Move arm_log_exception() into internals.h so we can use it from
helper-a64.c for the AArch64 exception entry code.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the AArch64 SPSR_EL1. For compatibility with how KVM
handles SPSRs and with the architectural mapping between AArch32
and AArch64, we put this in the banked_spsr[] array in the slot
that is used for SVC in AArch32. This means we need to extend the
array from uint32_t to uint64_t, which requires some reworking
of the 32 bit KVM save/restore code.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement handling for the AArch64 SP_EL0 system register.
This holds the EL0 stack pointer, and is only accessible when
it's not being used as the stack pointer, ie when we're in EL1
and EL1 is using its own stack pointer. We also provide a
definition of the SP_EL1 register; this isn't guest visible
as a system register for an implementation like QEMU which
doesn't provide EL2 or EL3; however it is useful for ensuring
the underlying state is migrated.
We need to update the state fields in the CPU state whenever
we switch stack pointers; this happens when we take an exception
and also when SPSEL is used to change the bit in PSTATE which
indicates which stack pointer EL1 should use.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Add the AArch64 ELR_EL1 register.
Note that this does not live in env->cp15: for KVM migration
compatibility we need to migrate it separately rather than
as part of the system registers, because the KVM-to-userspace
interface puts it in the struct kvm_regs rather than making
them visible via the ONE_REG ioctls.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement AArch64 views of ESR_EL1 and FAR_EL1, and make the 32 bit
DFSR, DFAR, IFAR share state with them as architecturally specified.
The IFSR doesn't share state with any AArch64 register visible at EL1,
so just rename the state field without widening it to 64 bits.
Signed-off-by: Rob Herring <rob.herring@linaro.org>
[PMM: Minor tweaks; fix some bugs involving inconsistencies between
use of offsetof() or offsetoflow32() and struct field width]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
The ARM946 model currently uses the c5_data and c5_insn fields in the CPU
state struct to store the contents of its access permission registers.
This is confusing and a good source of bugs because for all the MMU-based
CPUs those fields are fault status and fault address registers, which
behave completely differently; they just happen to use the same cpreg
encoding. Split them out to use their own fields instead.
These registers are only present in PMSAv5 MPU systems (of which the
ARM946 is our only current example); PMSAv6 and PMSAv7 (which we have
no implementations of) handle access permissions differently. We name
the new state fields accordingly.
Note that this change fixes a bug where a data abort or prefetch abort
on the ARM946 would accidentally corrupt the access permission registers
because the interrupt handling code assumed the c5_data and c5_insn
fields were always fault status registers.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the DC ZVA instruction, which clears a block of memory.
The fast path obtains a pointer to the underlying RAM via the TCG TLB
data structure so we can do a direct memset(), with fallback to a
simple byte-store loop in the slow path.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Acked-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Suppress the ID_AA64DFR0_EL1 PMUVer field, even if the CPU specific
value claims that it exists. QEMU doesn't currently implement it,
and not advertising it prevents the guest from trying to use it
and getting UNDEFs on unimplemented registers.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
---
This is arguably a hack, but otherwise Linux tries to prod
half a dozen PMU sysregs.
Add support for v8 page table walks. This supports stage 1 translations
for 4KB, 16KB and 64KB page sizes starting with 0 or 1 level.
Signed-off-by: Rob Herring <rob.herring@linaro.org>
[PMM: fix style nits, fold in 16/64K page support patch, use
arm_el_is_aa64() to decide whether to do 64 bit page table walk]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
The current A32/T32 decoder bases its "is VFP/Neon enabled?" check
on the FPSCR.EN bit. This is correct if EL1 is AArch32, but for
an AArch64 EL1 the logic is different: it must act as if FPSCR.EN
is always set. Instead, trapping must happen according to CPACR
bits for cp10/cp11; these cover all of FP/Neon, including the
FPSCR/FPSID/MVFR register accesses which FPSCR.EN does not affect.
Add support for CPACR checks (which are also required for ARMv7,
but were unimplemented because Linux happens not to use them)
and make sure they generate exceptions with the correct syndrome.
We actually return incorrect syndrome information for cases
where FP is disabled but the specific instruction bit pattern
is unallocated: strictly these should be the Uncategorized
exception, not a "SIMD disabled" exception. This should be
mostly harmless, and the structure of the A32/T32 VFP/Neon
decoder makes it painful to put the 'FP disabled?' checks in
the right places.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Because unallocated encodings generate different exception syndrome
information from traps due to FP being disabled, we can't do a single
"is fp access disabled" check at a high level in the decode tree.
