNING, "[%s] Image fileformat not supported", fileName);
2016-08-16 12:09:55 +03:00
if (image.data != NULL) TraceLog(LOG_INFO, "[%s] Image loaded successfully (%ix%i)", fileName, image.width, image.height);
else TraceLog(LOG_WARNING, "[%s] Image could not be loaded", fileName);
return image;
}
// Load image from Color array data (RGBA - 32bit)
2016-03-27 19:32:36 +03:00
// NOTE: Creates a copy of pixels data array
Image LoadImageEx(Color *pixels, int width, int height)
{
Image image;
image.data = NULL;
image.width = width;
image.height = height;
image.mipmaps = 1;
image.format = UNCOMPRESSED_R8G8B8A8;
2016-08-16 12:09:55 +03:00
int k = 0;
image.data = (unsigned char *)malloc(image.width*image.height*4*sizeof(unsigned char));
2016-08-16 12:09:55 +03:00
for (int i = 0; i < image.width*image.height*4; i += 4)
{
((unsigned char *)image.data)[i] = pixels[k].r;
((unsigned char *)image.data)[i + 1] = pixels[k].g;
((unsigned char *)image.data)[i + 2] = pixels[k].b;
((unsigned char *)image.data)[i + 3] = pixels[k].a;
k++;
}
return image;
}
// Load image from raw data with parameters
// NOTE: This functions makes a copy of provided data
Image LoadImagePro(void *data, int width, int height, int format)
{
Image srcImage = { 0 };
srcImage.data = data;
srcImage.width = width;
srcImage.height = height;
srcImage.mipmaps = 1;
srcImage.format = format;
2017-01-29 01:02:30 +03:00
Image dstImage = ImageCopy(srcImage);
2017-01-29 01:02:30 +03:00
return dstImage;
}
// Load an image from RAW file data
Image LoadImageRaw(const char *fileName, int width, int height, int format, int headerSize)
{
2017-04-30 14:03:31 +03:00
Image image = { 0 };
FILE *rawFile = fopen(fileName, "rb");
if (rawFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] RAW image file could not be opened", fileName);
}
else
{
if (headerSize > 0) fseek(rawFile, headerSize, SEEK_SET);
unsigned int size = GetPixelDataSize(width, height, format);
2018-03-16 00:24:05 +03:00
image.data = malloc(size); // Allocate required memory in bytes
2016-08-16 12:09:55 +03:00
2018-03-16 00:24:05 +03:00
// NOTE: fread() returns num read elements instead of bytes,
2017-02-12 01:17:56 +03:00
// to get bytes we need to read (1 byte size, elements) instead of (x byte size, 1 element)
2018-10-11 00:55:36 +03:00
int bytes = fread(image.data, 1, size, rawFile);
2016-08-16 12:09:55 +03:00
// Check if data has been read successfully
if (bytes < size)
{
TraceLog(LOG_WARNING, "[%s] RAW image data can not be read, wrong requested format or size", fileName);
2017-01-29 01:02:30 +03:00
if (image.data != NULL) free(image.data);
}
else
{
image.width = width;
image.height = height;
image.mipmaps = 1;
image.format = format;
}
2016-08-16 12:09:55 +03:00
fclose(rawFile);
}
return image;
}
// Load texture from file into GPU memory (VRAM)
Texture2D LoadTexture(const char *fileName)
{
2017-04-30 14:03:31 +03:00
Texture2D texture = { 0 };
2015-02-02 02:53:49 +03:00
Image image = LoadImage(fileName);
2016-08-16 12:09:55 +03:00
if (image.data != NULL)
2016-08-16 12:09:55 +03:00
{
texture = LoadTextureFromImage(image);
UnloadImage(image);
}
else TraceLog(LOG_WARNING, "Texture could not be created");
2014-09-03 18:51:28 +04:00
return texture;
}
// Load a texture from image data
// NOTE: image is not unloaded, it must be done manually
Texture2D LoadTextureFromImage(Image image)
{
2017-04-30 14:03:31 +03:00
Texture2D texture = { 0 };
2016-08-16 12:09:55 +03:00
texture.id = rlLoadTexture(image.data, image.width, image.height, image.format, image.mipmaps);
texture.width = image.width;
texture.height = image.height;
texture.mipmaps = image.mipmaps;
texture.format = image.format;
return texture;
}
// Load texture for rendering (framebuffer)
// NOTE: Render texture is loaded by default with RGBA color attachment and depth RenderBuffer
RenderTexture2D LoadRenderTexture(int width, int height)
{
RenderTexture2D target = rlLoadRenderTexture(width, height, UNCOMPRESSED_R8G8B8A8, 24, false);
2016-08-16 12:09:55 +03:00
return target;
}
// Unload image from CPU memory (RAM)
void UnloadImage(Image image)
{
2017-08-06 11:43:43 +03:00
if (image.data != NULL) free(image.data);
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
// NOTE: It becomes anoying every time a texture is loaded
//TraceLog(LOG_INFO, "Unloaded image data");
}
// Unload texture from GPU memory (VRAM)
void UnloadTexture(Texture2D texture)
{
if (texture.id > 0)
2015-08-29 18:01:25 +03:00
{
rlDeleteTextures(texture.id);
2016-08-16 12:09:55 +03:00
TraceLog(LOG_INFO, "[TEX ID %i] Unloaded texture data from VRAM (GPU)", texture.id);
2015-08-29 18:01:25 +03:00
}
}
// Unload render texture from GPU memory (VRAM)
void UnloadRenderTexture(RenderTexture2D target)
{
if (target.id > 0) rlDeleteRenderTextures(target);
}
// Get pixel data from image in the form of Color struct array
Color *GetImageData(Image image)
{
Color *pixels = (Color *)malloc(image.width*image.height*sizeof(Color));
2016-08-16 12:09:55 +03:00
if (image.format >= COMPRESSED_DXT1_RGB) TraceLog(LOG_WARNING, "Pixel data retrieval not supported for compressed image formats");
else
{
if ((image.format == UNCOMPRESSED_R32) ||
(image.format == UNCOMPRESSED_R32G32B32) ||
(image.format == UNCOMPRESSED_R32G32B32A32)) TraceLog(LOG_WARNING, "32bit pixel format converted to 8bit per channel");
2018-11-06 17:10:50 +03:00
for (int i = 0, k = 0; i < image.width*image.height; i++)
{
switch (image.format)
{
case UNCOMPRESSED_GRAYSCALE:
{
pixels[i].r = ((unsigned char *)image.data)[i];
pixels[i].g = ((unsigned char *)image.data)[i];
pixels[i].b = ((unsigned char *)image.data)[i];
pixels[i].a = 255;
2018-03-16 00:24:05 +03:00
} break;
case UNCOMPRESSED_GRAY_ALPHA:
{
pixels[i].r = ((unsigned char *)image.data)[k];
pixels[i].g = ((unsigned char *)image.data)[k];
pixels[i].b = ((unsigned char *)image.data)[k];
pixels[i].a = ((unsigned char *)image.data)[k + 1];
k += 2;
} break;
case UNCOMPRESSED_R5G5B5A1:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
2016-08-16 12:09:55 +03:00
pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111000000) >> 6)*(255/31));
pixels[i].b = (unsigned char)((float)((pixel & 0b0000000000111110) >> 1)*(255/31));
pixels[i].a = (unsigned char)((pixel & 0b0000000000000001)*255);
} break;
case UNCOMPRESSED_R5G6B5:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
2016-08-16 12:09:55 +03:00
pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111100000) >> 5)*(255/63));
pixels[i].b = (unsigned char)((float)(pixel & 0b0000000000011111)*(255/31));
pixels[i].a = 255;
2016-08-16 12:09:55 +03:00
} break;
case UNCOMPRESSED_R4G4B4A4:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
2018-03-16 00:24:05 +03:00
pixels[i].r = (unsigned char)((float)((pixel & 0b1111000000000000) >> 12)*(255/15));
pixels[i].g = (unsigned char)((float)((pixel & 0b0000111100000000) >> 8)*(255/15));
pixels[i].b = (unsigned char)((float)((pixel & 0b0000000011110000) >> 4)*(255/15));
pixels[i].a = (unsigned char)((float)(pixel & 0b0000000000001111)*(255/15));
} break;
case UNCOMPRESSED_R8G8B8A8:
{
pixels[i].r = ((unsigned char *)image.data)[k];
pixels[i].g = ((unsigned char *)image.data)[k + 1];
pixels[i].b = ((unsigned char *)image.data)[k + 2];
pixels[i].a = ((unsigned char *)image.data)[k + 3];
k += 4;
} break;
case UNCOMPRESSED_R8G8B8:
{
pixels[i].r = (unsigned char)((unsigned char *)image.data)[k];
pixels[i].g = (unsigned char)((unsigned char *)image.data)[k + 1];
pixels[i].b = (unsigned char)((unsigned char *)image.data)[k + 2];
pixels[i].a = 255;
k += 3;
} break;
case UNCOMPRESSED_R32:
{
pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].g = 0;
pixels[i].b = 0;
pixels[i].a = 255;
2018-11-06 17:10:50 +03:00
} break;
case UNCOMPRESSED_R32G32B32:
{
pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].g = (unsigned char)(((float *)image.data)[k + 1]*255.0f);
pixels[i].b = (unsigned char)(((float *)image.data)[k + 2]*255.0f);
pixels[i].a = 255;
2018-11-06 17:10:50 +03:00
k += 3;
}
case UNCOMPRESSED_R32G32B32A32:
{
pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].g = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].b = (unsigned char)(((float *)image.data)[k]*255.0f);
pixels[i].a = (unsigned char)(((float *)image.data)[k]*255.0f);
2018-11-06 17:10:50 +03:00
k += 4;
}
default: break;
}
2016-08-16 12:09:55 +03:00
}
}
return pixels;
}
// Get pixel data from image as Vector4 array (float normalized)
Vector4 *GetImageDataNormalized(Image image)
{
Vector4 *pixels = (Vector4 *)malloc(image.width*image.height*sizeof(Vector4));
2018-11-06 17:10:50 +03:00
if (image.format >= COMPRESSED_DXT1_RGB) TraceLog(LOG_WARNING, "Pixel data retrieval not supported for compressed image formats");
else
{
for (int i = 0, k = 0; i < image.width*image.height; i++)
{
switch (image.format)
{
case UNCOMPRESSED_GRAYSCALE:
{
pixels[i].x = (float)((unsigned char *)image.data)[i]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[i]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[i]/255.0f;
pixels[i].w = 1.0f;
} break;
case UNCOMPRESSED_GRAY_ALPHA:
{
pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].w = (float)((unsigned char *)image.data)[k + 1]/255.0f;
k += 2;
} break;
case UNCOMPRESSED_R5G5B5A1:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].x = (float)((pixel & 0b1111100000000000) >> 11)*(1.0f/31);
pixels[i].y = (float)((pixel & 0b0000011111000000) >> 6)*(1.0f/31);
pixels[i].z = (float)((pixel & 0b0000000000111110) >> 1)*(1.0f/31);
pixels[i].w = ((pixel & 0b0000000000000001) == 0) ? 0.0f : 1.0f;
} break;
case UNCOMPRESSED_R5G6B5:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].x = (float)((pixel & 0b1111100000000000) >> 11)*(1.0f/31);
pixels[i].y = (float)((pixel & 0b0000011111100000) >> 5)*(1.0f/63);
pixels[i].z = (float)(pixel & 0b0000000000011111)*(1.0f/31);
pixels[i].w = 1.0f;
} break;
case UNCOMPRESSED_R4G4B4A4:
{
unsigned short pixel = ((unsigned short *)image.data)[i];
pixels[i].x = (float)((pixel & 0b1111000000000000) >> 12)*(1.0f/15);
pixels[i].y = (float)((pixel & 0b0000111100000000) >> 8)*(1.0f/15);
pixels[i].z = (float)((pixel & 0b0000000011110000) >> 4)*(1.0f/15);
pixels[i].w = (float)(pixel & 0b0000000000001111)*(1.0f/15);
} break;
case UNCOMPRESSED_R8G8B8A8:
{
pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[k + 1]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[k + 2]/255.0f;
pixels[i].w = (float)((unsigned char *)image.data)[k + 3]/255.0f;
k += 4;
} break;
case UNCOMPRESSED_R8G8B8:
{
pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f;
pixels[i].y = (float)((unsigned char *)image.data)[k + 1]/255.0f;
pixels[i].z = (float)((unsigned char *)image.data)[k + 2]/255.0f;
pixels[i].w = 1.0f;
k += 3;
} break;
case UNCOMPRESSED_R32:
{
pixels[i].x = ((float *)image.data)[k];
pixels[i].y = 0.0f;
pixels[i].z = 0.0f;
pixels[i].w = 1.0f;
2018-11-06 17:10:50 +03:00
} break;
case UNCOMPRESSED_R32G32B32:
{
pixels[i].x = ((float *)image.data)[k];
pixels[i].y = ((float *)image.data)[k + 1];
pixels[i].z = ((float *)image.data)[k + 2];
pixels[i].w = 1.0f;
2018-11-06 17:10:50 +03:00
k += 3;
}
case UNCOMPRESSED_R32G32B32A32:
{
pixels[i].x = ((float *)image.data)[k];
pixels[i].y = ((float *)image.data)[k + 1];
pixels[i].z = ((float *)image.data)[k + 2];
pixels[i].w = ((float *)image.data)[k + 3];
2018-11-06 17:10:50 +03:00
k += 4;
}
default: break;
}
}
}
2018-11-06 17:10:50 +03:00
return pixels;
}
// Get pixel data size in bytes (image or texture)
// NOTE: Size depends on pixel format
int GetPixelDataSize(int width, int height, int format)
{
int dataSize = 0; // Size in bytes
int bpp = 0; // Bits per pixel
switch (format)
{
case UNCOMPRESSED_GRAYSCALE: bpp = 8; break;
case UNCOMPRESSED_GRAY_ALPHA:
case UNCOMPRESSED_R5G6B5:
case UNCOMPRESSED_R5G5B5A1:
case UNCOMPRESSED_R4G4B4A4: bpp = 16; break;
case UNCOMPRESSED_R8G8B8A8: bpp = 32; break;
case UNCOMPRESSED_R8G8B8: bpp = 24; break;
case UNCOMPRESSED_R32: bpp = 32; break;
case UNCOMPRESSED_R32G32B32: bpp = 32*3; break;
case UNCOMPRESSED_R32G32B32A32: bpp = 32*4; break;
case COMPRESSED_DXT1_RGB:
2018-03-16 00:24:05 +03:00
case COMPRESSED_DXT1_RGBA:
case COMPRESSED_ETC1_RGB:
case COMPRESSED_ETC2_RGB:
case COMPRESSED_PVRT_RGB:
case COMPRESSED_PVRT_RGBA: bpp = 4; break;
case COMPRESSED_DXT3_RGBA:
case COMPRESSED_DXT5_RGBA:
case COMPRESSED_ETC2_EAC_RGBA:
case COMPRESSED_ASTC_4x4_RGBA: bpp = 8; break;
case COMPRESSED_ASTC_8x8_RGBA: bpp = 2; break;
default: break;
}
dataSize = width*height*bpp/8; // Total data size in bytes
2018-03-16 00:24:05 +03:00
return dataSize;
}
// Get pixel data from GPU texture and return an Image
2015-08-07 18:23:53 +03:00
// NOTE: Compressed texture formats not supported
Image GetTextureData(Texture2D texture)
{
2017-04-30 14:03:31 +03:00
Image image = { 0 };
2018-03-16 00:24:05 +03:00
2015-08-07 18:23:53 +03:00
if (texture.format < 8)
{
image.data = rlReadTexturePixels(texture);
2016-08-16 12:09:55 +03:00
2015-08-07 18:23:53 +03:00
if (image.data != NULL)
{
image.width = texture.width;
image.height = texture.height;
image.format = texture.format;
2015-08-07 18:23:53 +03:00
image.mipmaps = 1;
2018-03-16 00:24:05 +03:00
// NOTE: Data retrieved on OpenGL ES 2.0 should be RGBA
// coming from FBO color buffer, but it seems original
// texture format is retrieved on RPI... weird...
