qemu/target/riscv/cpu_helper.c

1833 lines
59 KiB
C
Raw Normal View History

/*
* RISC-V CPU helpers for qemu.
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
* Copyright (c) 2017-2018 SiFive, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "internals.h"
#include "pmu.h"
#include "exec/exec-all.h"
#include "instmap.h"
#include "tcg/tcg-op.h"
#include "trace.h"
#include "semihosting/common-semi.h"
#include "sysemu/cpu-timers.h"
#include "cpu_bits.h"
#include "debug.h"
#include "tcg/oversized-guest.h"
int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
{
#ifdef CONFIG_USER_ONLY
return 0;
#else
bool virt = env->virt_enabled;
int mode = env->priv;
/* All priv -> mmu_idx mapping are here */
if (!ifetch) {
uint64_t status = env->mstatus;
if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
mode = get_field(env->mstatus, MSTATUS_MPP);
virt = get_field(env->mstatus, MSTATUS_MPV) &&
(mode != PRV_M);
if (virt) {
status = env->vsstatus;
}
}
if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
mode = MMUIdx_S_SUM;
}
}
return mode | (virt ? MMU_2STAGE_BIT : 0);
#endif
}
void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc,
uint64_t *cs_base, uint32_t *pflags)
{
RISCVCPU *cpu = env_archcpu(env);
RISCVExtStatus fs, vs;
uint32_t flags = 0;
*pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
*cs_base = 0;
if (cpu->cfg.ext_zve32f) {
/*
* If env->vl equals to VLMAX, we can use generic vector operation
* expanders (GVEC) to accerlate the vector operations.
* However, as LMUL could be a fractional number. The maximum
* vector size can be operated might be less than 8 bytes,
* which is not supported by GVEC. So we set vl_eq_vlmax flag to true
* only when maxsz >= 8 bytes.
*/
uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
uint32_t maxsz = vlmax << sew;
bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
(maxsz >= 8);
flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
FIELD_EX64(env->vtype, VTYPE, VLMUL));
flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
flags = FIELD_DP32(flags, TB_FLAGS, VTA,
FIELD_EX64(env->vtype, VTYPE, VTA));
flags = FIELD_DP32(flags, TB_FLAGS, VMA,
FIELD_EX64(env->vtype, VTYPE, VMA));
flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
} else {
flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
}
#ifdef CONFIG_USER_ONLY
fs = EXT_STATUS_DIRTY;
vs = EXT_STATUS_DIRTY;
#else
flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
flags |= cpu_mmu_index(env, 0);
fs = get_field(env->mstatus, MSTATUS_FS);
vs = get_field(env->mstatus, MSTATUS_VS);
if (env->virt_enabled) {
flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
/*
* Merge DISABLED and !DIRTY states using MIN.
* We will set both fields when dirtying.
*/
fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
}
/* With Zfinx, floating point is enabled/disabled by Smstateen. */
if (!riscv_has_ext(env, RVF)) {
fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
}
if (cpu->cfg.debug && !icount_enabled()) {
flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
}
#endif
flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env));
if (env->cur_pmmask != 0) {
flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
}
if (env->cur_pmbase != 0) {
flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
}
*pflags = flags;
}
void riscv_cpu_update_mask(CPURISCVState *env)
{
target_ulong mask = 0, base = 0;
RISCVMXL xl = env->xl;
/*
* TODO: Current RVJ spec does not specify
* how the extension interacts with XLEN.