To help in catching bugs where the access check was forgotten in some
code path, we set this flag when the access check is done, and assert
that it is set at the point where we actually touch the FP regs.
This requires us to pass the DisasContext to the vec_reg_offset
and fp_reg_offset functions.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
For the A64 instruction set, the only FP/Neon disable trap
is the CPACR FPEN bits, which may indicate "enabled", "disabled"
or "disabled for EL0". Add a bit to the AArch64 tb flags indicating
whether FP/Neon access is currently enabled and make the decoder
emit code to raise exceptions on use of FP/Neon insns if it is not.
We use a new flag in DisasContext rather than borrowing the
existing vfp_enabled flag because the A32/T32 decoder is going
to need both.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
---
I'm aware this is a rather hard to review patch; sorry.
I have done an exhaustive check that we have fp access checks
in all code paths with the aid of the assertions added in the
next patch plus the code-coverage hack patch I posted to the
list earlier.
This patch is correct as of
09e037354 target-arm: A64: Add saturating accumulate ops (USQADD/SUQADD)
which was the last of the Neon insns to be added, so assuming
no refactoring of the code it should be fine.
Set up the required syndrome information when we detect an MMU fault.
Signed-off-by: Rob Herring <rob.herring@linaro.org>
[PMM: split out from exception handling patch, tweaked to bring
in line with how we create other kinds of syndrome information]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Add new helpers exception_with_syndrome (for generating an exception
with syndrome information) and exception_uncategorized (for generating
an exception with "Unknown or Uncategorized Reason", which have a syndrome
register value of zero), and use them to generate the correct syndrome
information for exceptions which are raised directly from generated code.
This patch includes moving the A32/T32 gen_exception_insn functions
further up in the source file; they will be needed for "VFP/Neon disabled"
exception generation later.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
For exceptions taken to AArch64, if a coprocessor/system register
access fails due to a trap or enable bit then the syndrome information
must include details of the failing instruction (crn/crm/opc1/opc2
fields, etc). Make the decoder construct the syndrome information
at translate time so it can be passed at runtime to the access-check
helper function and used as required.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
For AArch32 exceptions, the only information provided about
the cause of an exception is the individual exception type (data
abort, undef, etc), which we store in cs->exception_index. For
AArch64, the CPU provides much more detail about the cause of
the exception, which can be found in the syndrome register.
Create a set of fields in CPUARMState which must be filled in
whenever an exception is raised, so that exception entry can
correctly fill in the syndrome register for the guest.
This includes the information which in AArch32 appears in
the DFAR and IFAR (fault address registers) and the DFSR
and IFSR (fault status registers) for data aborts and
prefetch aborts, since if we end up taking the MMU fault
to AArch64 rather than AArch32 this will need to end up
in different system registers.
This patch does a refactoring which moves the setting of the
AArch32 DFAR/DFSR/IFAR/IFSR from the point where the exception
is raised to the point where it is taken. (This is no change
for cores with an MMU, retains the existing clearly incorrect
behaviour for ARM946 of trashing the MP access permissions
registers which share the c5_data and c5_insn state fields,
and has no effect for v7M because we don't implement its
MPU fault status or address registers.)
As a side effect of the cleanup we fix a bug in the AArch64
linux-user mode code where we were passing a 64 bit fault
address through the 32 bit c6_data/c6_insn fields: it now
goes via the always-64-bit exception.vaddress.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the DAIF system register which is a view of the
DAIF bits in PSTATE. To avoid needing a readfn, we widen
the daif field in CPUARMState to uint64_t.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Currently cpu.h defines a mixture of functions and types needed by
the rest of QEMU and those needed only by files within target-arm/.
Split the latter out into a new header so they aren't needlessly
exposed further than required.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
This fixes a warning from the static code analysis (smatch).
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
The order of operands for the accumulate step in disas_simd_3same_int()
was reversed. This only affected the MLS instruction, since all the
other accumulating instructions in this category perform an addition
rather than a subtraction.
Reported-by: Laurent Desnogues <laurent.desnogues@gmail.com>
Tested-by: Laurent Desnogues <laurent.desnogues@gmail.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add the saturating accumulate operations USQADD and SUQADD
to the A64 instruction set. This completes coverage of A64 Neon.