//image.format = UNCOMPRESSED_R8G8B8A8;
TraceLog(LOG_INFO, "Texture pixel data obtained successfully");
2015-08-07 18:23:53 +03:00
}
else TraceLog(LOG_WARNING, "Texture pixel data could not be obtained");
}
else TraceLog(LOG_WARNING, "Compressed texture data could not be obtained");
return image;
}
// Update GPU texture with new data
// NOTE: pixels data must match texture.format
void UpdateTexture(Texture2D texture, const void *pixels)
{
rlUpdateTexture(texture.id, texture.width, texture.height, texture.format, pixels);
}
// Export image data to file
// NOTE: File format depends on fileName extension
void ExportImage(Image image, const char *fileName)
2017-06-28 15:32:18 +03:00
{
int success = 0;
2018-11-06 17:10:50 +03:00
2019-02-14 13:32:23 +03:00
#if defined(SUPPORT_IMAGE_EXPORT)
2017-12-15 15:44:31 +03:00
// NOTE: Getting Color array as RGBA unsigned char values
unsigned char *imgData = (unsigned char *)GetImageData(image);
2018-11-06 17:10:50 +03:00
2019-02-14 13:32:23 +03:00
#if defined(SUPPORT_FILEFORMAT_PNG)
if (IsFileExtension(fileName, ".png")) success = stbi_write_png(fileName, image.width, image.height, 4, imgData, image.width*4);
2019-02-14 13:32:23 +03:00
#else
if (false) {}
#endif
#if defined(SUPPORT_FILEFORMAT_BMP)
else if (IsFileExtension(fileName, ".bmp")) success = stbi_write_bmp(fileName, image.width, image.height, 4, imgData);
2019-02-14 13:32:23 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_TGA)
else if (IsFileExtension(fileName, ".tga")) success = stbi_write_tga(fileName, image.width, image.height, 4, imgData);
2019-02-14 13:32:23 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_JPG)
else if (IsFileExtension(fileName, ".jpg")) success = stbi_write_jpg(fileName, image.width, image.height, 4, imgData, 80); // JPG quality: between 1 and 100
2019-02-14 13:32:23 +03:00
#endif
#if defined(SUPPORT_FILEFORMAT_KTX)
else if (IsFileExtension(fileName, ".ktx")) success = SaveKTX(image, fileName);
2019-02-14 13:32:23 +03:00
#endif
2018-11-06 17:10:50 +03:00
else if (IsFileExtension(fileName, ".raw"))
{
// Export raw pixel data (without header)
// NOTE: It's up to the user to track image parameters
FILE *rawFile = fopen(fileName, "wb");
success = fwrite(image.data, GetPixelDataSize(image.width, image.height, image.format), 1, rawFile);
fclose(rawFile);
}
2019-02-14 13:32:23 +03:00
free(imgData);
#endif
if (success != 0) TraceLog(LOG_INFO, "Image exported successfully: %s", fileName);
else TraceLog(LOG_WARNING, "Image could not be exported.");
2017-06-28 15:32:18 +03:00
}
// Export image as code file (.h) defining an array of bytes
void ExportImageAsCode(Image image, const char *fileName)
{
#define BYTES_TEXT_PER_LINE 20
2018-11-06 17:10:50 +03:00
char varFileName[256] = { 0 };
int dataSize = GetPixelDataSize(image.width, image.height, image.format);
2018-11-06 17:10:50 +03:00
FILE *txtFile = fopen(fileName, "wt");
fprintf(txtFile, "\n//////////////////////////////////////////////////////////////////////////////////////\n");
fprintf(txtFile, "// //\n");
fprintf(txtFile, "// ImageAsCode exporter v1.0 - Image pixel data exported as an array of bytes //\n");
fprintf(txtFile, "// //\n");
fprintf(txtFile, "// more info and bugs-report: github.com/raysan5/raylib //\n");
fprintf(txtFile, "// feedback and support: ray[at]raylib.com //\n");
fprintf(txtFile, "// //\n");
fprintf(txtFile, "// Copyright (c) 2018 Ramon Santamaria (@raysan5) //\n");
fprintf(txtFile, "// //\n");
fprintf(txtFile, "////////////////////////////////////////////////////////////////////////////////////////\n\n");
2018-11-06 17:10:50 +03:00
// Get file name from path and convert variable name to uppercase
strcpy(varFileName, GetFileNameWithoutExt(fileName));
for (int i = 0; varFileName[i] != '\0'; i++) if ((varFileName[i] >= 'a') && (varFileName[i] <= 'z')) { varFileName[i] = varFileName[i] - 32; }
2018-11-06 17:10:50 +03:00
// Add image information
fprintf(txtFile, "// Image data information\n");
fprintf(txtFile, "#define %s_WIDTH %i\n", varFileName, image.width);
fprintf(txtFile, "#define %s_HEIGHT %i\n", varFileName, image.height);
fprintf(txtFile, "#define %s_FORMAT %i // raylib internal pixel format\n\n", varFileName, image.format);
fprintf(txtFile, "static unsigned char %s_DATA[%i] = { ", varFileName, dataSize);
for (int i = 0; i < dataSize - 1; i++) fprintf(txtFile, ((i%BYTES_TEXT_PER_LINE == 0) ? "0x%x,\n" : "0x%x, "), ((unsigned char *)image.data)[i]);
fprintf(txtFile, "0x%x };\n", ((unsigned char *)image.data)[dataSize - 1]);
fclose(txtFile);
}
// Copy an image to a new image
Image ImageCopy(Image image)
{
Image newImage = { 0 };
int width = image.width;
int height = image.height;
int size = 0;
for (int i = 0; i < image.mipmaps; i++)
{
size += GetPixelDataSize(width, height, image.format);
2018-03-16 00:24:05 +03:00
width /= 2;
height /= 2;
2018-03-16 00:24:05 +03:00
// Security check for NPOT textures
if (width < 1) width = 1;
if (height < 1) height = 1;
}
2018-03-16 00:24:05 +03:00
newImage.data = malloc(size);
if (newImage.data != NULL)
{
// NOTE: Size must be provided in bytes
memcpy(newImage.data, image.data, size);
newImage.width = image.width;
newImage.height = image.height;
newImage.mipmaps = image.mipmaps;
newImage.format = image.format;
}
return newImage;
}
// Convert image to POT (power-of-two)
// NOTE: It could be useful on OpenGL ES 2.0 (RPI, HTML5)
void ImageToPOT(Image *image, Color fillColor)
{
Color *pixels = GetImageData(*image); // Get pixels data
// Calculate next power-of-two values
// NOTE: Just add the required amount of pixels at the right and bottom sides of image...
int potWidth = (int)powf(2, ceilf(logf((float)image->width)/logf(2)));
int potHeight = (int)powf(2, ceilf(logf((float)image->height)/logf(2)));
// Check if POT texture generation is required (if texture is not already POT)
if ((potWidth != image->width) || (potHeight != image->height))
{
Color *pixelsPOT = NULL;
// Generate POT array from NPOT data
pixelsPOT = (Color *)malloc(potWidth*potHeight*sizeof(Color));
for (int j = 0; j < potHeight; j++)
{
for (int i = 0; i < potWidth; i++)
{
if ((j < image->height) && (i < image->width)) pixelsPOT[j*potWidth + i] = pixels[j*image->width + i];
else pixelsPOT[j*potWidth + i] = fillColor;
}
}
TraceLog(LOG_WARNING, "Image converted to POT: (%ix%i) -> (%ix%i)", image->width, image->height, potWidth, potHeight);
free(pixels); // Free pixels data
free(image->data); // Free old image data
int format = image->format; // Store image data format to reconvert later
2018-06-12 14:27:41 +03:00
// NOTE: Image size changes, new width and height
*image = LoadImageEx(pixelsPOT, potWidth, potHeight);
free(pixelsPOT); // Free POT pixels data
ImageFormat(image, format); // Reconvert image to previous format
}
}
// Convert image data to desired format
void ImageFormat(Image *image, int newFormat)
{
if ((newFormat != 0) && (image->format != newFormat))
{
2016-09-05 11:08:28 +03:00
if ((image->format < COMPRESSED_DXT1_RGB) && (newFormat < COMPRESSED_DXT1_RGB))
{
Vector4 *pixels = GetImageDataNormalized(*image); // Supports 8 to 32 bit per channel
2016-08-16 12:09:55 +03:00
free(image->data); // WARNING! We loose mipmaps data --> Regenerated at the end...
2018-03-16 00:24:05 +03:00
image->data = NULL;
2015-08-07 19:00:28 +03:00
image->format = newFormat;
int k = 0;
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
switch (image->format)
{
2015-08-07 19:00:28 +03:00
case UNCOMPRESSED_GRAYSCALE:
{
2015-08-07 19:00:28 +03:00
image->data = (unsigned char *)malloc(image->width*image->height*sizeof(unsigned char));
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
for (int i = 0; i < image->width*image->height; i++)
{
((unsigned char *)image->data)[i] = (unsigned char)((pixels[i].x*0.299f + pixels[i].y*0.587f + pixels[i].z*0.114f)*255.0f);
2015-08-07 19:00:28 +03:00
}
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
} break;
case UNCOMPRESSED_GRAY_ALPHA:
{
image->data = (unsigned char *)malloc(image->width*image->height*2*sizeof(unsigned char));
2016-08-16 12:09:55 +03:00
for (int i = 0; i < image->width*image->height*2; i += 2, k++)
2015-08-07 19:00:28 +03:00
{
((unsigned char *)image->data)[i] = (unsigned char)((pixels[k].x*0.299f + (float)pixels[k].y*0.587f + (float)pixels[k].z*0.114f)*255.0f);
((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].w*255.0f);
2015-08-07 19:00:28 +03:00
}
2015-08-07 19:00:28 +03:00
} break;
case UNCOMPRESSED_R5G6B5:
{
2015-08-07 19:00:28 +03:00
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short));
2016-08-16 12:09:55 +03:00
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round(pixels[i].x*31.0f));
g = (unsigned char)(round(pixels[i].y*63.0f));
b = (unsigned char)(round(pixels[i].z*31.0f));
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b;
}
2015-08-07 19:00:28 +03:00
} break;
case UNCOMPRESSED_R8G8B8:
{
2015-08-07 19:00:28 +03:00
image->data = (unsigned char *)malloc(image->width*image->height*3*sizeof(unsigned char));
2016-08-16 12:09:55 +03:00
for (int i = 0, k = 0; i < image->width*image->height*3; i += 3, k++)
2015-08-07 19:00:28 +03:00
{
((unsigned char *)image->data)[i] = (unsigned char)(pixels[k].x*255.0f);
((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].y*255.0f);
((unsigned char *)image->data)[i + 2] = (unsigned char)(pixels[k].z*255.0f);
2015-08-07 19:00:28 +03:00
}
} break;
case UNCOMPRESSED_R5G5B5A1:
{
#define ALPHA_THRESHOLD 50
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short));
2016-08-16 12:09:55 +03:00
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
unsigned char a = 0;
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round(pixels[i].x*31.0f));
g = (unsigned char)(round(pixels[i].y*31.0f));
b = (unsigned char)(round(pixels[i].z*31.0f));
a = (pixels[i].w > ((float)ALPHA_THRESHOLD/255.0f)) ? 1 : 0;
2016-08-16 12:09:55 +03:00
((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a;
2015-08-07 19:00:28 +03:00
}
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
} break;
case UNCOMPRESSED_R4G4B4A4:
{
2015-08-07 19:00:28 +03:00
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short));
2016-08-16 12:09:55 +03:00
unsigned char r = 0;
unsigned char g = 0;
unsigned char b = 0;
unsigned char a = 0;
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
for (int i = 0; i < image->width*image->height; i++)
{
r = (unsigned char)(round(pixels[i].x*15.0f));
g = (unsigned char)(round(pixels[i].y*15.0f));
b = (unsigned char)(round(pixels[i].z*15.0f));
a = (unsigned char)(round(pixels[i].w*15.0f));
2018-03-16 00:24:05 +03:00
((unsigned short *)image->data)[i] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a;
2015-08-07 19:00:28 +03:00
}
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
} break;
case UNCOMPRESSED_R8G8B8A8:
{
2015-08-07 19:00:28 +03:00
image->data = (unsigned char *)malloc(image->width*image->height*4*sizeof(unsigned char));
2016-08-16 12:09:55 +03:00
for (int i = 0, k = 0; i < image->width*image->height*4; i += 4, k++)
2015-08-07 19:00:28 +03:00
{
((unsigned char *)image->data)[i] = (unsigned char)(pixels[k].x*255.0f);
((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].y*255.0f);
((unsigned char *)image->data)[i + 2] = (unsigned char)(pixels[k].z*255.0f);
((unsigned char *)image->data)[i + 3] = (unsigned char)(pixels[k].w*255.0f);
2015-08-07 19:00:28 +03:00
}
} break;
case UNCOMPRESSED_R32:
{
// WARNING: Image is converted to GRAYSCALE eqeuivalent 32bit
2018-11-06 17:10:50 +03:00
image->data = (float *)malloc(image->width*image->height*sizeof(float));
2018-03-16 00:24:05 +03:00
for (int i = 0; i < image->width*image->height; i++)
{
((float *)image->data)[i] = (float)(pixels[i].x*0.299f + pixels[i].y*0.587f + pixels[i].z*0.114f);
}
} break;
case UNCOMPRESSED_R32G32B32:
{
image->data = (float *)malloc(image->width*image->height*3*sizeof(float));
for (int i = 0, k = 0; i < image->width*image->height*3; i += 3, k++)
{
((float *)image->data)[i] = pixels[k].x;
((float *)image->data)[i + 1] = pixels[k].y;
((float *)image->data)[i + 2] = pixels[k].z;
}
} break;
case UNCOMPRESSED_R32G32B32A32:
{
image->data = (float *)malloc(image->width*image->height*4*sizeof(float));
for (int i = 0, k = 0; i < image->width*image->height*4; i += 4, k++)
{
((float *)image->data)[i] = pixels[k].x;
((float *)image->data)[i + 1] = pixels[k].y;
((float *)image->data)[i + 2] = pixels[k].z;
((float *)image->data)[i + 3] = pixels[k].w;
}
} break;
2015-08-07 19:00:28 +03:00
default: break;
}
2016-08-16 12:09:55 +03:00
2015-08-07 19:00:28 +03:00
free(pixels);
2018-03-16 00:24:05 +03:00
pixels = NULL;
2018-11-06 17:10:50 +03:00
// In case original image had mipmaps, generate mipmaps for formated image
// NOTE: Original mipmaps are replaced by new ones, if custom mipmaps were used, they are lost
2018-03-16 00:24:05 +03:00
if (image->mipmaps > 1)
{
image->mipmaps = 1;
2019-02-15 18:56:36 +03:00
#if defined(SUPPORT_IMAGE_MANIPULATION)
if (image->data != NULL) ImageMipmaps(image);
2019-02-15 18:56:36 +03:00
#endif
}
}
else TraceLog(LOG_WARNING, "Image data format is compressed, can not be converted");
}
}
2016-09-05 11:08:28 +03:00
// Apply alpha mask to image
// NOTE 1: Returned image is GRAY_ALPHA (16bit) or RGBA (32bit)
2016-09-08 00:14:16 +03:00
// NOTE 2: alphaMask should be same size as image
2016-09-05 11:08:28 +03:00
void ImageAlphaMask(Image *image, Image alphaMask)
{
if ((image->width != alphaMask.width) || (image->height != alphaMask.height))
{
TraceLog(LOG_WARNING, "Alpha mask must be same size as image");
}
else if (image->format >= COMPRESSED_DXT1_RGB)
2016-09-05 11:08:28 +03:00
{
TraceLog(LOG_WARNING, "Alpha mask can not be applied to compressed data formats");
2016-09-05 11:08:28 +03:00
}
else
{
// Force mask to be Grayscale
Image mask = ImageCopy(alphaMask);
if (mask.format != UNCOMPRESSED_GRAYSCALE) ImageFormat(&mask, UNCOMPRESSED_GRAYSCALE);
2017-01-29 01:02:30 +03:00
// In case image is only grayscale, we just add alpha channel
if (image->format == UNCOMPRESSED_GRAYSCALE)
2016-09-05 11:08:28 +03:00
{
ImageFormat(image, UNCOMPRESSED_GRAY_ALPHA);
2017-01-29 01:02:30 +03:00
// Apply alpha mask to alpha channel
for (int i = 0, k = 1; (i < mask.width*mask.height) || (i < image->width*image->height); i++, k += 2)
{
((unsigned char *)image->data)[k] = ((unsigned char *)mask.data)[i];
}
}
else
{
// Convert image to RGBA
if (image->format != UNCOMPRESSED_R8G8B8A8) ImageFormat(image, UNCOMPRESSED_R8G8B8A8);
// Apply alpha mask to alpha channel
for (int i = 0, k = 3; (i < mask.width*mask.height) || (i < image->width*image->height); i++, k += 4)
{
((unsigned char *)image->data)[k] = ((unsigned char *)mask.data)[i];
}
2016-09-05 11:08:28 +03:00
}
UnloadImage(mask);
}
}
// Clear alpha channel to desired color
// NOTE: Threshold defines the alpha limit, 0.0f to 1.0f
void ImageAlphaClear(Image *image, Color color, float threshold)
{
Color *pixels = GetImageData(*image);
2018-11-06 17:10:50 +03:00
for (int i = 0; i < image->width*image->height; i++) if (pixels[i].a <= (unsigned char)(threshold*255.0f)) pixels[i] = color;
UnloadImage(*image);
2018-11-06 17:10:50 +03:00
int prevFormat = image->format;
*image = LoadImageEx(pixels, image->width, image->height);
2018-11-06 17:10:50 +03:00
ImageFormat(image, prevFormat);
}
// Premultiply alpha channel
void ImageAlphaPremultiply(Image *image)
{
float alpha = 0.0f;
Color *pixels = GetImageData(*image);
2018-11-06 17:10:50 +03:00
for (int i = 0; i < image->width*image->height; i++)
{
alpha = (float)pixels[i].a/255.0f;
pixels[i].r = (unsigned char)((float)pixels[i].r*alpha);
pixels[i].g = (unsigned char)((float)pixels[i].g*alpha);
pixels[i].b = (unsigned char)((float)pixels[i].b*alpha);
}
2016-08-16 12:09:55 +03:00
UnloadImage(*image);
2018-11-06 17:10:50 +03:00
int prevFormat = image->format;
*image = LoadImageEx(pixels, image->width, image->height);
2018-11-06 17:10:50 +03:00
ImageFormat(image, prevFormat);
}
2018-01-11 12:22:32 +03:00
#if defined(SUPPORT_IMAGE_MANIPULATION)
2019-02-15 18:56:36 +03:00
// Load cubemap from image, multiple image cubemap layouts supported
TextureCubemap LoadTextureCubemap(Image image, int layoutType)
{
TextureCubemap cubemap = { 0 };
if (layoutType == CUBEMAP_AUTO_DETECT) // Try to automatically guess layout type
{
// Check image width/height to determine the type of cubemap provided
if (image.width > image.height)
{
if ((image.width/6) == image.height) { layoutType = CUBEMAP_LINE_HORIZONTAL; cubemap.width = image.width/6; }
else if ((image.width/4) == (image.height/3)) { layoutType = CUBEMAP_CROSS_FOUR_BY_THREE; cubemap.width = image.width/4; }
else if (image.width >= (int)((float)image.height*1.85f)) { layoutType = CUBEMAP_PANORAMA; cubemap.width = image.width/4; }
}
else if (image.height > image.width)
{
if ((image.height/6) == image.width) { layoutType = CUBEMAP_LINE_VERTICAL; cubemap.width = image.height/6; }
else if ((image.width/3) == (image.height/4)) { layoutType = CUBEMAP_CROSS_THREE_BY_FOUR; cubemap.width = image.width/3; }
}
cubemap.height = cubemap.width;
}
int size = cubemap.width;
if (layoutType != CUBEMAP_AUTO_DETECT)
{
//unsigned int dataSize = GetPixelDataSize(size, size, format);
//void *facesData = malloc(size*size*dataSize*6); // Get memory for 6 faces in a column
Image faces = { 0 }; // Vertical column image
Rectangle faceRecs[6] = { 0 }; // Face source rectangles
for (int i = 0; i < 6; i++) faceRecs[i] = (Rectangle){ 0, 0, size, size };
if (layoutType == CUBEMAP_LINE_VERTICAL)
{
faces = image;
for (int i = 0; i < 6; i++) faceRecs[i].y = size*i;
}
else if (layoutType == CUBEMAP_PANORAMA)
{
// TODO: Convert panorama image to square faces...