*/
#ifndef CONFIG_USER_ONLY
int mode = cpu_address_mode(env);
xl = cpu_get_xl(env, mode);
if (riscv_has_ext(env, RVJ)) {
switch (mode) {
case PRV_M:
if (env->mmte & M_PM_ENABLE) {
mask = env->mpmmask;
base = env->mpmbase;
}
break;
case PRV_S:
if (env->mmte & S_PM_ENABLE) {
mask = env->spmmask;
base = env->spmbase;
}
break;
case PRV_U:
if (env->mmte & U_PM_ENABLE) {
mask = env->upmmask;
base = env->upmbase;
}
break;
default:
g_assert_not_reached();
}
}
#endif
if (xl == MXL_RV32) {
env->cur_pmmask = mask & UINT32_MAX;
env->cur_pmbase = base & UINT32_MAX;
} else {
env->cur_pmmask = mask;
env->cur_pmbase = base;
}
}
#ifndef CONFIG_USER_ONLY
/*
* The HS-mode is allowed to configure priority only for the
* following VS-mode local interrupts:
*
* 0 (Reserved interrupt, reads as zero)
* 1 Supervisor software interrupt
* 4 (Reserved interrupt, reads as zero)
* 5 Supervisor timer interrupt
* 8 (Reserved interrupt, reads as zero)
* 13 (Reserved interrupt)
* 14 "
* 15 "
* 16 "
* 17 "
* 18 "
* 19 "
* 20 "
* 21 "
* 22 "
* 23 "
*/
static const int hviprio_index2irq[] = {
0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
static const int hviprio_index2rdzero[] = {
1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
{
if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
return -EINVAL;
}
if (out_irq) {
*out_irq = hviprio_index2irq[index];
}
if (out_rdzero) {
*out_rdzero = hviprio_index2rdzero[index];
}
return 0;
}
/*
* Default priorities of local interrupts are defined in the
* RISC-V Advanced Interrupt Architecture specification.
*
* ----------------------------------------------------------------
* Default |
* Priority | Major Interrupt Numbers
* ----------------------------------------------------------------
* Highest | 47, 23, 46, 45, 22, 44,
* | 43, 21, 42, 41, 20, 40
* |
* | 11 (0b), 3 (03), 7 (07)
* | 9 (09), 1 (01), 5 (05)
* | 12 (0c)
* | 10 (0a), 2 (02), 6 (06)
* |
* | 39, 19, 38, 37, 18, 36,
* Lowest | 35, 17, 34, 33, 16, 32
* ----------------------------------------------------------------
*/
static const uint8_t default_iprio[64] = {
/* Custom interrupts 48 to 63 */
[63] = IPRIO_MMAXIPRIO,
[62] = IPRIO_MMAXIPRIO,
[61] = IPRIO_MMAXIPRIO,
[60] = IPRIO_MMAXIPRIO,
[59] = IPRIO_MMAXIPRIO,
[58] = IPRIO_MMAXIPRIO,
[57] = IPRIO_MMAXIPRIO,
[56] = IPRIO_MMAXIPRIO,
[55] = IPRIO_MMAXIPRIO,
[54] = IPRIO_MMAXIPRIO,
[53] = IPRIO_MMAXIPRIO,
[52] = IPRIO_MMAXIPRIO,
[51] = IPRIO_MMAXIPRIO,
[50] = IPRIO_MMAXIPRIO,
[49] = IPRIO_MMAXIPRIO,
[48] = IPRIO_MMAXIPRIO,
/* Custom interrupts 24 to 31 */
[31] = IPRIO_MMAXIPRIO,
[30] = IPRIO_MMAXIPRIO,
[29] = IPRIO_MMAXIPRIO,
[28] = IPRIO_MMAXIPRIO,
[27] = IPRIO_MMAXIPRIO,
[26] = IPRIO_MMAXIPRIO,
[25] = IPRIO_MMAXIPRIO,
[24] = IPRIO_MMAXIPRIO,
[47] = IPRIO_DEFAULT_UPPER,
[23] = IPRIO_DEFAULT_UPPER + 1,
[46] = IPRIO_DEFAULT_UPPER + 2,
[45] = IPRIO_DEFAULT_UPPER + 3,
[22] = IPRIO_DEFAULT_UPPER + 4,
[44] = IPRIO_DEFAULT_UPPER + 5,
[43] = IPRIO_DEFAULT_UPPER + 6,
[21] = IPRIO_DEFAULT_UPPER + 7,
[42] = IPRIO_DEFAULT_UPPER + 8,
[41] = IPRIO_DEFAULT_UPPER + 9,
[20] = IPRIO_DEFAULT_UPPER + 10,
[40] = IPRIO_DEFAULT_UPPER + 11,
[11] = IPRIO_DEFAULT_M,
[3] = IPRIO_DEFAULT_M + 1,
[7] = IPRIO_DEFAULT_M + 2,
[9] = IPRIO_DEFAULT_S,
[1] = IPRIO_DEFAULT_S + 1,
[5] = IPRIO_DEFAULT_S + 2,
[12] = IPRIO_DEFAULT_SGEXT,
[10] = IPRIO_DEFAULT_VS,
[2] = IPRIO_DEFAULT_VS + 1,
[6] = IPRIO_DEFAULT_VS + 2,
[39] = IPRIO_DEFAULT_LOWER,
[19] = IPRIO_DEFAULT_LOWER + 1,
[38] = IPRIO_DEFAULT_LOWER + 2,
[37] = IPRIO_DEFAULT_LOWER + 3,
[18] = IPRIO_DEFAULT_LOWER + 4,