These operations (which are unsigned + signed -> signed and
signed + unsigned -> unsigned) don't exist in the A32/T32
instruction set, so require a complete new set of helper functions.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This mostly re-uses the existing NEON helpers with an additional two for
the 64 bit case. I also took the opportunity to add TCG_CALL_NO_RWG
options to the helpers as they don't modify globals (saturation flags
are in the CPU Environment).
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This adds support for [UF]RSQRTE instructions. It utilises the existing
NEON helpers with some changes. The changes include an explicit passing
of fpstatus (so the correct one is used between arm32 and aarch64),
denormilzation, more correct error handling and also proper scaling of
the fraction going into the estimate.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-25-git-send-email-peter.maydell@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement the FCVTXN operation, which does a narrowing fp precision
conversion using the "round to odd" (von Neumann) mode. This can
conveniently be implemented as "do operation using round to zero;
then set the LSB of the mantissa to 1 if the Inexact flag was set".
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-24-git-send-email-peter.maydell@linaro.org
This completes the set of integer narrowing saturating ops including:
SQXTN, SQXTN2
SQXTUN, SQXTUN2
UQXTN, UQXTN2
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-23-git-send-email-peter.maydell@linaro.org
Move the handle_2misc_narrow() function up the file so that it can
be called from disas_simd_scalar_two_reg_misc().
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-22-git-send-email-peter.maydell@linaro.org
Implement URECPE and FRECPE instructions in both scalar and vector forms.
The actual reciprocal estimate function is shared with the A32/T32 Neon
code. However in A64 we aren't using the Neon "standard FPSCR value"
so extra checks are necessary to handle non-squashed denormal inputs
which can never happen for A32/T32. Calling conventions for the helpers
are thus modified to pass the fpst directly; we mark the helpers as
TCG_CALL_NO_RWG since we're changing the declarations anyway.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-21-git-send-email-peter.maydell@linaro.org
Implement FCVTZS and FCVTZU in the shift-imm and scalar-shift-imm
categories; this completes the implementation of those two groups.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-19-git-send-email-peter.maydell@linaro.org
Implement the saturating left shift instructions SQSHL, SQSHLU
and UQSHL for the scalar-shift-imm and shift-imm categories.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-18-git-send-email-peter.maydell@linaro.org
Implement the FRINT* round-to-integral operations from
the 2-reg-misc category.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-16-git-send-email-peter.maydell@linaro.org
These are fairly simple exponent only estimation functions using helpers.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-14-git-send-email-peter.maydell@linaro.org
Add the remaining unsupported opcodes to the decode switches
for the shift-imm and scalar shift-imm categories so we can
see what is still to be implemented.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-13-git-send-email-peter.maydell@linaro.org
Implement FCVTL, the only instruction in the 2-reg-misc group
which widens from size to 2*size elements.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-12-git-send-email-peter.maydell@linaro.org
Implement FCVTN (narrowing fp-to-fp conversions) from the SIMD
2-reg-misc category.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-11-git-send-email-peter.maydell@linaro.org
Implement the floating-point-to-integer conversion instructions
FCVT[NMAPZ][SU] in the 2-reg-misc and scalar-2-reg-misc
categories.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-10-git-send-email-peter.maydell@linaro.org
Implement the SHLL and SHLL2 instructions from the 2-reg-misc
category.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-9-git-send-email-peter.maydell@linaro.org
Implement the SADDLP, UADDLP, SADALP and UADALP instructions
in the SIMD 2-reg misc category.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-8-git-send-email-peter.maydell@linaro.org
This implements the remaining [US][Q][R]SHR[U][N][2] opcodes, which are
saturating and narrowing shift right operations. These are used in
things like libav. Note signed shifts can have an "unsigned" saturating
narrow operation which will floor negative values.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1394822294-14837-7-git-send-email-peter.maydell@linaro.org
[PMM: Added the scalar encodings, style tweaks]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement the CLS, CLZ operations in the 2-reg-misc category.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-6-git-send-email-peter.maydell@linaro.org
Implement FSQRT in the two-reg-misc category.