}
else
{
if (layoutType == CUBEMAP_LINE_HORIZONTAL) for (int i = 0; i < 6; i++) faceRecs[i].x = size*i;
else if (layoutType == CUBEMAP_CROSS_THREE_BY_FOUR)
{
faceRecs[0].x = size; faceRecs[0].y = size;
faceRecs[1].x = size; faceRecs[1].y = 3*size;
faceRecs[2].x = size; faceRecs[2].y = 0;
faceRecs[3].x = size; faceRecs[3].y = 2*size;
faceRecs[4].x = 0; faceRecs[4].y = size;
faceRecs[5].x = 2*size; faceRecs[5].y = size;
}
else if (layoutType == CUBEMAP_CROSS_FOUR_BY_THREE)
{
faceRecs[0].x = 2*size; faceRecs[0].y = size;
faceRecs[1].x = 0; faceRecs[1].y = size;
faceRecs[2].x = size; faceRecs[2].y = 0;
faceRecs[3].x = size; faceRecs[3].y = 2*size;
faceRecs[4].x = size; faceRecs[4].y = size;
faceRecs[5].x = 3*size; faceRecs[5].y = size;
}
// Convert image data to 6 faces in a vertical column, that's the optimum layout for loading
faces = GenImageColor(size, size*6, MAGENTA);
ImageFormat(&faces, image.format);
// TODO: Image formating does not work with compressed textures!
}
for (int i = 0; i < 6; i++) ImageDraw(&faces, image, faceRecs[i], (Rectangle){ 0, size*i, size, size });
cubemap.id = rlLoadTextureCubemap(faces.data, size, faces.format);
if (cubemap.id == 0) TraceLog(LOG_WARNING, "Cubemap image could not be loaded.");
UnloadImage(faces);
}
else TraceLog(LOG_WARNING, "Cubemap image layout can not be detected.");
return cubemap;
}
// Crop an image to area defined by a rectangle
// NOTE: Security checks are performed in case rectangle goes out of bounds
2016-08-16 12:09:55 +03:00
void ImageCrop(Image *image, Rectangle crop)
{
// Security checks to make sure cropping rectangle is inside margins
if ((crop.x + crop.width) > image->width)
{
crop.width = image->width - crop.x;
TraceLog(LOG_WARNING, "Crop rectangle width out of bounds, rescaled crop width: %i", crop.width);
}
2016-08-16 12:09:55 +03:00
if ((crop.y + crop.height) > image->height)
{
crop.height = image->height - crop.y;
TraceLog(LOG_WARNING, "Crop rectangle height out of bounds, rescaled crop height: %i", crop.height);
}
2016-08-16 12:09:55 +03:00
if ((crop.x < image->width) && (crop.y < image->height))
{
// Start the cropping process
Color *pixels = GetImageData(*image); // Get data as Color pixels array
Color *cropPixels = (Color *)malloc((int)crop.width*(int)crop.height*sizeof(Color));
for (int j = (int)crop.y; j < (int)(crop.y + crop.height); j++)
{
for (int i = (int)crop.x; i < (int)(crop.x + crop.width); i++)
{
cropPixels[(j - (int)crop.y)*(int)crop.width + (i - (int)crop.x)] = pixels[j*image->width + i];
}
}
free(pixels);
int format = image->format;
UnloadImage(*image);
*image = LoadImageEx(cropPixels, (int)crop.width, (int)crop.height);
free(cropPixels);
2016-08-16 12:09:55 +03:00
// Reformat 32bit RGBA image to original format
ImageFormat(image, format);
}
else
{
TraceLog(LOG_WARNING, "Image can not be cropped, crop rectangle out of bounds");
}
}
2019-02-15 18:56:36 +03:00
// Crop image depending on alpha value
void ImageAlphaCrop(Image *image, float threshold)
{
Color *pixels = GetImageData(*image);
int xMin = 65536; // Define a big enough number
int xMax = 0;
int yMin = 65536;
int yMax = 0;
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
if (pixels[y*image->width + x].a > (unsigned char)(threshold*255.0f))
{
if (x < xMin) xMin = x;
if (x > xMax) xMax = x;
if (y < yMin) yMin = y;
if (y > yMax) yMax = y;
}
}
}
Rectangle crop = { xMin, yMin, (xMax + 1) - xMin, (yMax + 1) - yMin };
free(pixels);
// Check for not empty image brefore cropping
if (!((xMax < xMin) || (yMax < yMin))) ImageCrop(image, crop);
}
// Resize and image to new size
2016-02-12 14:22:56 +03:00
// NOTE: Uses stb default scaling filters (both bicubic):
// STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM
// STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL (high-quality Catmull-Rom)
2016-08-16 12:09:55 +03:00
void ImageResize(Image *image, int newWidth, int newHeight)
{
// Get data as Color pixels array to work with it
Color *pixels = GetImageData(*image);
Color *output = (Color *)malloc(newWidth*newHeight*sizeof(Color));
// NOTE: Color data is casted to (unsigned char *), there shouldn't been any problem...
stbir_resize_uint8((unsigned char *)pixels, image->width, image->height, 0, (unsigned char *)output, newWidth, newHeight, 0, 4);
int format = image->format;
UnloadImage(*image);
*image = LoadImageEx(output, newWidth, newHeight);
2016-08-16 12:09:55 +03:00
ImageFormat(image, format); // Reformat 32bit RGBA image to original format
free(output);
free(pixels);
}
// Resize and image to new size using Nearest-Neighbor scaling algorithm
2016-08-16 12:09:55 +03:00
void ImageResizeNN(Image *image,int newWidth,int newHeight)
{
Color *pixels = GetImageData(*image);
Color *output = (Color *)malloc(newWidth*newHeight*sizeof(Color));
2016-08-16 12:09:55 +03:00
// EDIT: added +1 to account for an early rounding problem
2016-12-05 03:14:18 +03:00
int xRatio = (int)((image->width << 16)/newWidth) + 1;
int yRatio = (int)((image->height << 16)/newHeight) + 1;
2016-08-16 12:09:55 +03:00
int x2, y2;
2016-12-05 03:14:18 +03:00
for (int y = 0; y < newHeight; y++)
{
2016-12-05 03:14:18 +03:00
for (int x = 0; x < newWidth; x++)
{
2016-12-05 03:14:18 +03:00
x2 = ((x*xRatio) >> 16);
y2 = ((y*yRatio) >> 16);
2016-08-16 12:09:55 +03:00
2016-12-05 03:14:18 +03:00
output[(y*newWidth) + x] = pixels[(y2*image->width) + x2] ;
2016-08-16 12:09:55 +03:00
}
}
int format = image->format;
UnloadImage(*image);
*image = LoadImageEx(output, newWidth, newHeight);
2016-08-16 12:09:55 +03:00
ImageFormat(image, format); // Reformat 32bit RGBA image to original format
free(output);
free(pixels);
}
2018-06-02 13:47:05 +03:00
// Resize canvas and fill with color
// NOTE: Resize offset is relative to the top-left corner of the original image
void ImageResizeCanvas(Image *image, int newWidth,int newHeight, int offsetX, int offsetY, Color color)
{
Image imTemp = GenImageColor(newWidth, newHeight, color);
Rectangle srcRec = { 0.0f, 0.0f, (float)image->width, (float)image->height };
Rectangle dstRec = { (float)offsetX, (float)offsetY, (float)srcRec.width, (float)srcRec.height };
2018-11-06 17:10:50 +03:00
// TODO: Review different scaling situations
2018-11-06 17:10:50 +03:00
2018-06-02 13:47:05 +03:00
if ((newWidth > image->width) && (newHeight > image->height))
{
ImageDraw(&imTemp, *image, srcRec, dstRec);
ImageFormat(&imTemp, image->format);
UnloadImage(*image);
*image = imTemp;
}
else
{
// TODO: ImageCrop(), define proper cropping rectangle
}
}
2018-01-18 02:23:28 +03:00
// Generate all mipmap levels for a provided image
// NOTE 1: Supports POT and NPOT images
// NOTE 2: image.data is scaled to include mipmap levels
// NOTE 3: Mipmaps format is the same as base image
void ImageMipmaps(Image *image)
{
int mipCount = 1; // Required mipmap levels count (including base level)
int mipWidth = image->width; // Base image width
int mipHeight = image->height; // Base image height
int mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format); // Image data size (in bytes)
// Count mipmap levels required
while ((mipWidth != 1) || (mipHeight != 1))
{
if (mipWidth != 1) mipWidth /= 2;
if (mipHeight != 1) mipHeight /= 2;
2018-11-06 17:10:50 +03:00
2018-01-18 02:23:28 +03:00
// Security check for NPOT textures
if (mipWidth < 1) mipWidth = 1;
if (mipHeight < 1) mipHeight = 1;
TraceLog(LOG_DEBUG, "Next mipmap level: %i x %i - current size %i", mipWidth, mipHeight, mipSize);
mipCount++;
mipSize += GetPixelDataSize(mipWidth, mipHeight, image->format); // Add mipmap size (in bytes)
}
TraceLog(LOG_DEBUG, "Mipmaps available: %i - Mipmaps required: %i", image->mipmaps, mipCount);
TraceLog(LOG_DEBUG, "Mipmaps total size required: %i", mipSize);
TraceLog(LOG_DEBUG, "Image data memory start address: 0x%x", image->data);
2018-01-18 02:23:28 +03:00
if (image->mipmaps < mipCount)
{
void *temp = realloc(image->data, mipSize);
2018-11-06 17:10:50 +03:00
if (temp != NULL)
2018-01-18 02:23:28 +03:00
{
image->data = temp; // Assign new pointer (new size) to store mipmaps data
TraceLog(LOG_DEBUG, "Image data memory point reallocated: 0x%x", temp);
2018-01-18 02:23:28 +03:00
}
else TraceLog(LOG_WARNING, "Mipmaps required memory could not be allocated");
// Pointer to allocated memory point where store next mipmap level data
unsigned char *nextmip = (unsigned char *)image->data + GetPixelDataSize(image->width, image->height, image->format);
2018-11-06 17:10:50 +03:00
2018-01-18 02:23:28 +03:00
mipWidth = image->width/2;
mipHeight = image->height/2;
mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format);
Image imCopy = ImageCopy(*image);
2018-11-06 17:10:50 +03:00
2018-01-18 02:23:28 +03:00
for (int i = 1; i < mipCount; i++)
{
TraceLog(LOG_DEBUG, "Gen mipmap level: %i (%i x %i) - size: %i - offset: 0x%x", i, mipWidth, mipHeight, mipSize, nextmip);
2018-11-06 17:10:50 +03:00
2018-01-18 02:23:28 +03:00
ImageResize(&imCopy, mipWidth, mipHeight); // Uses internally Mitchell cubic downscale filter
memcpy(nextmip, imCopy.data, mipSize);
nextmip += mipSize;
image->mipmaps++;
2018-11-06 17:10:50 +03:00
2018-01-18 02:23:28 +03:00
mipWidth /= 2;
mipHeight /= 2;
2018-11-06 17:10:50 +03:00
2018-01-18 02:23:28 +03:00
// Security check for NPOT textures
if (mipWidth < 1) mipWidth = 1;
if (mipHeight < 1) mipHeight = 1;
2018-11-06 17:10:50 +03:00
2018-01-18 02:23:28 +03:00
mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format);
}
UnloadImage(imCopy);
}
else TraceLog(LOG_WARNING, "Image mipmaps already available");
}
// Dither image data to 16bpp or lower (Floyd-Steinberg dithering)
// NOTE: In case selected bpp do not represent an known 16bit format,
// dithered data is stored in the LSB part of the unsigned short
void ImageDither(Image *image, int rBpp, int gBpp, int bBpp, int aBpp)
{
if (image->format >= COMPRESSED_DXT1_RGB)
{
TraceLog(LOG_WARNING, "Compressed data formats can not be dithered");
return;
}
2018-11-30 03:57:53 +03:00
if ((rBpp + gBpp + bBpp + aBpp) > 16)
{
TraceLog(LOG_WARNING, "Unsupported dithering bpps (%ibpp), only 16bpp or lower modes supported", (rBpp+gBpp+bBpp+aBpp));
}
else
{
Color *pixels = GetImageData(*image);
free(image->data); // free old image data
if ((image->format != UNCOMPRESSED_R8G8B8) && (image->format != UNCOMPRESSED_R8G8B8A8))
{
TraceLog(LOG_WARNING, "Image format is already 16bpp or lower, dithering could have no effect");
}
// Define new image format, check if desired bpp match internal known format
if ((rBpp == 5) && (gBpp == 6) && (bBpp == 5) && (aBpp == 0)) image->format = UNCOMPRESSED_R5G6B5;
else if ((rBpp == 5) && (gBpp == 5) && (bBpp == 5) && (aBpp == 1)) image->format = UNCOMPRESSED_R5G5B5A1;
else if ((rBpp == 4) && (gBpp == 4) && (bBpp == 4) && (aBpp == 4)) image->format = UNCOMPRESSED_R4G4B4A4;
else
{
image->format = 0;
TraceLog(LOG_WARNING, "Unsupported dithered OpenGL internal format: %ibpp (R%iG%iB%iA%i)", (rBpp+gBpp+bBpp+aBpp), rBpp, gBpp, bBpp, aBpp);
}
// NOTE: We will store the dithered data as unsigned short (16bpp)
image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short));
Color oldPixel = WHITE;
Color newPixel = WHITE;
int rError, gError, bError;
unsigned short rPixel, gPixel, bPixel, aPixel; // Used for 16bit pixel composition
#define MIN(a,b) (((a)<(b))?(a):(b))
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
oldPixel = pixels[y*image->width + x];
// NOTE: New pixel obtained by bits truncate, it would be better to round values (check ImageFormat())
newPixel.r = oldPixel.r >> (8 - rBpp); // R bits
newPixel.g = oldPixel.g >> (8 - gBpp); // G bits
newPixel.b = oldPixel.b >> (8 - bBpp); // B bits
newPixel.a = oldPixel.a >> (8 - aBpp); // A bits (not used on dithering)
// NOTE: Error must be computed between new and old pixel but using same number of bits!