[36] = IPRIO_DEFAULT_LOWER + 5,
[35] = IPRIO_DEFAULT_LOWER + 6,
[17] = IPRIO_DEFAULT_LOWER + 7,
[34] = IPRIO_DEFAULT_LOWER + 8,
[33] = IPRIO_DEFAULT_LOWER + 9,
[16] = IPRIO_DEFAULT_LOWER + 10,
[32] = IPRIO_DEFAULT_LOWER + 11,
};
uint8_t riscv_cpu_default_priority(int irq)
{
if (irq < 0 || irq > 63) {
return IPRIO_MMAXIPRIO;
}
return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
};
static int riscv_cpu_pending_to_irq(CPURISCVState *env,
int extirq, unsigned int extirq_def_prio,
uint64_t pending, uint8_t *iprio)
{
int irq, best_irq = RISCV_EXCP_NONE;
unsigned int prio, best_prio = UINT_MAX;
if (!pending) {
return RISCV_EXCP_NONE;
}
irq = ctz64(pending);
if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
riscv_cpu_cfg(env)->ext_ssaia)) {
return irq;
}
pending = pending >> irq;
while (pending) {
prio = iprio[irq];
if (!prio) {
if (irq == extirq) {
prio = extirq_def_prio;
} else {
prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
1 : IPRIO_MMAXIPRIO;
}
}
if ((pending & 0x1) && (prio <= best_prio)) {
best_irq = irq;
best_prio = prio;
}
irq++;
pending = pending >> 1;
}
return best_irq;
}
/*
* Doesn't report interrupts inserted using mvip from M-mode firmware or
* using hvip bits 13:63 from HS-mode. Those are returned in
* riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending().
*/
uint64_t riscv_cpu_all_pending(CPURISCVState *env)
{
uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
return (env->mip | vsgein | vstip) & env->mie;
}
int riscv_cpu_mirq_pending(CPURISCVState *env)
{
uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
irqs, env->miprio);
}
int riscv_cpu_sirq_pending(CPURISCVState *env)
{
uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie;
return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
irqs | irqs_f, env->siprio);
}
int riscv_cpu_vsirq_pending(CPURISCVState *env)
{
uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg;
uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
uint64_t vsbits;
/* Bring VS-level bits to correct position */
vsbits = irqs & VS_MODE_INTERRUPTS;
irqs &= ~VS_MODE_INTERRUPTS;
irqs |= vsbits >> 1;
return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
(irqs | irqs_f_vs), env->hviprio);
}
static int riscv_cpu_local_irq_pending(CPURISCVState *env)
{
uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs;
uint64_t vsbits, irq_delegated;
int virq;
/* Determine interrupt enable state of all privilege modes */
if (env->virt_enabled) {
mie = 1;
hsie = 1;
vsie = (env->priv < PRV_S) ||
(env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
} else {
mie = (env->priv < PRV_M) ||
(env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
hsie = (env->priv < PRV_S) ||
(env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
vsie = 0;
}
/* Determine all pending interrupts */
pending = riscv_cpu_all_pending(env);
/* Check M-mode interrupts */
irqs = pending & ~env->mideleg & -mie;
if (irqs) {
return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
irqs, env->miprio);
}
/* Check for virtual S-mode interrupts. */
irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie;
/* Check HS-mode interrupts */
irqs = ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie;
if (irqs) {
return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
irqs, env->siprio);
}
/* Check for virtual VS-mode interrupts. */
irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
/* Check VS-mode interrupts */
irq_delegated = pending & env->mideleg & env->hideleg;
/* Bring VS-level bits to correct position */