GCC uses this instruction form.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-5-git-send-email-peter.maydell@linaro.org
This adds the remaining [US]CVTF operations to the SIMD
shift-immediate, scalar-shift-immediate, two-reg-misc and
scalar-two-reg-misc groups of opcodes.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1394822294-14837-4-git-send-email-peter.maydell@linaro.org
[PMM: added scalar 2-misc and scalar-shift-imm encodings]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
rn == 31 always means SP (not XZR) whether an add_sub_ext
instruction is setting the flags or not; only rd has behaviour
dependent on whether we are setting flags.
Reported-by: Laurent Desnogues <laurent.desnogues@gmail.com>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-3-git-send-email-peter.maydell@linaro.org
Implement the PMULL instruction; this is the last unimplemented insn
in the three-reg-diff group.
Note that PMULL with size 3 is considered part of the AES part
of the crypto extensions (see the ID_AA64ISAR0_EL1 register definition
in the v8 ARM ARM), so it isn't necessary to burn an extra feature
bit on it, even though we're using more feature bits than a single
"crypto extension present/not present" toggle.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394822294-14837-2-git-send-email-peter.maydell@linaro.org
Now that the PMCR writefn makes timer accesses, its reginfo needs
the ARM_CP_IO flag, so that icount mode works correctly. (Fixes
the bug accidentally introduced in commit 7c2cb42b).
Reported-by: Laurent Desnogues <laurent.desnogues@gmail.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1394908291-16546-1-git-send-email-peter.maydell@linaro.org
Codespell found and fixed these new typos:
* doesnt -> doesn't
* funtion -> function
* perfomance -> performance
* remaing -> remaining
A coding style issue (line too long) was fixed manually.
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Reviewed-by: Andreas Färber <afaerber@suse.de>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Most targets were using offsetof(CPUFooState, breakpoints) to determine
how much of CPUFooState to clear on reset. Use the next field after
CPU_COMMON instead, if any, or sizeof(CPUFooState) otherwise.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Note that while such functions may exist both for *-user and softmmu,
only *-user uses the CPUState hook, while softmmu reuses the prototype
for calling it directly.
Signed-off-by: Andreas Färber <afaerber@suse.de>
All targets using it gain the ability to set -cpu name,key=value,...
options via the default TYPE_CPU CPUClass::parse_features() implementation.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Default to false.
Tidy variable naming and inline cast uses while at it.
Tested-by: Jia Liu <proljc@gmail.com> (or32)
Signed-off-by: Andreas Färber <afaerber@suse.de>
Commits ab1da85791,
fdfba1a298,
2c17449b30 added usages of ENV_GET_CPU()
macro to target-specific code.
Use arm_env_get_cpu() instead and enforce separating variable
declarations.
Cc: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Andreas Färber <afaerber@suse.de>
Implement WFE to yield our timeslice to the next CPU.
This avoids slowdowns in multicore configurations caused
by one core busy-waiting on a spinlock which can't possibly
be unlocked until the other core has an opportunity to run.
This speeds up my test case A15 dual-core boot by a factor
of three (though it is still four or five times slower than
a single-core boot).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1393339545-22111-1-git-send-email-peter.maydell@linaro.org
Reviewed-by: Richard Henderson <rth@twiddle.net>
Tested-by: Rob Herring <rob.herring@linaro.org>
Fixes a build error when these are different, e.g. x32.
Signed-off-by: Richard Henderson <rth@twiddle.net>
Message-id: 1394043257-4800-1-git-send-email-rth@twiddle.net
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Commit 4cc35614a moved the exception mask bits out of env->uncached_cpsr
and into env->daif. However the env->daif contents are AArch64 style
mask bits, which include not just the AArch32 AIF bits but also the
new D bit (masks debug exceptions). This means that when reconstructing
the AArch32 CPSR value we must not allow the D bit in env->daif to get
into the CPSR, because the corresponding bit in the CPSR is E, the
endianness bit.
This bug didn't affect execution under TCG because we don't implement
endianness-swapping and so simply ignored the E bit; however it meant
that kernel booting under KVM failed, because KVM does honour the E bit.
Reported-by: Alexey Ignatov <lexszero@gmail.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add support for AArch32 CRC32 and CRC32C instructions added in ARMv8
and add a CPU feature flag to enable these instructions.
The CRC32-C implementation used is the built-in qemu implementation
and The CRC-32 implementation is from zlib. This requires adding zlib
to LIBS to ensure it is linked for the linux-user binary.