// We want to know how much color precision we have lost...
rError = (int)oldPixel.r - (int)(newPixel.r << (8 - rBpp));
gError = (int)oldPixel.g - (int)(newPixel.g << (8 - gBpp));
bError = (int)oldPixel.b - (int)(newPixel.b << (8 - bBpp));
pixels[y*image->width + x] = newPixel;
// NOTE: Some cases are out of the array and should be ignored
if (x < (image->width - 1))
{
pixels[y*image->width + x+1].r = MIN((int)pixels[y*image->width + x+1].r + (int)((float)rError*7.0f/16), 0xff);
pixels[y*image->width + x+1].g = MIN((int)pixels[y*image->width + x+1].g + (int)((float)gError*7.0f/16), 0xff);
pixels[y*image->width + x+1].b = MIN((int)pixels[y*image->width + x+1].b + (int)((float)bError*7.0f/16), 0xff);
}
if ((x > 0) && (y < (image->height - 1)))
{
pixels[(y+1)*image->width + x-1].r = MIN((int)pixels[(y+1)*image->width + x-1].r + (int)((float)rError*3.0f/16), 0xff);
pixels[(y+1)*image->width + x-1].g = MIN((int)pixels[(y+1)*image->width + x-1].g + (int)((float)gError*3.0f/16), 0xff);
pixels[(y+1)*image->width + x-1].b = MIN((int)pixels[(y+1)*image->width + x-1].b + (int)((float)bError*3.0f/16), 0xff);
}
if (y < (image->height - 1))
{
pixels[(y+1)*image->width + x].r = MIN((int)pixels[(y+1)*image->width + x].r + (int)((float)rError*5.0f/16), 0xff);
pixels[(y+1)*image->width + x].g = MIN((int)pixels[(y+1)*image->width + x].g + (int)((float)gError*5.0f/16), 0xff);
pixels[(y+1)*image->width + x].b = MIN((int)pixels[(y+1)*image->width + x].b + (int)((float)bError*5.0f/16), 0xff);
}
if ((x < (image->width - 1)) && (y < (image->height - 1)))
{
pixels[(y+1)*image->width + x+1].r = MIN((int)pixels[(y+1)*image->width + x+1].r + (int)((float)rError*1.0f/16), 0xff);
pixels[(y+1)*image->width + x+1].g = MIN((int)pixels[(y+1)*image->width + x+1].g + (int)((float)gError*1.0f/16), 0xff);
pixels[(y+1)*image->width + x+1].b = MIN((int)pixels[(y+1)*image->width + x+1].b + (int)((float)bError*1.0f/16), 0xff);
}
rPixel = (unsigned short)newPixel.r;
gPixel = (unsigned short)newPixel.g;
bPixel = (unsigned short)newPixel.b;
aPixel = (unsigned short)newPixel.a;
((unsigned short *)image->data)[y*image->width + x] = (rPixel << (gBpp + bBpp + aBpp)) | (gPixel << (bBpp + aBpp)) | (bPixel << aBpp) | aPixel;
}
}
free(pixels);
}
}
2018-10-08 19:57:33 +03:00
// Extract color palette from image to maximum size
// NOTE: Memory allocated should be freed manually!
Color *ImageExtractPalette(Image image, int maxPaletteSize, int *extractCount)
{
#define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a))
2018-11-06 17:10:50 +03:00
2018-10-08 19:57:33 +03:00
Color *pixels = GetImageData(image);
Color *palette = (Color *)malloc(maxPaletteSize*sizeof(Color));
2018-11-06 17:10:50 +03:00
2018-10-08 19:57:33 +03:00
int palCount = 0;
for (int i = 0; i < maxPaletteSize; i++) palette[i] = BLANK; // Set all colors to BLANK
for (int i = 0; i < image.width*image.height; i++)
{
if (pixels[i].a > 0)
{
bool colorInPalette = false;
2018-11-06 17:10:50 +03:00
2018-10-08 19:57:33 +03:00
// Check if the color is already on palette
for (int j = 0; j < maxPaletteSize; j++)
{
2018-11-06 17:10:50 +03:00
if (COLOR_EQUAL(pixels[i], palette[j]))
2018-10-08 19:57:33 +03:00
{
colorInPalette = true;
break;
}
}
2018-11-06 17:10:50 +03:00
2018-10-08 19:57:33 +03:00
// Store color if not on the palette
if (!colorInPalette)
{
palette[palCount] = pixels[i]; // Add pixels[i] to palette
palCount++;
2018-11-06 17:10:50 +03:00
2018-10-08 19:57:33 +03:00
// We reached the limit of colors supported by palette
if (palCount >= maxPaletteSize)
{
i = image.width*image.height; // Finish palette get
printf("WARNING: Image palette is greater than %i colors!\n", maxPaletteSize);
}
}
}
}
free(pixels);
2018-11-06 17:10:50 +03:00
2018-10-08 19:57:33 +03:00
*extractCount = palCount;
2018-11-06 17:10:50 +03:00
2018-10-08 19:57:33 +03:00
return palette;
}
// Draw an image (source) within an image (destination)
2016-09-12 20:25:58 +03:00
// TODO: Feel this function could be simplified...
2016-08-16 12:09:55 +03:00
void ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dstRec)
{
2016-09-12 20:25:58 +03:00
bool cropRequired = false;
2017-01-29 01:02:30 +03:00
// Security checks to avoid size and rectangle issues (out of bounds)
// Check that srcRec is inside src image
if (srcRec.x < 0) srcRec.x = 0;
if (srcRec.y < 0) srcRec.y = 0;
2016-08-16 12:09:55 +03:00
if ((srcRec.x + srcRec.width) > src.width)
{
srcRec.width = src.width - srcRec.x;
TraceLog(LOG_WARNING, "Source rectangle width out of bounds, rescaled width: %i", srcRec.width);
}
2016-08-16 12:09:55 +03:00
if ((srcRec.y + srcRec.height) > src.height)
{
srcRec.height = src.height - srcRec.y;
TraceLog(LOG_WARNING, "Source rectangle height out of bounds, rescaled height: %i", srcRec.height);
}
2017-01-29 01:02:30 +03:00
2016-09-12 20:25:58 +03:00
Image srcCopy = ImageCopy(src); // Make a copy of source image to work with it
ImageCrop(&srcCopy, srcRec); // Crop source image to desired source rectangle
2017-01-29 01:02:30 +03:00
// Check that dstRec is inside dst image
2016-09-12 20:25:58 +03:00
// TODO: Allow negative position within destination with cropping
if (dstRec.x < 0) dstRec.x = 0;
if (dstRec.y < 0) dstRec.y = 0;
2017-01-29 01:02:30 +03:00
2016-09-12 20:25:58 +03:00
// Scale source image in case destination rec size is different than source rec size
if ((dstRec.width != srcRec.width) || (dstRec.height != srcRec.height)) ImageResize(&srcCopy, (int)dstRec.width, (int)dstRec.height);
2016-08-16 12:09:55 +03:00
if ((dstRec.x + dstRec.width) > dst->width)
{
dstRec.width = dst->width - dstRec.x;
TraceLog(LOG_WARNING, "Destination rectangle width out of bounds, rescaled width: %i", dstRec.width);
2016-09-12 20:25:58 +03:00
cropRequired = true;
}
2016-08-16 12:09:55 +03:00
if ((dstRec.y + dstRec.height) > dst->height)
{
dstRec.height = dst->height - dstRec.y;
TraceLog(LOG_WARNING, "Destination rectangle height out of bounds, rescaled height: %i", dstRec.height);
2016-09-12 20:25:58 +03:00
cropRequired = true;
}
2017-01-29 01:02:30 +03:00
2016-09-12 20:25:58 +03:00
if (cropRequired)
{
2016-09-12 20:25:58 +03:00
// Crop destination rectangle if out of bounds
Rectangle crop = { 0, 0, dstRec.width, dstRec.height };
ImageCrop(&srcCopy, crop);
}
2017-01-29 01:02:30 +03:00
2016-09-12 20:25:58 +03:00
// Get image data as Color pixels array to work with it
Color *dstPixels = GetImageData(*dst);
Color *srcPixels = GetImageData(srcCopy);
2016-08-16 12:09:55 +03:00
2016-09-12 20:25:58 +03:00
UnloadImage(srcCopy); // Source copy not required any more...
2017-01-29 01:02:30 +03:00
Vector4 fsrc, fdst, fout; // float based versions of pixel data
2018-11-06 17:10:50 +03:00
// Blit pixels, copy source image into destination
// TODO: Probably out-of-bounds blitting could be considered here instead of so much cropping...
for (int j = (int)dstRec.y; j < (int)(dstRec.y + dstRec.height); j++)
{
for (int i = (int)dstRec.x; i < (int)(dstRec.x + dstRec.width); i++)
{
// Alpha blending (https://en.wikipedia.org/wiki/Alpha_compositing)
2018-11-06 17:10:50 +03:00
fdst = ColorNormalize(dstPixels[j*(int)dst->width + i]);
fsrc = ColorNormalize(srcPixels[(j - (int)dstRec.y)*(int)dstRec.width + (i - (int)dstRec.x)]);
fout.w = fsrc.w + fdst.w*(1.0f - fsrc.w);
2018-11-06 17:10:50 +03:00
if (fout.w <= 0.0f)
{
fout.x = 0.0f;
fout.y = 0.0f;
fout.z = 0.0f;
}
else
{
fout.x = (fsrc.x*fsrc.w + fdst.x*fdst.w*(1 - fsrc.w))/fout.w;
fout.y = (fsrc.y*fsrc.w + fdst.y*fdst.w*(1 - fsrc.w))/fout.w;
fout.z = (fsrc.z*fsrc.w + fdst.z*fdst.w*(1 - fsrc.w))/fout.w;
}
2018-11-06 17:10:50 +03:00
dstPixels[j*(int)dst->width + i] = (Color){ (unsigned char)(fout.x*255.0f),
(unsigned char)(fout.y*255.0f),
(unsigned char)(fout.z*255.0f),
(unsigned char)(fout.w*255.0f) };
2017-01-29 01:02:30 +03:00
2016-09-12 20:25:58 +03:00
// TODO: Support other blending options
}
}
2016-08-16 12:09:55 +03:00
UnloadImage(*dst); // NOTE: Only dst->data is unloaded
*dst = LoadImageEx(dstPixels, (int)dst->width, (int)dst->height);
ImageFormat(dst, dst->format);
free(srcPixels);
free(dstPixels);
}
// Create an image from text (default font)
Image ImageText(const char *text, int fontSize, Color color)
{
int defaultFontSize = 10; // Default Font chars height in pixel
if (fontSize < defaultFontSize) fontSize = defaultFontSize;
int spacing = fontSize / defaultFontSize;
2016-08-16 12:09:55 +03:00
Image imText = ImageTextEx(GetFontDefault(), text, (float)fontSize, (float)spacing, color);
2016-08-16 12:09:55 +03:00
return imText;
}
// Create an image from text (custom sprite font)
Image ImageTextEx(Font font, const char *text, float fontSize, float spacing, Color tint)
{
int length = strlen(text);
int posX = 0;
int index; // Index position in sprite font
unsigned char character; // Current character
Vector2 imSize = MeasureTextEx(font, text, (float)font.baseSize, spacing);
2018-11-06 17:10:50 +03:00
2018-01-28 18:52:18 +03:00
TraceLog(LOG_DEBUG, "Text Image size: %f, %f", imSize.x, imSize.y);
2017-09-26 01:51:26 +03:00
// NOTE: glGetTexImage() not available in OpenGL ES
2018-11-06 17:10:50 +03:00
// TODO: This is horrible, retrieving font texture from GPU!!!
// Define ImageFont struct? or include Image spritefont in Font struct?
Image imFont = GetTextureData(font.texture);
2018-11-06 17:10:50 +03:00
2018-09-05 11:47:57 +03:00
ImageFormat(&imFont, UNCOMPRESSED_R8G8B8A8); // Make sure image format could be properly colored!
2018-11-06 17:10:50 +03:00
2018-09-05 11:47:57 +03:00
ImageColorTint(&imFont, tint); // Apply color tint to font
// Create image to store text
Image imText = GenImageColor((int)imSize.x, (int)imSize.y, BLANK);
2016-08-16 12:09:55 +03:00
for (int i = 0; i < length; i++)
{
if ((unsigned char)text[i] == '\n')
{
// TODO: Support line break
}
else
{
if ((unsigned char)text[i] == 0xc2) // UTF-8 encoding identification HACK!
{
// Support UTF-8 encoded values from [0xc2 0x80] -> [0xc2 0xbf](¿)
character = (unsigned char)text[i + 1];
index = GetGlyphIndex(font, (int)character);
i++;
}
else if ((unsigned char)text[i] == 0xc3) // UTF-8 encoding identification HACK!