vsbits = irq_delegated & VS_MODE_INTERRUPTS;
irq_delegated &= ~VS_MODE_INTERRUPTS;
irq_delegated |= vsbits >> 1;
irqs = (irq_delegated | irqs_f_vs) & -vsie;
if (irqs) {
virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
irqs, env->hviprio);
if (virq <= 0 || (virq > 12 && virq <= 63)) {
return virq;
} else {
return virq + 1;
}
}
/* Indicate no pending interrupt */
return RISCV_EXCP_NONE;
}
bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
if (interrupt_request & CPU_INTERRUPT_HARD) {
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
int interruptno = riscv_cpu_local_irq_pending(env);
if (interruptno >= 0) {
cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
riscv_cpu_do_interrupt(cs);
return true;
}
}
return false;
}
/* Return true is floating point support is currently enabled */
bool riscv_cpu_fp_enabled(CPURISCVState *env)
{
if (env->mstatus & MSTATUS_FS) {
if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
return false;
}
return true;
}
return false;
}
/* Return true is vector support is currently enabled */
bool riscv_cpu_vector_enabled(CPURISCVState *env)
{
if (env->mstatus & MSTATUS_VS) {
if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
return false;
}
return true;
}
return false;
}
void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
{
uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
MSTATUS64_UXL | MSTATUS_VS;
if (riscv_has_ext(env, RVF)) {
mstatus_mask |= MSTATUS_FS;
}
bool current_virt = env->virt_enabled;
g_assert(riscv_has_ext(env, RVH));
if (current_virt) {
/* Current V=1 and we are about to change to V=0 */
env->vsstatus = env->mstatus & mstatus_mask;
env->mstatus &= ~mstatus_mask;
env->mstatus |= env->mstatus_hs;
env->vstvec = env->stvec;
env->stvec = env->stvec_hs;
env->vsscratch = env->sscratch;
env->sscratch = env->sscratch_hs;
env->vsepc = env->sepc;
env->sepc = env->sepc_hs;
env->vscause = env->scause;
env->scause = env->scause_hs;
env->vstval = env->stval;
env->stval = env->stval_hs;
env->vsatp = env->satp;
env->satp = env->satp_hs;
} else {
/* Current V=0 and we are about to change to V=1 */
env->mstatus_hs = env->mstatus & mstatus_mask;
env->mstatus &= ~mstatus_mask;
env->mstatus |= env->vsstatus;
env->stvec_hs = env->stvec;
env->stvec = env->vstvec;
env->sscratch_hs = env->sscratch;
env->sscratch = env->vsscratch;
env->sepc_hs = env->sepc;
env->sepc = env->vsepc;
env->scause_hs = env->scause;
env->scause = env->vscause;
env->stval_hs = env->stval;
env->stval = env->vstval;
env->satp_hs = env->satp;
env->satp = env->vsatp;
}
}
target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
{
if (!riscv_has_ext(env, RVH)) {
return 0;
}
return env->geilen;
}
void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
{
if (!riscv_has_ext(env, RVH)) {
return;
}
if (geilen > (TARGET_LONG_BITS - 1)) {
return;
}
env->geilen = geilen;
}
/* This function can only be called to set virt when RVH is enabled */
void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
{
/* Flush the TLB on all virt mode changes. */
if (env->virt_enabled != enable) {
tlb_flush(env_cpu(env));
}
env->virt_enabled = enable;
if (enable) {
/*
* The guest external interrupts from an interrupt controller are
* delivered only when the Guest/VM is running (i.e. V=1). This means
* any guest external interrupt which is triggered while the Guest/VM
* is not running (i.e. V=0) will be missed on QEMU resulting in guest
* with sluggish response to serial console input and other I/O events.
*
* To solve this, we check and inject interrupt after setting V=1.