Signed-off-by: Will Newton <will.newton@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1393411566-24104-3-git-send-email-will.newton@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
There are various situations where we need to behave differently
depending on whether a given exception level is in AArch64 or
AArch32 state. The state of the current exception level is stored
in env->aarch64, but there's no equivalent guest-visible architected
state bits for the status of the exception levels "above" the
current one which may still affect execution. At the moment we
only support EL1 (ie no EL2 or EL3) and insist that AArch64
capable CPUs run with EL1 in AArch64 state, but these may change
in the future, so abstract out the "what state is this?" check
into a utility function which can be enhanced later if necessary.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the AArch64 view of the CPACR. The AArch64
CPACR is defined to have a lot of RES0 bits, but since
the architecture defines that RES0 bits may be implemented
as reads-as-written and we know that a v8 CPU will have
no registered coprocessors for cp0..cp13 we can safely
implement the whole register this way.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the MSR (immediate) instructions, which can update the
PSTATE SP and DAIF fields.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
To avoid complication in code that otherwise would not need to
care about whether EL1 is AArch32 or AArch64, we should store
the interrupt mask bits (CPSR.AIF in AArch32 and PSTATE.DAIF
in AArch64) in one place consistently regardless of EL1's mode.
Since AArch64 has an extra enable bit (D for debug exceptions)
which isn't visible in AArch32, this means we need to keep
the enables in env->pstate. (This is also consistent with the
general approach we're taking that we handle 32 bit CPUs as
being like AArch64/ARMv8 CPUs but which only run in 32 bit mode.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the WFI instruction for A64; this just involves wiring
up the instruction, and adding a gen_a64_set_pc_im() which was
accidentally omitted from the A64 decoder top loop.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Emit the correct MMU index information for loads and stores from
A64 code, rather than hardwiring it to "always kernel mode",
by storing the exception level in the TB flags, and make
cpu_mmu_index() return the right answer when the CPU is in
AArch64 mode.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Define a dummy version of the AArch64 OSLAR_EL1 system register
which just ignores writes. Linux will always write to this (it
is the OS lock used for debugging), but we don't support debug.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
In AArch64 the breakpoint and watchpoint registers are mandatory, so the
kernel always accesses them on bootup. Implement dummy versions, which
read as written but have no actual effect.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the AArch64-specific ID and feature registers. Although
many of these are currently not used by the architecture (and so
always zero for all implementations), we define the full set of
fields in the ARMCPU struct for symmetry.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the AArch64 MPIDR system register.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the AArch64 TTBR* registers. For v7 these were already 64 bits
to handle LPAE, but implemented as two separate uint32_t fields.
Combine them into a single uint64_t which can be used for all purposes.
Since this requires touching every use, take the opportunity to rename
the field to the architectural name.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the A64 view of the VBAR system register.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the AArch64 TCR_EL1, which is the 64 bit view of
the AArch32 TTBCR. (The uses of the bits in the register are
completely different, but in any given situation the CPU will
always interpret them one way or the other. In fact for QEMU EL1
is always 64 bit, but we share the state field because this
is the correct mapping to permit a future implementation of EL2.)
We also make the AArch64 view the 'master' as far as migration
and reset is concerned.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the AArch64 view of the system control register SCTLR_EL1.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the AArch64 memory attribute registers. Since QEMU doesn't
model caches it does not need to care about memory attributes at all,
and we can simply make these read-as-written.
We did not previously implement the AArch32 versions of the MAIR
registers, which went unnoticed because of the overbroad TLB_LOCKDOWN
reginfo definition; provide them now to keep the 64<->32 register
relationship clear.
We already provided AMAIR registers for 32 bit as simple RAZ/WI;
extend that to provide a 64 bit RAZ/WI AMAIR_EL1.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
We don't support letting the guest do debug, but Linux prods the
monitor debug system control register anyway, so implement a dummy
RAZ/WI version.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the AArch64 TLB invalidate operations. This is
the full set of TLBI ops defined for a CPU which doesn't
implement EL2 or EL3.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement all the AArch64 cache invalidate and clean ops
(which are all NOPs since QEMU doesn't emulate the cache).
The only remaining unimplemented cache op is DC ZVA.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Implement the AArch64 view of the MIDR system register
(for AArch64 it is a simple constant, unlike the complicated
mess that TI925 imposes on the 32-bit view).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Make the cache ID system registers (CLIDR, CSSELR, CCSIDR, CTR)
visible to AArch64. These are mostly simple 64-bit extensions of the
existing 32 bit system registers and so can share reginfo definitions.