{
// Support UTF-8 encoded values from [0xc3 0x80](À) -> [0xc3 0xbf](ÿ)
character = (unsigned char)text[i + 1];
index = GetGlyphIndex(font, (int)character + 64);
i++;
}
else index = GetGlyphIndex(font, (unsigned char)text[i]);
2016-08-16 12:09:55 +03:00
CharInfo letter = font.chars[index];
2018-11-06 17:10:50 +03:00
if ((unsigned char)text[i] != ' ')
{
2018-11-06 17:10:50 +03:00
ImageDraw(&imText, imFont, letter.rec, (Rectangle){ (float)(posX + letter.offsetX),
(float)letter.offsetY, (float)letter.rec.width, (float)letter.rec.height });
}
if (letter.advanceX == 0) posX += (int)(letter.rec.width + spacing);
2018-08-06 21:49:47 +03:00
else posX += letter.advanceX + (int)spacing;
}
}
2016-08-16 12:09:55 +03:00
UnloadImage(imFont);
2016-08-16 12:09:55 +03:00
// Scale image depending on text size
2016-08-07 14:38:48 +03:00
if (fontSize > imSize.y)
{
2016-08-07 14:38:48 +03:00
float scaleFactor = fontSize/imSize.y;
2018-01-28 18:52:18 +03:00
TraceLog(LOG_INFO, "Image text scaled by factor: %f", scaleFactor);
2016-08-16 12:09:55 +03:00
// Using nearest-neighbor scaling algorithm for default font
if (font.texture.id == GetFontDefault().texture.id) ImageResizeNN(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor));
else ImageResize(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor));
}
2016-08-16 12:09:55 +03:00
return imText;
}
// Draw rectangle within an image
void ImageDrawRectangle(Image *dst, Rectangle rec, Color color)
{
Image imRec = GenImageColor((int)rec.width, (int)rec.height, color);
ImageDraw(dst, imRec, (Rectangle){ 0, 0, rec.width, rec.height }, rec);
UnloadImage(imRec);
}
// Draw rectangle lines within an image
void ImageDrawRectangleLines(Image *dst, Rectangle rec, int thick, Color color)
{
ImageDrawRectangle(dst, (Rectangle){ rec.x, rec.y, rec.width, thick }, color);
ImageDrawRectangle(dst, (Rectangle){ rec.x, rec.y + thick, thick, rec.height - thick*2 }, color);
ImageDrawRectangle(dst, (Rectangle){ rec.x + rec.width - thick, rec.y + thick, thick, rec.height - thick*2 }, color);
ImageDrawRectangle(dst, (Rectangle){ rec.x, rec.height - thick, rec.width, thick }, color);
}
// Draw text (default font) within an image (destination)
void ImageDrawText(Image *dst, Vector2 position, const char *text, int fontSize, Color color)
{
2016-09-12 20:25:58 +03:00
// NOTE: For default font, sapcing is set to desired font size / default font size (10)
ImageDrawTextEx(dst, position, GetFontDefault(), text, (float)fontSize, (float)fontSize/10, color);
}
// Draw text (custom sprite font) within an image (destination)
void ImageDrawTextEx(Image *dst, Vector2 position, Font font, const char *text, float fontSize, float spacing, Color color)
{
Image imText = ImageTextEx(font, text, fontSize, spacing, color);
2016-08-16 12:09:55 +03:00
Rectangle srcRec = { 0.0f, 0.0f, (float)imText.width, (float)imText.height };
Rectangle dstRec = { position.x, position.y, (float)imText.width, (float)imText.height };
2016-08-16 12:09:55 +03:00
ImageDraw(dst, imText, srcRec, dstRec);
2016-08-16 12:09:55 +03:00
UnloadImage(imText);
}
// Flip image vertically
void ImageFlipVertical(Image *image)
{
Color *srcPixels = GetImageData(*image);
2018-06-03 22:05:01 +03:00
Color *dstPixels = (Color *)malloc(image->width*image->height*sizeof(Color));
2016-08-16 12:09:55 +03:00
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
dstPixels[y*image->width + x] = srcPixels[(image->height - 1 - y)*image->width + x];
}
}
2016-08-16 12:09:55 +03:00
Image processed = LoadImageEx(dstPixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
2016-08-16 12:09:55 +03:00
free(srcPixels);
free(dstPixels);
2016-08-16 12:09:55 +03:00
image->data = processed.data;
}
// Flip image horizontally
void ImageFlipHorizontal(Image *image)
{
Color *srcPixels = GetImageData(*image);
2018-06-03 22:05:01 +03:00
Color *dstPixels = (Color *)malloc(image->width*image->height*sizeof(Color));
2016-08-16 12:09:55 +03:00
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
dstPixels[y*image->width + x] = srcPixels[y*image->width + (image->width - 1 - x)];
}
}
2016-08-16 12:09:55 +03:00
Image processed = LoadImageEx(dstPixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
2016-08-16 12:09:55 +03:00
free(srcPixels);
free(dstPixels);
2016-08-16 12:09:55 +03:00
image->data = processed.data;
}
2018-06-03 22:05:01 +03:00
// Rotate image clockwise 90deg
void ImageRotateCW(Image *image)
{
Color *srcPixels = GetImageData(*image);
Color *rotPixels = (Color *)malloc(image->width*image->height*sizeof(Color));
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
rotPixels[x*image->height + (image->height - y - 1)] = srcPixels[y*image->width + x];
}
}
Image processed = LoadImageEx(rotPixels, image->height, image->width);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(srcPixels);
free(rotPixels);
image->data = processed.data;
image->width = processed.width;
image->height = processed.height;
}
// Rotate image counter-clockwise 90deg
void ImageRotateCCW(Image *image)
{
Color *srcPixels = GetImageData(*image);
Color *rotPixels = (Color *)malloc(image->width*image->height*sizeof(Color));
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
rotPixels[x*image->height + y] = srcPixels[y*image->width + (image->width - x - 1)];
}
}
Image processed = LoadImageEx(rotPixels, image->height, image->width);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(srcPixels);
free(rotPixels);
image->data = processed.data;
image->width = processed.width;
image->height = processed.height;
}
// Modify image color: tint
void ImageColorTint(Image *image, Color color)
{
Color *pixels = GetImageData(*image);
2016-08-16 12:09:55 +03:00
float cR = (float)color.r/255;
float cG = (float)color.g/255;
float cB = (float)color.b/255;
float cA = (float)color.a/255;
2016-08-16 12:09:55 +03:00
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
int index = y * image->width + x;
unsigned char r = 255*((float)pixels[index].r/255*cR);
unsigned char g = 255*((float)pixels[index].g/255*cG);
unsigned char b = 255*((float)pixels[index].b/255*cB);
unsigned char a = 255*((float)pixels[index].a/255*cA);
pixels[y*image->width + x].r = r;
pixels[y*image->width + x].g = g;
pixels[y*image->width + x].b = b;
pixels[y*image->width + x].a = a;
}
}
Image processed = LoadImageEx(pixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(pixels);
2016-08-16 12:09:55 +03:00
image->data = processed.data;
}
// Modify image color: invert
void ImageColorInvert(Image *image)
{
Color *pixels = GetImageData(*image);
2016-08-16 12:09:55 +03:00
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
pixels[y*image->width + x].r = 255 - pixels[y*image->width + x].r;
pixels[y*image->width + x].g = 255 - pixels[y*image->width + x].g;
pixels[y*image->width + x].b = 255 - pixels[y*image->width + x].b;
}
}
2016-08-16 12:09:55 +03:00
Image processed = LoadImageEx(pixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(pixels);
2016-08-16 12:09:55 +03:00
image->data = processed.data;
}
// Modify image color: grayscale
void ImageColorGrayscale(Image *image)
{
ImageFormat(image, UNCOMPRESSED_GRAYSCALE);
}
// Modify image color: contrast
// NOTE: Contrast values between -100 and 100
void ImageColorContrast(Image *image, float contrast)
{
if (contrast < -100) contrast = -100;
if (contrast > 100) contrast = 100;
2016-08-16 12:09:55 +03:00
2016-10-17 01:03:38 +03:00
contrast = (100.0f + contrast)/100.0f;
contrast *= contrast;
2016-08-16 12:09:55 +03:00
Color *pixels = GetImageData(*image);
2016-08-16 12:09:55 +03:00
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
2016-10-17 01:03:38 +03:00
float pR = (float)pixels[y*image->width + x].r/255.0f;
pR -= 0.5;
pR *= contrast;
pR += 0.5;
pR *= 255;
if (pR < 0) pR = 0;
if (pR > 255) pR = 255;
2016-10-17 01:03:38 +03:00
float pG = (float)pixels[y*image->width + x].g/255.0f;
pG -= 0.5;
pG *= contrast;
pG += 0.5;
pG *= 255;
if (pG < 0) pG = 0;
if (pG > 255) pG = 255;
2016-10-17 01:03:38 +03:00
float pB = (float)pixels[y*image->width + x].b/255.0f;
pB -= 0.5;
pB *= contrast;
pB += 0.5;
pB *= 255;
if (pB < 0) pB = 0;
if (pB > 255) pB = 255;
pixels[y*image->width + x].r = (unsigned char)pR;
pixels[y*image->width + x].g = (unsigned char)pG;
pixels[y*image->width + x].b = (unsigned char)pB;
}
}
Image processed = LoadImageEx(pixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(pixels);
2016-08-16 12:09:55 +03:00
image->data = processed.data;
}
// Modify image color: brightness
// NOTE: Brightness values between -255 and 255
void ImageColorBrightness(Image *image, int brightness)
{
if (brightness < -255) brightness = -255;
if (brightness > 255) brightness = 255;
2016-08-16 12:09:55 +03:00
Color *pixels = GetImageData(*image);
2016-08-16 12:09:55 +03:00
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
int cR = pixels[y*image->width + x].r + brightness;
int cG = pixels[y*image->width + x].g + brightness;
int cB = pixels[y*image->width + x].b + brightness;
if (cR < 0) cR = 1;
if (cR > 255) cR = 255;
if (cG < 0) cG = 1;
if (cG > 255) cG = 255;
if (cB < 0) cB = 1;
if (cB > 255) cB = 255;
2016-08-16 12:09:55 +03:00
pixels[y*image->width + x].r = (unsigned char)cR;
pixels[y*image->width + x].g = (unsigned char)cG;
pixels[y*image->width + x].b = (unsigned char)cB;
}
}
Image processed = LoadImageEx(pixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(pixels);
2016-08-16 12:09:55 +03:00
image->data = processed.data;
}
2018-07-03 01:57:58 +03:00
// Modify image color: replace color
void ImageColorReplace(Image *image, Color color, Color replace)
{
Color *pixels = GetImageData(*image);
for (int y = 0; y < image->height; y++)
{
for (int x = 0; x < image->width; x++)
{
if ((pixels[y*image->width + x].r == color.r) &&
(pixels[y*image->width + x].g == color.g) &&
(pixels[y*image->width + x].b == color.b) &&
(pixels[y*image->width + x].a == color.a))
{
pixels[y*image->width + x].r = replace.r;
pixels[y*image->width + x].g = replace.g;
pixels[y*image->width + x].b = replace.b;
pixels[y*image->width + x].a = replace.a;
}
}
}
Image processed = LoadImageEx(pixels, image->width, image->height);
ImageFormat(&processed, image->format);
UnloadImage(*image);
free(pixels);
image->data = processed.data;
}
2017-03-25 14:01:01 +03:00
#endif // SUPPORT_IMAGE_MANIPULATION
// Generate image: plain color
Image GenImageColor(int width, int height, Color color)
{
Color *pixels = (Color *)calloc(width*height, sizeof(Color));
2018-11-06 17:10:50 +03:00
for (int i = 0; i < width*height; i++) pixels[i] = color;
2018-11-06 17:10:50 +03:00
Image image = LoadImageEx(pixels, width, height);
2018-11-06 17:10:50 +03:00
free(pixels);
2018-11-06 17:10:50 +03:00
return image;
}
2019-02-14 13:32:23 +03:00
#if defined(SUPPORT_IMAGE_GENERATION)
// Generate image: vertical gradient
Image GenImageGradientV(int width, int height, Color top, Color bottom)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
for (int j = 0; j < height; j++)
{
2017-07-02 20:29:01 +03:00
float factor = (float)j/(float)height;
for (int i = 0; i < width; i++)
{
2017-07-02 20:29:01 +03:00
pixels[j*width + i].r = (int)((float)bottom.r*factor + (float)top.r*(1.f - factor));
pixels[j*width + i].g = (int)((float)bottom.g*factor + (float)top.g*(1.f - factor));
pixels[j*width + i].b = (int)((float)bottom.b*factor + (float)top.b*(1.f - factor));
pixels[j*width + i].a = (int)((float)bottom.a*factor + (float)top.a*(1.f - factor));
}
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: horizontal gradient
Image GenImageGradientH(int width, int height, Color left, Color right)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
for (int i = 0; i < width; i++)
{
2017-07-02 20:29:01 +03:00
float factor = (float)i/(float)width;
for (int j = 0; j < height; j++)
{
2017-07-02 20:29:01 +03:00
pixels[j*width + i].r = (int)((float)right.r*factor + (float)left.r*(1.f - factor));
pixels[j*width + i].g = (int)((float)right.g*factor + (float)left.g*(1.f - factor));
pixels[j*width + i].b = (int)((float)right.b*factor + (float)left.b*(1.f - factor));
pixels[j*width + i].a = (int)((float)right.a*factor + (float)left.a*(1.f - factor));
}
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: radial gradient
2017-07-02 20:29:01 +03:00
Image GenImageGradientRadial(int width, int height, float density, Color inner, Color outer)
{
2017-07-02 20:29:01 +03:00
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
float radius = (width < height) ? (float)width/2.0f : (float)height/2.0f;
2017-07-02 20:29:01 +03:00
float centerX = (float)width/2.0f;
float centerY = (float)height/2.0f;
2018-11-06 17:10:50 +03:00
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
2017-07-02 20:29:01 +03:00
float dist = hypotf((float)x - centerX, (float)y - centerY);
float factor = (dist - radius*density)/(radius*(1.0f - density));
2018-11-06 17:10:50 +03:00
factor = (float)fmax(factor, 0.f);
factor = (float)fmin(factor, 1.f); // dist can be bigger than radius so we have to check
2018-11-06 17:10:50 +03:00
2017-07-02 20:29:01 +03:00
pixels[y*width + x].r = (int)((float)outer.r*factor + (float)inner.r*(1.0f - factor));
pixels[y*width + x].g = (int)((float)outer.g*factor + (float)inner.g*(1.0f - factor));
pixels[y*width + x].b = (int)((float)outer.b*factor + (float)inner.b*(1.0f - factor));
pixels[y*width + x].a = (int)((float)outer.a*factor + (float)inner.a*(1.0f - factor));
}
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: checked
Image GenImageChecked(int width, int height, int checksX, int checksY, Color col1, Color col2)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
2017-07-02 20:29:01 +03:00
if ((x/checksX + y/checksY)%2 == 0) pixels[y*width + x] = col1;
else pixels[y*width + x] = col2;
}
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: white noise
Image GenImageWhiteNoise(int width, int height, float factor)
{
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
for (int i = 0; i < width*height; i++)
{
2017-07-02 20:29:01 +03:00
if (GetRandomValue(0, 99) < (int)(factor*100.0f)) pixels[i] = WHITE;
else pixels[i] = BLACK;
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: perlin noise
Image GenImagePerlinNoise(int width, int height, int offsetX, int offsetY, float scale)
{
2017-07-02 20:29:01 +03:00
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
float nx = (float)(x + offsetX)*scale/(float)width;
float ny = (float)(y + offsetY)*scale/(float)height;
2018-11-06 17:10:50 +03:00
// Typical values to start playing with:
// lacunarity = ~2.0 -- spacing between successive octaves (use exactly 2.0 for wrapping output)
// gain = 0.5 -- relative weighting applied to each successive octave
// octaves = 6 -- number of "octaves" of noise3() to sum
// NOTE: We need to translate the data from [-1..1] to [0..1]
2019-02-12 02:40:10 +03:00
float p = (stb_perlin_fbm_noise3(nx, ny, 1.0f, 2.0f, 0.5f, 6) + 1.0f)/2.0f;
2018-11-06 17:10:50 +03:00
int intensity = (int)(p*255.0f);
pixels[y*width + x] = (Color){intensity, intensity, intensity, 255};
}
}
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
// Generate image: cellular algorithm. Bigger tileSize means bigger cells
Image GenImageCellular(int width, int height, int tileSize)
{
2017-07-02 20:29:01 +03:00
Color *pixels = (Color *)malloc(width*height*sizeof(Color));
2017-07-02 20:29:01 +03:00
int seedsPerRow = width/tileSize;
int seedsPerCol = height/tileSize;
int seedsCount = seedsPerRow * seedsPerCol;
2017-07-02 20:29:01 +03:00
Vector2 *seeds = (Vector2 *)malloc(seedsCount*sizeof(Vector2));
2017-07-02 20:29:01 +03:00
for (int i = 0; i < seedsCount; i++)
{
2017-07-02 20:29:01 +03:00
int y = (i/seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1);
int x = (i%seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1);
seeds[i] = (Vector2){ (float)x, (float)y};
}
for (int y = 0; y < height; y++)
{
2017-07-02 20:29:01 +03:00
int tileY = y/tileSize;
2018-11-06 17:10:50 +03:00
for (int x = 0; x < width; x++)
{
2017-07-02 20:29:01 +03:00
int tileX = x/tileSize;
float minDistance = (float)strtod("Inf", NULL);
// Check all adjacent tiles
for (int i = -1; i < 2; i++)
{
2017-07-02 20:29:01 +03:00
if ((tileX + i < 0) || (tileX + i >= seedsPerRow)) continue;
for (int j = -1; j < 2; j++)
{
2017-07-02 20:29:01 +03:00
if ((tileY + j < 0) || (tileY + j >= seedsPerCol)) continue;
2017-07-02 20:29:01 +03:00
Vector2 neighborSeed = seeds[(tileY + j)*seedsPerRow + tileX + i];
float dist = (float)hypot(x - (int)neighborSeed.x, y - (int)neighborSeed.y);
minDistance = (float)fmin(minDistance, dist);
}
}
// I made this up but it seems to give good results at all tile sizes
2017-07-02 20:29:01 +03:00
int intensity = (int)(minDistance*256.0f/tileSize);
if (intensity > 255) intensity = 255;
2017-07-02 20:29:01 +03:00
pixels[y*width + x] = (Color){ intensity, intensity, intensity, 255 };
}
}
2018-11-06 17:10:50 +03:00
free(seeds);
Image image = LoadImageEx(pixels, width, height);
free(pixels);
return image;
}
2017-09-18 01:59:22 +03:00