*/
riscv_cpu_update_mip(env, 0, 0);
}
}
int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
{
CPURISCVState *env = &cpu->env;
if (env->miclaim & interrupts) {
return -1;
} else {
env->miclaim |= interrupts;
return 0;
}
}
void riscv_cpu_interrupt(CPURISCVState *env)
{
uint64_t gein, vsgein = 0, vstip = 0, irqf = 0;
CPUState *cs = env_cpu(env);
QEMU_IOTHREAD_LOCK_GUARD();
if (env->virt_enabled) {
gein = get_field(env->hstatus, HSTATUS_VGEIN);
vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
irqf = env->hvien & env->hvip & env->vsie;
} else {
irqf = env->mvien & env->mvip & env->sie;
}
vstip = env->vstime_irq ? MIP_VSTIP : 0;
if (env->mip | vsgein | vstip | irqf) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value)
{
uint64_t old = env->mip;
/* No need to update mip for VSTIP */
mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
QEMU_IOTHREAD_LOCK_GUARD();
env->mip = (env->mip & ~mask) | (value & mask);
riscv_cpu_interrupt(env);
return old;
}
void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
void *arg)
{
env->rdtime_fn = fn;
env->rdtime_fn_arg = arg;
}
void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
int (*rmw_fn)(void *arg,
target_ulong reg,
target_ulong *val,
target_ulong new_val,
target_ulong write_mask),
void *rmw_fn_arg)
{
if (priv <= PRV_M) {
env->aia_ireg_rmw_fn[priv] = rmw_fn;
env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
}
}
void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
{
g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
if (icount_enabled() && newpriv != env->priv) {
riscv_itrigger_update_priv(env);
}
/* tlb_flush is unnecessary as mode is contained in mmu_idx */
env->priv = newpriv;
env->xl = cpu_recompute_xl(env);
riscv_cpu_update_mask(env);
/*
* Clear the load reservation - otherwise a reservation placed in one
* context/process can be used by another, resulting in an SC succeeding
* incorrectly. Version 2.2 of the ISA specification explicitly requires
* this behaviour, while later revisions say that the kernel "should" use
* an SC instruction to force the yielding of a load reservation on a
* preemptive context switch. As a result, do both.
*/
env->load_res = -1;
}
/*
* get_physical_address_pmp - check PMP permission for this physical address
*
* Match the PMP region and check permission for this physical address and it's
* TLB page. Returns 0 if the permission checking was successful
*
* @env: CPURISCVState
* @prot: The returned protection attributes
* @addr: The physical address to be checked permission
* @access_type: The type of MMU access
* @mode: Indicates current privilege level.
*/
static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
int size, MMUAccessType access_type,
int mode)
{
pmp_priv_t pmp_priv;
bool pmp_has_privs;
if (!riscv_cpu_cfg(env)->pmp) {
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return TRANSLATE_SUCCESS;
}
pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
&pmp_priv, mode);
if (!pmp_has_privs) {
*prot = 0;
return TRANSLATE_PMP_FAIL;
}
*prot = pmp_priv_to_page_prot(pmp_priv);
return TRANSLATE_SUCCESS;
}
/*
* get_physical_address - get the physical address for this virtual address
*
* Do a page table walk to obtain the physical address corresponding to a
* virtual address. Returns 0 if the translation was successful
*
* Adapted from Spike's mmu_t::translate and mmu_t::walk
*
* @env: CPURISCVState
* @physical: This will be set to the calculated physical address
* @prot: The returned protection attributes
* @addr: The virtual address or guest physical address to be translated
* @fault_pte_addr: If not NULL, this will be set to fault pte address
* when a error occurs on pte address translation.
* This will already be shifted to match htval.
* @access_type: The type of MMU access
* @mmu_idx: Indicates current privilege level
* @first_stage: Are we in first stage translation?
* Second stage is used for hypervisor guest translation
* @two_stage: Are we going to perform two stage translation
* @is_debug: Is this access from a debugger or the monitor?