CTR needs to have a split definition, but we can clean up the
temporary user-mode implementation in favour of using the CPU-specified
reset value, and implement the system-mode-required semantics of
restricting its EL0 accessibility if SCTLR.UCT is not set.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
The raw read and write functions were using the ARM_CP_64BIT flag in
ri->type to determine whether to treat the register's state field as
uint32_t or uint64_t; however AArch64 register info structs don't use
that flag. Abstract out the "how big is the field?" test into a
function and fix it to work for AArch64 registers. For this to work
we must ensure that the reginfo structs put into the hashtable have
the correct state field for their use, not the placeholder STATE_BOTH.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Support creating the ARM vgic device through the device control API and
setting the base address for the distributor and cpu interfaces in KVM
VMs using this API.
Because the older KVM_CREATE_IRQCHIP interface needs the irq chip to be
created prior to creating the VCPUs, we first test if we can use the
device control API in kvm_arch_irqchip_create (using the test flag from
the device control API). If we cannot, it means we have to fall back to
KVM_CREATE_IRQCHIP and use the older ioctl at this point in time. If
however, we can use the device control API, we don't do anything and
wait until the arm_gic_kvm driver initializes and let that use the
device control API.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Message-id: 1392687720-26806-5-git-send-email-christoffer.dall@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
In ARMv5 level 2 page table descriptors, each 4K or 64K page is split into
four subpages, each of which can have different access permission settings,
which are specified by four two-bit fields in the l2 descriptor. A
long-standing cut-and-paste error meant we were using the wrong bits in
the virtual address to select the access-permission field for 4K pages.
The error has presumably not been noticed before because most guests don't
make use of the ability to set the access permissions differently for
each 1K subpage: if the guest gives the whole page the same access
permissions it doesn't matter which of the 4 AP fields we select.
(The whole issue is irrelevant for ARMv7 CPUs anyway because subpages
aren't supported there.)
Reported-by: Vivek Rai <Vivek.Rai@emulex.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1392667690-8731-1-git-send-email-peter.maydell@linaro.org
Correct some obviously nonsensical bit manipulation spotted by Coverity
when constructing the short-form PAR value for ATS operations.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1392659525-8335-1-git-send-email-peter.maydell@linaro.org
Implement the unprivileged load and store instructions.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the narrowing three-reg-diff operations: ADDHN,
RADDHN, SUBHN and RSUBHN.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the wide three-reg-different operations:
SADDW, UADDW, SSUBW and USUBW.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add the remainder of the 64x64->128 operations in the three-reg-diff
category except for PMULL, PMULL2.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
The opcode switch in disas_simd_three_reg_diff() is missing the
customary comments indicating which cases correspond to which
instructions. Add them.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
System mode store-exclusive use a different code path to usermode ones;
implement this missing code, in a similar way to the 32 bit version.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
The write_raw_cp_reg's value argument should be a uint64_t, since
that's what all its callers hand it and what all the functions it
calls take. A (harmless) typo meant we were accidentally declaring
it as int64_t.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
The read_raw_cp_reg and write_raw_cp_reg functions can now never
fail (in fact they should never have failed previously unless
there was a bug in a reginfo that meant no raw accessor was
provided for a might-trap register). This allows us to clean up
their prototypes so the write function returns void and the
read function returns the value read, which in turn lets us
simplify the callers.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Now that cpreg read and write functions can't fail and throw an
exception, we can remove the code from the translator that synchronises
the guest PC in case an exception is thrown.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
All cpreg read and write functions now return 0, so we can clean up
their prototypes:
* write functions return void
* read functions return the value rather than taking a pointer
to write the value to
This is a fairly mechanical change which makes only the bare
minimum set of changes to the callers of read and write functions.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Convert the remaining miscellaneous cases of reginfo read/write
functions returning EXCP_UDEF to use an accessfn instead:
TEEHBR, and the ATS address-translation operations.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Convert the reginfo structs for the generic timer registers
to use access functions rather than returning EXCP_UDEF from
their read handlers. In some cases this allows us to remove
a read handler completely.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Convert the performance monitor reginfo definitions to use
an accessfn rather than returning EXCP_UDEF from read and
write functions. This also allows us to fix a couple of XXX
cases where we weren't imposing the access restrictions on
RAZ/WI or constant registers.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Several of the system registers handled via the ARMCPRegInfo
mechanism have access trap control bits controlling whether the
registers are accessible to lower privilege levels. Replace
the existing mechanism (allowing the read and write functions
to return EXCP_UDEF if access is denied) with a dedicated
"check access rights" function pointer in the ARMCPRegInfo.