#endif // SUPPORT_IMAGE_GENERATION
// Generate GPU mipmaps for a texture
void GenTextureMipmaps(Texture2D *texture)
{
// NOTE: NPOT textures support check inside function
// On WebGL (OpenGL ES 2.0) NPOT textures support is limited
rlGenerateMipmaps(texture);
}
// Set texture scaling filter mode
void SetTextureFilter(Texture2D texture, int filterMode)
{
switch (filterMode)
{
case FILTER_POINT:
{
if (texture.mipmaps > 1)
{
// RL_FILTER_MIP_NEAREST - tex filter: POINT, mipmaps filter: POINT (sharp switching between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_MIP_NEAREST);
2017-01-29 01:02:30 +03:00
// RL_FILTER_NEAREST - tex filter: POINT (no filter), no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_NEAREST);
}
else
{
// RL_FILTER_NEAREST - tex filter: POINT (no filter), no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_NEAREST);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_NEAREST);
}
} break;
case FILTER_BILINEAR:
{
if (texture.mipmaps > 1)
{
// RL_FILTER_LINEAR_MIP_NEAREST - tex filter: BILINEAR, mipmaps filter: POINT (sharp switching between mipmaps)
// Alternative: RL_FILTER_NEAREST_MIP_LINEAR - tex filter: POINT, mipmaps filter: BILINEAR (smooth transition between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_LINEAR_MIP_NEAREST);
2017-01-29 01:02:30 +03:00
// RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR);
}
else
{
// RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_LINEAR);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR);
}
} break;
case FILTER_TRILINEAR:
{
if (texture.mipmaps > 1)
{
// RL_FILTER_MIP_LINEAR - tex filter: BILINEAR, mipmaps filter: BILINEAR (smooth transition between mipmaps)
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_MIP_LINEAR);
2017-01-29 01:02:30 +03:00
// RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR);
}
else
{
TraceLog(LOG_WARNING, "[TEX ID %i] No mipmaps available for TRILINEAR texture filtering", texture.id);
2017-01-29 01:02:30 +03:00
// RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps
rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_LINEAR);
rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR);
}
} break;
case FILTER_ANISOTROPIC_4X: rlTextureParameters(texture.id, RL_TEXTURE_ANISOTROPIC_FILTER, 4); break;
case FILTER_ANISOTROPIC_8X: rlTextureParameters(texture.id, RL_TEXTURE_ANISOTROPIC_FILTER, 8); break;
case FILTER_ANISOTROPIC_16X: rlTextureParameters(texture.id, RL_TEXTURE_ANISOTROPIC_FILTER, 16); break;
default: break;
}
}
// Set texture wrapping mode
void SetTextureWrap(Texture2D texture, int wrapMode)
{
switch (wrapMode)
{
case WRAP_REPEAT:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_REPEAT);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_REPEAT);
} break;
case WRAP_CLAMP:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_CLAMP);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_CLAMP);
} break;
2018-12-03 14:00:05 +03:00
case WRAP_MIRROR_REPEAT:
{
2018-12-03 14:00:05 +03:00
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_MIRROR_REPEAT);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_MIRROR_REPEAT);
} break;
case WRAP_MIRROR_CLAMP:
{
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_MIRROR_CLAMP);
rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_MIRROR_CLAMP);
} break;
default: break;
}
}
// Draw a Texture2D
void DrawTexture(Texture2D texture, int posX, int posY, Color tint)
{
2017-08-06 11:43:43 +03:00
DrawTextureEx(texture, (Vector2){ (float)posX, (float)posY }, 0.0f, 1.0f, tint);
}
// Draw a Texture2D with position defined as Vector2
void DrawTextureV(Texture2D texture, Vector2 position, Color tint)
{
DrawTextureEx(texture, position, 0, 1.0f, tint);
}
// Draw a Texture2D with extended parameters
void DrawTextureEx(Texture2D texture, Vector2 position, float rotation, float scale, Color tint)
{
Rectangle sourceRec = { 0.0f, 0.0f, (float)texture.width, (float)texture.height };
Rectangle destRec = { position.x, position.y, (float)texture.width*scale, (float)texture.height*scale };
Vector2 origin = { 0.0f, 0.0f };
2014-09-03 18:51:28 +04:00
DrawTexturePro(texture, sourceRec, destRec, origin, rotation, tint);
}
// Draw a part of a texture (defined by a rectangle)
void DrawTextureRec(Texture2D texture, Rectangle sourceRec, Vector2 position, Color tint)
{
Rectangle destRec = { position.x, position.y, sourceRec.width, (float)fabs(sourceRec.height) };
Vector2 origin = { 0.0f, 0.0f };
2014-09-03 18:51:28 +04:00
DrawTexturePro(texture, sourceRec, destRec, origin, 0.0f, tint);
}
// Draw texture quad with tiling and offset parameters
// NOTE: Tiling and offset should be provided considering normalized texture values [0..1]
// i.e tiling = { 1.0f, 1.0f } refers to all texture, offset = { 0.5f, 0.5f } moves texture origin to center
void DrawTextureQuad(Texture2D texture, Vector2 tiling, Vector2 offset, Rectangle quad, Color tint)
{
Rectangle source = { offset.x*texture.width, offset.y*texture.height, tiling.x*texture.width, tiling.y*texture.height };
Vector2 origin = { 0.0f, 0.0f };
DrawTexturePro(texture, source, quad, origin, 0.0f, tint);
}
// Draw a part of a texture (defined by a rectangle) with 'pro' parameters
// NOTE: origin is relative to destination rectangle size
void DrawTexturePro(Texture2D texture, Rectangle sourceRec, Rectangle destRec, Vector2 origin, float rotation, Color tint)
{
2016-06-01 13:37:51 +03:00
// Check if texture is valid
if (texture.id > 0)
2016-06-01 13:37:51 +03:00
{
float width = (float)texture.width;
float height = (float)texture.height;
2018-11-06 17:10:50 +03:00
2016-06-01 13:37:51 +03:00
if (sourceRec.width < 0) sourceRec.x -= sourceRec.width;
if (sourceRec.height < 0) sourceRec.y -= sourceRec.height;
2016-08-16 12:09:55 +03:00
2016-06-01 13:37:51 +03:00
rlEnableTexture(texture.id);
2014-09-03 18:51:28 +04:00
2016-06-01 13:37:51 +03:00
rlPushMatrix();
2018-12-26 12:51:13 +03:00
rlTranslatef(destRec.x, destRec.y, 0.0f);
rlRotatef(rotation, 0.0f, 0.0f, 1.0f);
rlTranslatef(-origin.x, -origin.y, 0.0f);
2014-09-03 18:51:28 +04:00
2016-06-01 13:37:51 +03:00
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
2014-09-03 18:51:28 +04:00
2016-06-01 13:37:51 +03:00
// Bottom-left corner for texture and quad
rlTexCoord2f(sourceRec.x/width, sourceRec.y/height);
2016-06-01 13:37:51 +03:00
rlVertex2f(0.0f, 0.0f);
2014-09-03 18:51:28 +04:00
2016-06-01 13:37:51 +03:00
// Bottom-right corner for texture and quad
rlTexCoord2f(sourceRec.x/width, (sourceRec.y + sourceRec.height)/height);
rlVertex2f(0.0f, destRec.height);
2014-09-03 18:51:28 +04:00
2016-06-01 13:37:51 +03:00
// Top-right corner for texture and quad
rlTexCoord2f((sourceRec.x + sourceRec.width)/width, (sourceRec.y + sourceRec.height)/height);
rlVertex2f(destRec.width, destRec.height);
2014-09-03 18:51:28 +04:00
2016-06-01 13:37:51 +03:00
// Top-left corner for texture and quad
rlTexCoord2f((sourceRec.x + sourceRec.width)/width, sourceRec.y/height);
rlVertex2f(destRec.width, 0.0f);
2016-06-01 13:37:51 +03:00
rlEnd();
rlPopMatrix();
2014-09-03 18:51:28 +04:00
2016-06-01 13:37:51 +03:00
rlDisableTexture();
}
2014-03-25 15:40:35 +04:00
}
// Draws a texture (or part of it) that stretches or shrinks nicely using n-patch info
void DrawTextureNPatch(Texture2D texture, NPatchInfo nPatchInfo, Rectangle destRec, Vector2 origin, float rotation, Color tint)
{
if (texture.id > 0)
{
float width = (float)texture.width;
float height = (float)texture.height;
float patchWidth = (destRec.width <= 0.0f)? 0.0f : destRec.width;
float patchHeight = (destRec.height <= 0.0f)? 0.0f : destRec.height;
if (nPatchInfo.sourceRec.width < 0) nPatchInfo.sourceRec.x -= nPatchInfo.sourceRec.width;
if (nPatchInfo.sourceRec.height < 0) nPatchInfo.sourceRec.y -= nPatchInfo.sourceRec.height;
if (nPatchInfo.type == NPT_3PATCH_HORIZONTAL) patchHeight = nPatchInfo.sourceRec.height;
if (nPatchInfo.type == NPT_3PATCH_VERTICAL) patchWidth = nPatchInfo.sourceRec.width;
bool drawCenter = true;
bool drawMiddle = true;
float leftBorder = (float)nPatchInfo.left;
float topBorder = (float)nPatchInfo.top;
float rightBorder = (float)nPatchInfo.right;
float bottomBorder = (float)nPatchInfo.bottom;
// adjust the lateral (left and right) border widths in case patchWidth < texture.width
if (patchWidth <= (leftBorder + rightBorder) && nPatchInfo.type != NPT_3PATCH_VERTICAL)
{
drawCenter = false;
leftBorder = (leftBorder / (leftBorder + rightBorder)) * patchWidth;
rightBorder = patchWidth - leftBorder;
}
// adjust the lateral (top and bottom) border heights in case patchHeight < texture.height
if (patchHeight <= (topBorder + bottomBorder) && nPatchInfo.type != NPT_3PATCH_HORIZONTAL)
{
drawMiddle = false;
topBorder = (topBorder / (topBorder + bottomBorder)) * patchHeight;
bottomBorder = patchHeight - topBorder;
}
Vector2 vertA, vertB, vertC, vertD;
vertA.x = 0.0f; // outer left
vertA.y = 0.0f; // outer top
vertB.x = leftBorder; // inner left
vertB.y = topBorder; // inner top
vertC.x = patchWidth - rightBorder; // inner right
vertC.y = patchHeight - bottomBorder; // inner bottom
vertD.x = patchWidth; // outer right
vertD.y = patchHeight; // outer bottom
Vector2 coordA, coordB, coordC, coordD;
coordA.x = nPatchInfo.sourceRec.x / width;
coordA.y = nPatchInfo.sourceRec.y / height;
coordB.x = (nPatchInfo.sourceRec.x + leftBorder) / width;
coordB.y = (nPatchInfo.sourceRec.y + topBorder) / height;
coordC.x = (nPatchInfo.sourceRec.x + nPatchInfo.sourceRec.width - rightBorder) / width;
coordC.y = (nPatchInfo.sourceRec.y + nPatchInfo.sourceRec.height - bottomBorder) / height;
coordD.x = (nPatchInfo.sourceRec.x + nPatchInfo.sourceRec.width) / width;
coordD.y = (nPatchInfo.sourceRec.y + nPatchInfo.sourceRec.height) / height;
rlEnableTexture(texture.id);
rlPushMatrix();
2018-12-26 12:51:13 +03:00
rlTranslatef(destRec.x, destRec.y, 0.0f);
rlRotatef(rotation, 0.0f, 0.0f, 1.0f);
rlTranslatef(-origin.x, -origin.y, 0.0f);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
if (nPatchInfo.type == NPT_9PATCH)
{
// ------------------------------------------------------------
// TOP-LEFT QUAD
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad
if (drawCenter)
{
// TOP-CENTER QUAD
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-left corner for texture and quad
}
// TOP-RIGHT QUAD
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-left corner for texture and quad
if (drawMiddle)
{
// ------------------------------------------------------------
// MIDDLE-LEFT QUAD
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Top-left corner for texture and quad
if (drawCenter)
{
// MIDDLE-CENTER QUAD
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Top-left corner for texture and quad
}
// MIDDLE-RIGHT QUAD
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Top-left corner for texture and quad
}
// ------------------------------------------------------------
// BOTTOM-LEFT QUAD
rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Top-left corner for texture and quad
if (drawCenter)
{
// BOTTOM-CENTER QUAD
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Top-left corner for texture and quad
}
// BOTTOM-RIGHT QUAD
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Top-left corner for texture and quad
}
else if (nPatchInfo.type == NPT_3PATCH_VERTICAL)
{
// TOP QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad
if (drawCenter)
{
// MIDDLE QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Top-left corner for texture and quad
}
// BOTTOM QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Top-left corner for texture and quad
}
else if (nPatchInfo.type == NPT_3PATCH_HORIZONTAL)
{
// LEFT QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad
if (drawCenter)
{
// CENTER QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-left corner for texture and quad
}
// RIGHT QUAD
// -----------------------------------------------------------
// Texture coords Vertices
rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-left corner for texture and quad
rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad
rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad
rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-left corner for texture and quad
}
rlEnd();
rlPopMatrix();
rlDisableTexture();
}
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
2017-03-25 14:01:01 +03:00
#if defined(SUPPORT_FILEFORMAT_DDS)
// Loading DDS image data (compressed or uncompressed)
static Image LoadDDS(const char *fileName)
2014-09-03 18:51:28 +04:00
{
// Required extension:
// GL_EXT_texture_compression_s3tc
2016-08-16 12:09:55 +03:00
// Supported tokens (defined by extensions)
// GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
// GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
// GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
// GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
2016-08-16 12:09:55 +03:00
#define FOURCC_DXT1 0x31545844 // Equivalent to "DXT1" in ASCII
#define FOURCC_DXT3 0x33545844 // Equivalent to "DXT3" in ASCII
#define FOURCC_DXT5 0x35545844 // Equivalent to "DXT5" in ASCII
2014-09-03 18:51:28 +04:00
// DDS Pixel Format
typedef struct {
unsigned int size;
unsigned int flags;
unsigned int fourCC;
unsigned int rgbBitCount;
unsigned int rBitMask;
unsigned int gBitMask;
unsigned int bBitMask;
unsigned int aBitMask;
} DDSPixelFormat;
2014-09-03 18:51:28 +04:00
// DDS Header (124 bytes)
typedef struct {
unsigned int size;
unsigned int flags;
unsigned int height;
unsigned int width;
unsigned int pitchOrLinearSize;
unsigned int depth;
unsigned int mipmapCount;
unsigned int reserved1[11];
DDSPixelFormat ddspf;
unsigned int caps;
unsigned int caps2;
unsigned int caps3;
unsigned int caps4;
unsigned int reserved2;
} DDSHeader;
2014-09-03 18:51:28 +04:00
Image image = { 0 };
FILE *ddsFile = fopen(fileName, "rb");
2014-09-03 18:51:28 +04:00
if (ddsFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] DDS file could not be opened", fileName);
}
else
{
// Verify the type of file
char ddsHeaderId[4];
2014-09-03 18:51:28 +04:00
fread(ddsHeaderId, 4, 1, ddsFile);
2014-09-03 18:51:28 +04:00
if ((ddsHeaderId[0] != 'D') || (ddsHeaderId[1] != 'D') || (ddsHeaderId[2] != 'S') || (ddsHeaderId[3] != ' '))
2014-09-03 18:51:28 +04:00
{
TraceLog(LOG_WARNING, "[%s] DDS file does not seem to be a valid image", fileName);
}
else
2014-09-03 18:51:28 +04:00
{
DDSHeader ddsHeader;
2016-08-16 12:09:55 +03:00
// Get the image header
fread(&ddsHeader, sizeof(DDSHeader), 1, ddsFile);
TraceLog(LOG_DEBUG, "[%s] DDS file header size: %i", fileName, sizeof(DDSHeader));
TraceLog(LOG_DEBUG, "[%s] DDS file pixel format size: %i", fileName, ddsHeader.ddspf.size);
TraceLog(LOG_DEBUG, "[%s] DDS file pixel format flags: 0x%x", fileName, ddsHeader.ddspf.flags);
TraceLog(LOG_DEBUG, "[%s] DDS file format: 0x%x", fileName, ddsHeader.ddspf.fourCC);
TraceLog(LOG_DEBUG, "[%s] DDS file bit count: 0x%x", fileName, ddsHeader.ddspf.rgbBitCount);
2014-09-03 18:51:28 +04:00
image.width = ddsHeader.width;
image.height = ddsHeader.height;
2018-11-06 17:10:50 +03:00
if (ddsHeader.mipmapCount == 0) image.mipmaps = 1; // Parameter not used
else image.mipmaps = ddsHeader.mipmapCount;
2014-09-03 18:51:28 +04:00
if (ddsHeader.ddspf.rgbBitCount == 16) // 16bit mode, no compressed
{
if (ddsHeader.ddspf.flags == 0x40) // no alpha channel
{
image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short));
fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile);
2014-09-03 18:51:28 +04:00
image.format = UNCOMPRESSED_R5G6B5;
}
else if (ddsHeader.ddspf.flags == 0x41) // with alpha channel
{
if (ddsHeader.ddspf.aBitMask == 0x8000) // 1bit alpha
{
image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short));
fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile);
2016-08-16 12:09:55 +03:00
unsigned char alpha = 0;
2016-08-16 12:09:55 +03:00
// NOTE: Data comes as A1R5G5B5, it must be reordered to R5G5B5A1
for (int i = 0; i < image.width*image.height; i++)
{
alpha = ((unsigned short *)image.data)[i] >> 15;
((unsigned short *)image.data)[i] = ((unsigned short *)image.data)[i] << 1;
((unsigned short *)image.data)[i] += alpha;
}
image.format = UNCOMPRESSED_R5G5B5A1;
}
else if (ddsHeader.ddspf.aBitMask == 0xf000) // 4bit alpha
{
image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short));
fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile);
2016-08-16 12:09:55 +03:00
unsigned char alpha = 0;
2016-08-16 12:09:55 +03:00
// NOTE: Data comes as A4R4G4B4, it must be reordered R4G4B4A4
for (int i = 0; i < image.width*image.height; i++)
{
alpha = ((unsigned short *)image.data)[i] >> 12;
((unsigned short *)image.data)[i] = ((unsigned short *)image.data)[i] << 4;
((unsigned short *)image.data)[i] += alpha;
}
2016-08-16 12:09:55 +03:00
image.format = UNCOMPRESSED_R4G4B4A4;
}
}
}
if (ddsHeader.ddspf.flags == 0x40 && ddsHeader.ddspf.rgbBitCount == 24) // DDS_RGB, no compressed
{
// NOTE: not sure if this case exists...
image.data = (unsigned char *)malloc(image.width*image.height*3*sizeof(unsigned char));
fread(image.data, image.width*image.height*3, 1, ddsFile);
2016-08-16 12:09:55 +03:00
image.format = UNCOMPRESSED_R8G8B8;
}
else if (ddsHeader.ddspf.flags == 0x41 && ddsHeader.ddspf.rgbBitCount == 32) // DDS_RGBA, no compressed
{
image.data = (unsigned char *)malloc(image.width*image.height*4*sizeof(unsigned char));
fread(image.data, image.width*image.height*4, 1, ddsFile);
2016-08-16 12:09:55 +03:00
2015-08-29 18:01:25 +03:00
unsigned char blue = 0;
2014-09-03 18:51:28 +04:00
2015-08-29 18:01:25 +03:00
// NOTE: Data comes as A8R8G8B8, it must be reordered R8G8B8A8 (view next comment)
// DirecX understand ARGB as a 32bit DWORD but the actual memory byte alignment is BGRA
// So, we must realign B8G8R8A8 to R8G8B8A8
for (int i = 0; i < image.width*image.height*4; i += 4)
{
blue = ((unsigned char *)image.data)[i];
((unsigned char *)image.data)[i] = ((unsigned char *)image.data)[i + 2];
((unsigned char *)image.data)[i + 2] = blue;
}
2016-08-16 12:09:55 +03:00
image.format = UNCOMPRESSED_R8G8B8A8;
}
else if (((ddsHeader.ddspf.flags == 0x04) || (ddsHeader.ddspf.flags == 0x05)) && (ddsHeader.ddspf.fourCC > 0)) // Compressed
{
2017-02-12 01:17:56 +03:00
int size; // DDS image data size
2014-09-03 18:51:28 +04:00
// Calculate data size, including all mipmaps
2017-02-12 01:17:56 +03:00
if (ddsHeader.mipmapCount > 1) size = ddsHeader.pitchOrLinearSize*2;
else size = ddsHeader.pitchOrLinearSize;
2016-08-16 12:09:55 +03:00
TraceLog(LOG_DEBUG, "Pitch or linear size: %i", ddsHeader.pitchOrLinearSize);
2014-09-03 18:51:28 +04:00
2018-10-18 17:00:11 +03:00
image.data = (unsigned char *)malloc(size*sizeof(unsigned char));
2014-09-03 18:51:28 +04:00
2017-02-12 01:17:56 +03:00
fread(image.data, size, 1, ddsFile);
2014-09-03 18:51:28 +04:00
switch (ddsHeader.ddspf.fourCC)
2014-09-03 18:51:28 +04:00
{
case FOURCC_DXT1:
{
if (ddsHeader.ddspf.flags == 0x04) image.format = COMPRESSED_DXT1_RGB;
else image.format = COMPRESSED_DXT1_RGBA;
} break;
case FOURCC_DXT3: image.format = COMPRESSED_DXT3_RGBA; break;
case FOURCC_DXT5: image.format = COMPRESSED_DXT5_RGBA; break;
default: break;
}
}
}
2016-08-16 12:09:55 +03:00
fclose(ddsFile); // Close file pointer
}
2014-09-03 18:51:28 +04:00
return image;
}
2017-03-25 14:01:01 +03:00
#endif
2017-03-25 14:01:01 +03:00
#if defined(SUPPORT_FILEFORMAT_PKM)
// Loading PKM image data (ETC1/ETC2 compression)
// NOTE: KTX is the standard Khronos Group compression format (ETC1/ETC2, mipmaps)
// PKM is a much simpler file format used mainly to contain a single ETC1/ETC2 compressed image (no mipmaps)
static Image LoadPKM(const char *fileName)
{
// Required extensions:
// GL_OES_compressed_ETC1_RGB8_texture (ETC1) (OpenGL ES 2.0)
// GL_ARB_ES3_compatibility (ETC2/EAC) (OpenGL ES 3.0)
2016-08-16 12:09:55 +03:00
// Supported tokens (defined by extensions)
2016-08-16 12:09:55 +03:00
// GL_ETC1_RGB8_OES 0x8D64
// GL_COMPRESSED_RGB8_ETC2 0x9274
// GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278
// PKM file (ETC1) Header (16 bytes)
typedef struct {
char id[4]; // "PKM "
char version[2]; // "10" or "20"
unsigned short format; // Data format (big-endian) (Check list below)
unsigned short width; // Texture width (big-endian) (origWidth rounded to multiple of 4)
unsigned short height; // Texture height (big-endian) (origHeight rounded to multiple of 4)
unsigned short origWidth; // Original width (big-endian)
unsigned short origHeight; // Original height (big-endian)
} PKMHeader;
2016-08-16 12:09:55 +03:00
// Formats list
// version 10: format: 0=ETC1_RGB, [1=ETC1_RGBA, 2=ETC1_RGB_MIP, 3=ETC1_RGBA_MIP] (not used)
// version 20: format: 0=ETC1_RGB, 1=ETC2_RGB, 2=ETC2_RGBA_OLD, 3=ETC2_RGBA, 4=ETC2_RGBA1, 5=ETC2_R, 6=ETC2_RG, 7=ETC2_SIGNED_R, 8=ETC2_SIGNED_R
// NOTE: The extended width and height are the widths rounded up to a multiple of 4.
// NOTE: ETC is always 4bit per pixel (64 bit for each 4x4 block of pixels)
Image image = { 0 };
FILE *pkmFile = fopen(fileName, "rb");
if (pkmFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] PKM file could not be opened", fileName);
}
else
{
PKMHeader pkmHeader;
// Get the image header
fread(&pkmHeader, sizeof(PKMHeader), 1, pkmFile);
2018-10-29 18:39:54 +03:00
if ((pkmHeader.id[0] != 'P') || (pkmHeader.id[1] != 'K') || (pkmHeader.id[2] != 'M') || (pkmHeader.id[3] != ' '))
{
TraceLog(LOG_WARNING, "[%s] PKM file does not seem to be a valid image", fileName);
}
else
{
// NOTE: format, width and height come as big-endian, data must be swapped to little-endian
pkmHeader.format = ((pkmHeader.format & 0x00FF) << 8) | ((pkmHeader.format & 0xFF00) >> 8);
pkmHeader.width = ((pkmHeader.width & 0x00FF) << 8) | ((pkmHeader.width & 0xFF00) >> 8);
pkmHeader.height = ((pkmHeader.height & 0x00FF) << 8) | ((pkmHeader.height & 0xFF00) >> 8);
2016-08-16 12:09:55 +03:00
TraceLog(LOG_DEBUG, "PKM (ETC) image width: %i", pkmHeader.width);
TraceLog(LOG_DEBUG, "PKM (ETC) image height: %i", pkmHeader.height);
TraceLog(LOG_DEBUG, "PKM (ETC) image format: %i", pkmHeader.format);
2016-08-16 12:09:55 +03:00
image.width = pkmHeader.width;
image.height = pkmHeader.height;
image.mipmaps = 1;
2016-08-16 12:09:55 +03:00
2015-08-29 18:01:25 +03:00
int bpp = 4;
if (pkmHeader.format == 3) bpp = 8;
2016-08-16 12:09:55 +03:00
2015-08-29 18:01:25 +03:00
int size = image.width*image.height*bpp/8; // Total data size in bytes
2018-10-18 17:00:11 +03:00
image.data = (unsigned char *)malloc(size*sizeof(unsigned char));
2017-02-12 01:17:56 +03:00
fread(image.data, size, 1, pkmFile);
if (pkmHeader.format == 0) image.format = COMPRESSED_ETC1_RGB;
else if (pkmHeader.format == 1) image.format = COMPRESSED_ETC2_RGB;
else if (pkmHeader.format == 3) image.format = COMPRESSED_ETC2_EAC_RGBA;
}
2016-08-16 12:09:55 +03:00
fclose(pkmFile); // Close file pointer
}
return image;
}
2017-03-25 14:01:01 +03:00
#endif
2017-03-25 14:01:01 +03:00
#if defined(SUPPORT_FILEFORMAT_KTX)
// Load KTX compressed image data (ETC1/ETC2 compression)
static Image LoadKTX(const char *fileName)
{
// Required extensions:
// GL_OES_compressed_ETC1_RGB8_texture (ETC1)
// GL_ARB_ES3_compatibility (ETC2/EAC)
2016-08-16 12:09:55 +03:00
// Supported tokens (defined by extensions)
// GL_ETC1_RGB8_OES 0x8D64
// GL_COMPRESSED_RGB8_ETC2 0x9274
// GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278
2016-08-16 12:09:55 +03:00
// KTX file Header (64 bytes)
// v1.1 - https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/
// v2.0 - http://github.khronos.org/KTX-Specification/
2018-11-06 17:10:50 +03:00
// TODO: Support KTX 2.2 specs!
2018-11-06 17:10:50 +03:00
typedef struct {
char id[12]; // Identifier: "«KTX 11»\r\n\x1A\n"
unsigned int endianness; // Little endian: 0x01 0x02 0x03 0x04
unsigned int glType; // For compressed textures, glType must equal 0
unsigned int glTypeSize; // For compressed texture data, usually 1
unsigned int glFormat; // For compressed textures is 0
unsigned int glInternalFormat; // Compressed internal format
unsigned int glBaseInternalFormat; // Same as glFormat (RGB, RGBA, ALPHA...)
unsigned int width; // Texture image width in pixels
unsigned int height; // Texture image height in pixels
unsigned int depth; // For 2D textures is 0
unsigned int elements; // Number of array elements, usually 0
unsigned int faces; // Cubemap faces, for no-cubemap = 1
unsigned int mipmapLevels; // Non-mipmapped textures = 1
unsigned int keyValueDataSize; // Used to encode any arbitrary data...
} KTXHeader;
2016-08-16 12:09:55 +03:00
// NOTE: Before start of every mipmap data block, we have: unsigned int dataSize
2016-08-16 12:09:55 +03:00
Image image = { 0 };
2016-08-16 12:09:55 +03:00
FILE *ktxFile = fopen(fileName, "rb");
if (ktxFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] KTX image file could not be opened", fileName);
}
else
{
KTXHeader ktxHeader;
// Get the image header
fread(&ktxHeader, sizeof(KTXHeader), 1, ktxFile);
if ((ktxHeader.id[1] != 'K') || (ktxHeader.id[2] != 'T') || (ktxHeader.id[3] != 'X') ||
(ktxHeader.id[4] != ' ') || (ktxHeader.id[5] != '1') || (ktxHeader.id[6] != '1'))
{
TraceLog(LOG_WARNING, "[%s] KTX file does not seem to be a valid file", fileName);
}
else
2016-08-16 12:09:55 +03:00
{
image.width = ktxHeader.width;
image.height = ktxHeader.height;
image.mipmaps = ktxHeader.mipmapLevels;
2016-08-16 12:09:55 +03:00
TraceLog(LOG_DEBUG, "KTX (ETC) image width: %i", ktxHeader.width);
TraceLog(LOG_DEBUG, "KTX (ETC) image height: %i", ktxHeader.height);
TraceLog(LOG_DEBUG, "KTX (ETC) image format: 0x%x", ktxHeader.glInternalFormat);
2016-08-16 12:09:55 +03:00
unsigned char unused;
2016-08-16 12:09:55 +03:00
if (ktxHeader.keyValueDataSize > 0)
{
for (unsigned int i = 0; i < ktxHeader.keyValueDataSize; i++) fread(&unused, sizeof(unsigned char), 1U, ktxFile);
}
2016-08-16 12:09:55 +03:00
int dataSize;
fread(&dataSize, sizeof(unsigned int), 1, ktxFile);
2018-10-18 17:00:11 +03:00
image.data = (unsigned char *)malloc(dataSize*sizeof(unsigned char));
2017-02-12 01:17:56 +03:00
fread(image.data, dataSize, 1, ktxFile);
if (ktxHeader.glInternalFormat == 0x8D64) image.format = COMPRESSED_ETC1_RGB;
else if (ktxHeader.glInternalFormat == 0x9274) image.format = COMPRESSED_ETC2_RGB;
else if (ktxHeader.glInternalFormat == 0x9278) image.format = COMPRESSED_ETC2_EAC_RGBA;
}
2016-08-16 12:09:55 +03:00
fclose(ktxFile); // Close file pointer
}
2016-08-16 12:09:55 +03:00
return image;
}
// Save image data as KTX file
// NOTE: By default KTX 1.1 spec is used, 2.0 is still on draft (01Oct2018)
static int SaveKTX(Image image, const char *fileName)
{
int success = 0;
2018-11-06 17:10:50 +03:00
// KTX file Header (64 bytes)
// v1.1 - https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/
// v2.0 - http://github.khronos.org/KTX-Specification/ - still on draft, not ready for implementation
2018-11-06 17:10:50 +03:00
typedef struct {
char id[12]; // Identifier: "«KTX 11»\r\n\x1A\n" // KTX 2.0: "«KTX 22»\r\n\x1A\n"
unsigned int endianness; // Little endian: 0x01 0x02 0x03 0x04
unsigned int glType; // For compressed textures, glType must equal 0
unsigned int glTypeSize; // For compressed texture data, usually 1
unsigned int glFormat; // For compressed textures is 0
unsigned int glInternalFormat; // Compressed internal format
unsigned int glBaseInternalFormat; // Same as glFormat (RGB, RGBA, ALPHA...) // KTX 2.0: UInt32 vkFormat
unsigned int width; // Texture image width in pixels
unsigned int height; // Texture image height in pixels
unsigned int depth; // For 2D textures is 0
unsigned int elements; // Number of array elements, usually 0
unsigned int faces; // Cubemap faces, for no-cubemap = 1
unsigned int mipmapLevels; // Non-mipmapped textures = 1
unsigned int keyValueDataSize; // Used to encode any arbitrary data... // KTX 2.0: UInt32 levelOrder - ordering of the mipmap levels, usually 0
// KTX 2.0: UInt32 supercompressionScheme - 0 (None), 1 (Crunch CRN), 2 (Zlib DEFLATE)...