This will allow us to simplify some of the register definitions,
which no longer need read/write functions purely to handle
the access checks.
We take the opportunity to define the return value from the
access checking function in a way that allows us to set the
correct exception syndrome information for exceptions taken
to AArch64 (which may need to distinguish access failures due
to a configurable trap or enable from other kinds of access
failure).
This commit defines the new mechanism but does not move any
of the registers across to use it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
The ARM946 has 8 PRBS (protection region base and size) registers.
Currently we implement these with a CP_ANY reginfo; however this
underdecodes (since there are 16 possible values of CRm but only
8 registers) and we catch the invalid values in the read and
write functions. However this causes issues with migration since
we only migrate the first of a wildcard register set, so we only
migrate c6_region[0]. It also makes it awkward to pull reginfo
access checks out into their own function.
Avoid all these problems by just defining separate reginfo structs
for each of the 8 registers; this also lets us avoid having any
read or write functions and will result in more efficient direct
field accesses from generated code.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Log guest attempts to access unimplemented system registers via
the LOG_UNIMP reporting mechanism (for both the 32 bit and 64 bit
instruction sets). This is particularly useful for debugging
problems where the guest is trying to use a system register that
QEMU doesn't implement.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Remove the 'struct sr' from ARMCPUState -- it isn't actually used and is
a hangover from the original separate system register implementation used
by the SuSE linux-user-mode-only AArch64 target.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
The SCTLR bits S and R (8 and 9) only exist in ARMv6 and earlier.
In ARMv7 these bits RAZ, and in ARMv8 they are reassigned. Guard
the use of them in check_ap() so that we don't get incorrect results
for ARMv8 CPUs.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
The SCTLR is full of bits for enabling or disabling various things, and so
there are many places in the code which check if certain bits are set.
Define some named constants for the SCTLR bits so these checks are easier
to read.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Extend the set of CPUs for which we provide a QEMU_KVM_ARM_TARGET_*
constant to include all the ones currently supported by the kernel
headers we are using.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement the remaining instructions in the SIMD 3-reg-same
and scalar-3-reg-same groups: FMULX, FRECPS, FRSQRTS, FACGE,
FACGT, FMLA and FMLS.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add support for the floating-point pairwise operations
FADDP, FMAXP, FMAXNMP, FMINP and FMINNMP. To do this we use the
code which was previously handling only integer pairwise operations,
and push the integer-specific decode and handling of unallocated
cases up one level in the call tree, so we can also call it from
the floating-point section of the decoder.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This adds all forms of the SIMD floating point and set instructions:
FCM(GT|GE|EQ|LE|LT)
Most of the heavy lifting is done by either the existing neon helpers or
some new helpers for the 64bit double cases. Most of the code paths are
common although the 2misc versions are a little special as they compare
against zero.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
[PMM: fixed some minor bugs, added the 2-misc-scalar encoding]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the scalar three different instruction group:
it only has three instructions in it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the SIMD scalar indexed instructions. The encoding
here is nearly identical to the vector indexed grouping, so
we combine the two.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the 'long' operations in the vector x indexed
element category.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement all the SIMD vector x indexed element instructions
in the subcategory which are not 'long' ops.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Use libvixl to implement disassembly output in debug
logs for A64, for use with both AArch64 hosts and targets.
Signed-off-by: Claudio Fontana <claudio.fontana@linaro.org>
[PMM:
* added support for target disassembly
* switched to custom QEMUDisassembler so the output format
matches what QEMU expects
* make sure we correctly fall back to "just print hex"
if we didn't build the AArch64 disassembler because of
lack of a C++ compiler
* rename from 'aarch64' to 'arm-a64' because this is a
disassembler for the A64 instruction set
* merge aarch64.c and aarch64-cxx.cc into one C++ file
* simplify the aarch64.c<->aarch64-cxx.cc interface]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add support for the AArch32 floating-point half-precision to double-
precision conversion VCVTB and VCVTT instructions.
Signed-off-by: Will Newton <will.newton@linaro.org>
[PMM: fixed a minor missing-braces style issue]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add the SIMD FNEG and FABS instructions in the SIMD 2-reg-misc group.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add the byte-reverse operations REV64, REV32 and REV16 from the
two-reg-misc group.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add the narrowing integer instructions in the 2-reg-misc class.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the 2-reg-misc CNT, NOT and RBIT instructions.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the simple 2-register-misc operations we can share
with the scalar-two-register-misc code. (SUQADD, USQADD, SQABS,
SQNEG also fall into this category, but aren't implemented in
the scalar-2-register case yet either.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add a skeleton decode for the SIMD 2-reg misc group.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the simple 64 bit integer operations from the SIMD
scalar 2-register misc group (C3.6.12): the comparisons against
zero, plus ABS and NEG.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the instructions in the scalar pairwise group (C3.6.8).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the pairwise integer operations in the 3-reg-same SIMD group:
ADDP, SMAXP, SMINP, UMAXP and UMINP.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the SIMD 3-reg-same instructions where the size == 3 case
is reserved: SHADD, UHADD, SRHADD, URHADD, SHSUB, UHSUB, SMAX,
UMAX, SMIN, UMIN, SABD, UABD, SABA, UABA, MLA, MLS, MUL, PMUL,
SQRDMULH, SQDMULH. (None of these have scalar-3-same versions.)
This completes the non-pairwise integer instructions in this category.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the SIMD 3-reg-same instructions SQADD, UQADD,
SQSUB, UQSUB, SSHL, USHL, SQSHl, UQSHL, SRSHL, URSHL,
SQRSHL, UQRSHL; these are all simple calls to existing
Neon helpers. We also enable SSHL, USHL, SRSHL and URSHL
for the 3-reg-same-scalar category (but not the others
because they can have non-size-64 operands and the
scalar_3reg_same function doesn't support that yet.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
This implements a subset of the AdvSIMD shift operations (namely all the
none saturating or narrowing ones). The actual shift generation code
itself is common for both the scalar and vector cases but wrapped with
either vector element iteration or the fp reg access.
The rounding operations need to take special care to correctly reflect
the result of adding rounding bits on high bits as the intermediates do
not truncate.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement a simple subset of the SIMD 3-same floating point
operations. This includes a common helper function used for both
scalar and vector ops; FABD is the only currently implemented
shared op.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add some of the integer operations in the SIMD 3-same group:
specifically, the comparisons, addition and subtraction.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add support for the logical operations (ORR, AND, BIC, ORN, EOR, BSL,
BIT and BIF) from the SIMD 3 register same group (C3.6.16).
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add top level decode for the A64 SIMD three regs same group
(C3.6.16), splitting it into the pairwise, logical, float and
integer subgroups.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the add, sub and compare ops from the SIMD "scalar three same"
group.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Implement the absolute-difference instructions in the SIMD
three-different group: SABAL, SABAL2, UABAL, UABAL2, SABDL,
SABDL2, UABDL, UABDL2.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add support for the multiply-accumulate instructions from the
SIMD three-different instructions group (C3.6.15):
* skeleton decode of unallocated encodings and split of
the group into its three sub-parts
* framework for handling the 64x64->128 widening subpart
* implementation of the multiply-accumulate instructions
SMLAL, SMLAL2, UMLAL, UMLAL2, SMLSL, SMLSL2, UMLSL, UMLSL2,
UMULL, UMULL2, SMULL, SMULL2
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Add support for the AArch32 Advanced SIMD VCVTA, VCVTN, VCVTP
and VCVTM instructions.
Signed-off-by: Will Newton <will.newton@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add support for the AArch32 floating-point VCVTA, VCVTN, VCVTP
and VCVTM instructions.
Signed-off-by: Will Newton <will.newton@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add support for the AArch32 Advanced SIMD VRINTA, VRINTN, VRINTP
VRINTM and VRINTZ instructions.
Signed-off-by: Will Newton <will.newton@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This helper sets the rounding mode in the standard_fp_status word to
allow NEON instructions to modify the rounding mode whilst using the
standard FPSCR values for everything else.
Signed-off-by: Will Newton <will.newton@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add support for the AArch32 Advanced SIMD VRINTX instruction.
Signed-off-by: Will Newton <will.newton@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add support for the AArch32 floating-point VRINTX instruction.
Signed-off-by: Will Newton <will.newton@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add support for the AArch32 floating-point VRINTZ instruction.
Signed-off-by: Will Newton <will.newton@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>