// KTX 2.0 defines additional header elements...
} KTXHeader;
// NOTE: Before start of every mipmap data block, we have: unsigned int dataSize
FILE *ktxFile = fopen(fileName, "wb");
if (ktxFile == NULL) TraceLog(LOG_WARNING, "[%s] KTX image file could not be created", fileName);
else
{
KTXHeader ktxHeader;
2018-11-06 17:10:50 +03:00
// KTX identifier (v2.2)
//unsigned char id[12] = { '«', 'K', 'T', 'X', ' ', '1', '1', '»', '\r', '\n', '\x1A', '\n' };
//unsigned char id[12] = { 0xAB, 0x4B, 0x54, 0x58, 0x20, 0x31, 0x31, 0xBB, 0x0D, 0x0A, 0x1A, 0x0A };
2018-11-06 17:10:50 +03:00
// Get the image header
strcpy(ktxHeader.id, "«KTX 11»\r\n\x1A\n"); // KTX 1.1 signature
ktxHeader.endianness = 0;
ktxHeader.glType = 0; // Obtained from image.format
ktxHeader.glTypeSize = 1;
ktxHeader.glFormat = 0; // Obtained from image.format
ktxHeader.glInternalFormat = 0; // Obtained from image.format
ktxHeader.glBaseInternalFormat = 0;
ktxHeader.width = image.width;
ktxHeader.height = image.height;
ktxHeader.depth = 0;
ktxHeader.elements = 0;
ktxHeader.faces = 1;
ktxHeader.mipmapLevels = image.mipmaps; // If it was 0, it means mipmaps should be generated on loading (not for compressed formats)
ktxHeader.keyValueDataSize = 0; // No extra data after the header
2018-11-06 17:10:50 +03:00
rlGetGlTextureFormats(image.format, &ktxHeader.glInternalFormat, &ktxHeader.glFormat, &ktxHeader.glType); // rlgl module function
ktxHeader.glBaseInternalFormat = ktxHeader.glFormat; // KTX 1.1 only
2018-11-06 17:10:50 +03:00
// NOTE: We can save into a .ktx all PixelFormats supported by raylib, including compressed formats like DXT, ETC or ASTC
2018-11-06 17:10:50 +03:00
if (ktxHeader.glFormat == -1) TraceLog(LOG_WARNING, "Image format not supported for KTX export.");
else
{
success = fwrite(&ktxHeader, sizeof(KTXHeader), 1, ktxFile);
2018-11-06 17:10:50 +03:00
int width = image.width;
int height = image.height;
int dataOffset = 0;
2018-11-06 17:10:50 +03:00
// Save all mipmaps data
for (int i = 0; i < image.mipmaps; i++)
{
unsigned int dataSize = GetPixelDataSize(width, height, image.format);
success = fwrite(&dataSize, sizeof(unsigned int), 1, ktxFile);
success = fwrite((unsigned char *)image.data + dataOffset, dataSize, 1, ktxFile);
2018-11-06 17:10:50 +03:00
width /= 2;
height /= 2;
dataOffset += dataSize;
}
}
fclose(ktxFile); // Close file pointer
}
2018-11-06 17:10:50 +03:00
// If all data has been written correctly to file, success = 1
return success;
}
2017-03-25 14:01:01 +03:00
#endif
2017-03-25 14:01:01 +03:00
#if defined(SUPPORT_FILEFORMAT_PVR)
// Loading PVR image data (uncompressed or PVRT compression)
// NOTE: PVR v2 not supported, use PVR v3 instead
static Image LoadPVR(const char *fileName)
{
// Required extension:
// GL_IMG_texture_compression_pvrtc
2016-08-16 12:09:55 +03:00
// Supported tokens (defined by extensions)
// GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
// GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
2016-08-16 12:09:55 +03:00
2016-01-02 12:41:37 +03:00
#if 0 // Not used...
// PVR file v2 Header (52 bytes)
typedef struct {
unsigned int headerLength;
unsigned int height;
unsigned int width;
unsigned int numMipmaps;
unsigned int flags;
unsigned int dataLength;
unsigned int bpp;
unsigned int bitmaskRed;
unsigned int bitmaskGreen;
unsigned int bitmaskBlue;
unsigned int bitmaskAlpha;
unsigned int pvrTag;
unsigned int numSurfs;
} PVRHeaderV2;
2016-01-02 12:41:37 +03:00
#endif
// PVR file v3 Header (52 bytes)
// NOTE: After it could be metadata (15 bytes?)
typedef struct {
char id[4];
unsigned int flags;
unsigned char channels[4]; // pixelFormat high part
unsigned char channelDepth[4]; // pixelFormat low part
unsigned int colourSpace;
unsigned int channelType;
unsigned int height;
unsigned int width;
unsigned int depth;
unsigned int numSurfaces;
unsigned int numFaces;
unsigned int numMipmaps;
unsigned int metaDataSize;
} PVRHeaderV3;
2016-08-16 12:09:55 +03:00
2016-01-02 12:41:37 +03:00
#if 0 // Not used...
// Metadata (usually 15 bytes)
typedef struct {
unsigned int devFOURCC;
unsigned int key;
unsigned int dataSize; // Not used?
unsigned char *data; // Not used?
} PVRMetadata;
2016-01-02 12:41:37 +03:00
#endif
Image image = { 0 };
FILE *pvrFile = fopen(fileName, "rb");
if (pvrFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] PVR file could not be opened", fileName);
}
else
{
// Check PVR image version
unsigned char pvrVersion = 0;
fread(&pvrVersion, sizeof(unsigned char), 1, pvrFile);
fseek(pvrFile, 0, SEEK_SET);
2016-08-16 12:09:55 +03:00
// Load different PVR data formats
if (pvrVersion == 0x50)
{
PVRHeaderV3 pvrHeader;
2016-08-16 12:09:55 +03:00
// Get PVR image header
fread(&pvrHeader, sizeof(PVRHeaderV3), 1, pvrFile);
2016-08-16 12:09:55 +03:00
if ((pvrHeader.id[0] != 'P') || (pvrHeader.id[1] != 'V') || (pvrHeader.id[2] != 'R') || (pvrHeader.id[3] != 3))
{
TraceLog(LOG_WARNING, "[%s] PVR file does not seem to be a valid image", fileName);
}
else
{
image.width = pvrHeader.width;
image.height = pvrHeader.height;
image.mipmaps = pvrHeader.numMipmaps;
2016-08-16 12:09:55 +03:00
// Check data format
2017-01-29 01:02:30 +03:00
if (((pvrHeader.channels[0] == 'l') && (pvrHeader.channels[1] == 0)) && (pvrHeader.channelDepth[0] == 8))
image.format = UNCOMPRESSED_GRAYSCALE;
2017-01-29 01:02:30 +03:00
else if (((pvrHeader.channels[0] == 'l') && (pvrHeader.channels[1] == 'a')) && ((pvrHeader.channelDepth[0] == 8) && (pvrHeader.channelDepth[1] == 8)))
image.format = UNCOMPRESSED_GRAY_ALPHA;
else if ((pvrHeader.channels[0] == 'r') && (pvrHeader.channels[1] == 'g') && (pvrHeader.channels[2] == 'b'))
{
if (pvrHeader.channels[3] == 'a')
{
2017-01-29 01:02:30 +03:00
if ((pvrHeader.channelDepth[0] == 5) && (pvrHeader.channelDepth[1] == 5) && (pvrHeader.channelDepth[2] == 5) && (pvrHeader.channelDepth[3] == 1))
image.format = UNCOMPRESSED_R5G5B5A1;
2017-01-29 01:02:30 +03:00
else if ((pvrHeader.channelDepth[0] == 4) && (pvrHeader.channelDepth[1] == 4) && (pvrHeader.channelDepth[2] == 4) && (pvrHeader.channelDepth[3] == 4))
image.format = UNCOMPRESSED_R4G4B4A4;
2017-01-29 01:02:30 +03:00
else if ((pvrHeader.channelDepth[0] == 8) && (pvrHeader.channelDepth[1] == 8) && (pvrHeader.channelDepth[2] == 8) && (pvrHeader.channelDepth[3] == 8))
image.format = UNCOMPRESSED_R8G8B8A8;
}
else if (pvrHeader.channels[3] == 0)
{
if ((pvrHeader.channelDepth[0] == 5) && (pvrHeader.channelDepth[1] == 6) && (pvrHeader.channelDepth[2] == 5)) image.format = UNCOMPRESSED_R5G6B5;
else if ((pvrHeader.channelDepth[0] == 8) && (pvrHeader.channelDepth[1] == 8) && (pvrHeader.channelDepth[2] == 8)) image.format = UNCOMPRESSED_R8G8B8;
}
}
else if (pvrHeader.channels[0] == 2) image.format = COMPRESSED_PVRT_RGB;
else if (pvrHeader.channels[0] == 3) image.format = COMPRESSED_PVRT_RGBA;
2016-08-16 12:09:55 +03:00
// Skip meta data header
unsigned char unused = 0;
for (int i = 0; i < pvrHeader.metaDataSize; i++) fread(&unused, sizeof(unsigned char), 1, pvrFile);
2016-08-16 12:09:55 +03:00
// Calculate data size (depends on format)
int bpp = 0;
2016-08-16 12:09:55 +03:00
switch (image.format)
{
case UNCOMPRESSED_GRAYSCALE: bpp = 8; break;
case UNCOMPRESSED_GRAY_ALPHA:
case UNCOMPRESSED_R5G5B5A1:
case UNCOMPRESSED_R5G6B5:
case UNCOMPRESSED_R4G4B4A4: bpp = 16; break;
case UNCOMPRESSED_R8G8B8A8: bpp = 32; break;
case UNCOMPRESSED_R8G8B8: bpp = 24; break;
case COMPRESSED_PVRT_RGB:
case COMPRESSED_PVRT_RGBA: bpp = 4; break;
default: break;
}
2016-08-16 12:09:55 +03:00
int dataSize = image.width*image.height*bpp/8; // Total data size in bytes
2018-10-18 17:00:11 +03:00
image.data = (unsigned char *)malloc(dataSize*sizeof(unsigned char));
// Read data from file
fread(image.data, dataSize, 1, pvrFile);
}
}
else if (pvrVersion == 52) TraceLog(LOG_INFO, "PVR v2 not supported, update your files to PVR v3");
fclose(pvrFile); // Close file pointer
}
return image;
}
2017-03-25 14:01:01 +03:00
#endif
2017-03-25 14:01:01 +03:00
#if defined(SUPPORT_FILEFORMAT_ASTC)
// Load ASTC compressed image data (ASTC compression)
static Image LoadASTC(const char *fileName)
{
// Required extensions:
// GL_KHR_texture_compression_astc_hdr
// GL_KHR_texture_compression_astc_ldr
2016-08-16 12:09:55 +03:00
// Supported tokens (defined by extensions)
// GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0
// GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7
2016-08-16 12:09:55 +03:00
// ASTC file Header (16 bytes)
typedef struct {
unsigned char id[4]; // Signature: 0x13 0xAB 0xA1 0x5C
unsigned char blockX; // Block X dimensions
unsigned char blockY; // Block Y dimensions
unsigned char blockZ; // Block Z dimensions (1 for 2D images)
unsigned char width[3]; // Image width in pixels (24bit value)
unsigned char height[3]; // Image height in pixels (24bit value)
2017-06-29 11:36:58 +03:00
unsigned char length[3]; // Image Z-size (1 for 2D images)
} ASTCHeader;
Image image = { 0 };
2016-08-16 12:09:55 +03:00
FILE *astcFile = fopen(fileName, "rb");
if (astcFile == NULL)
{
TraceLog(LOG_WARNING, "[%s] ASTC file could not be opened", fileName);
}
else
{
ASTCHeader astcHeader;
// Get ASTC image header
fread(&astcHeader, sizeof(ASTCHeader), 1, astcFile);
2016-08-16 12:09:55 +03:00
if ((astcHeader.id[3] != 0x5c) || (astcHeader.id[2] != 0xa1) || (astcHeader.id[1] != 0xab) || (astcHeader.id[0] != 0x13))
{
TraceLog(LOG_WARNING, "[%s] ASTC file does not seem to be a valid image", fileName);
}
else
{
// NOTE: Assuming Little Endian (could it be wrong?)
image.width = 0x00000000 | ((int)astcHeader.width[2] << 16) | ((int)astcHeader.width[1] << 8) | ((int)astcHeader.width[0]);
image.height = 0x00000000 | ((int)astcHeader.height[2] << 16) | ((int)astcHeader.height[1] << 8) | ((int)astcHeader.height[0]);
2016-08-16 12:09:55 +03:00
TraceLog(LOG_DEBUG, "ASTC image width: %i", image.width);
TraceLog(LOG_DEBUG, "ASTC image height: %i", image.height);
TraceLog(LOG_DEBUG, "ASTC image blocks: %ix%i", astcHeader.blockX, astcHeader.blockY);
2018-11-06 17:10:50 +03:00
image.mipmaps = 1; // NOTE: ASTC format only contains one mipmap level
2016-08-16 12:09:55 +03:00
// NOTE: Each block is always stored in 128bit so we can calculate the bpp
int bpp = 128/(astcHeader.blockX*astcHeader.blockY);
// NOTE: Currently we only support 2 blocks configurations: 4x4 and 8x8
2016-08-16 12:09:55 +03:00
if ((bpp == 8) || (bpp == 2))
{
int dataSize = image.width*image.height*bpp/8; // Data size in bytes
2016-08-16 12:09:55 +03:00
image.data = (unsigned char *)malloc(dataSize*sizeof(unsigned char));
fread(image.data, dataSize, 1, astcFile);
2016-08-16 12:09:55 +03:00
if (bpp == 8) image.format = COMPRESSED_ASTC_4x4_RGBA;
2018-05-13 00:33:03 +03:00
else if (bpp == 2) image.format = COMPRESSED_ASTC_8x8_RGBA;
}
else TraceLog(LOG_WARNING, "[%s] ASTC block size configuration not supported", fileName);
}
2016-08-16 12:09:55 +03:00
fclose(astcFile);
}
return image;
}
#endif