*/
static int get_physical_address(CPURISCVState *env, hwaddr *physical,
int *ret_prot, vaddr addr,
target_ulong *fault_pte_addr,
int access_type, int mmu_idx,
bool first_stage, bool two_stage,
bool is_debug)
{
/*
* NOTE: the env->pc value visible here will not be
* correct, but the value visible to the exception handler
* (riscv_cpu_do_interrupt) is correct
*/
MemTxResult res;
MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
int mode = mmuidx_priv(mmu_idx);
bool use_background = false;
hwaddr ppn;
int napot_bits = 0;
target_ulong napot_mask;
/*
* Check if we should use the background registers for the two
* stage translation. We don't need to check if we actually need
* two stage translation as that happened before this function
* was called. Background registers will be used if the guest has
* forced a two stage translation to be on (in HS or M mode).
*/
if (!env->virt_enabled && two_stage) {
use_background = true;
}
if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
*physical = addr;
*ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return TRANSLATE_SUCCESS;
}
*ret_prot = 0;
hwaddr base;
int levels, ptidxbits, ptesize, vm, widened;
if (first_stage == true) {
if (use_background) {
if (riscv_cpu_mxl(env) == MXL_RV32) {
base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
vm = get_field(env->vsatp, SATP32_MODE);
} else {
base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
vm = get_field(env->vsatp, SATP64_MODE);
}
} else {
if (riscv_cpu_mxl(env) == MXL_RV32) {
base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
vm = get_field(env->satp, SATP32_MODE);
} else {
base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
vm = get_field(env->satp, SATP64_MODE);
}
}
widened = 0;
} else {
if (riscv_cpu_mxl(env) == MXL_RV32) {
base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
vm = get_field(env->hgatp, SATP32_MODE);
} else {
base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
vm = get_field(env->hgatp, SATP64_MODE);
}
widened = 2;
}
switch (vm) {
case VM_1_10_SV32:
levels = 2; ptidxbits = 10; ptesize = 4; break;
case VM_1_10_SV39:
levels = 3; ptidxbits = 9; ptesize = 8; break;
case VM_1_10_SV48:
levels = 4; ptidxbits = 9; ptesize = 8; break;
case VM_1_10_SV57:
levels = 5; ptidxbits = 9; ptesize = 8; break;
case VM_1_10_MBARE:
*physical = addr;
*ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return TRANSLATE_SUCCESS;
default:
g_assert_not_reached();
}
CPUState *cs = env_cpu(env);
int va_bits = PGSHIFT + levels * ptidxbits + widened;
target/riscv: Fix Guest Physical Address Translation Before changing the flow check for sv39/48/57. According to specification (for Supervisor mode): Sv39 implementations support a 39-bit virtual address space, divided into 4 KiB pages. Instruction fetch addresses and load and store effective addresses, which are 64 bits, must have bits 63–39 all equal to bit 38, or else a page-fault exception will occur. Likewise for Sv48 and Sv57. So the high bits are equal to bit 38 for sv39. According to specification (for Hypervisor mode): For Sv39x4, address bits of the guest physical address 63:41 must all be zeros, or else a guest-page-fault exception occurs. Likewise for Sv48x4 and Sv57x4. For Sv48x4 address bits 63:50 must all be zeros, or else a guest-page-fault exception occurs. For Sv57x4 address bits 63:59 must all be zeros, or else a guest-page-fault exception occurs. For example we are trying to access address 0xffff_ffff_ff01_0000 with only G-translation enabled. So expected behavior is to generate exception. But qemu doesn't generate such exception. For the old check, we get va_bits == 41, mask == (1 << 24) - 1, masked_msbs == (0xffff_ffff_ff01_0000 >> 40) & mask == mask. Accordingly, the condition masked_msbs != 0 && masked_msbs != mask is not fulfilled and the check passes. Signed-off-by: Irina Ryapolova <irina.ryapolova@syntacore.com> Reviewed-by: Weiwei Li <liweiwei@iscas.ac.cn> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20230418075423.26217-1-irina.ryapolova@syntacore.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-04-18 10:54:23 +03:00
if (first_stage == true) {
target_ulong mask, masked_msbs;
target/riscv: Fix Guest Physical Address Translation Before changing the flow check for sv39/48/57. According to specification (for Supervisor mode): Sv39 implementations support a 39-bit virtual address space, divided into 4 KiB pages. Instruction fetch addresses and load and store effective addresses, which are 64 bits, must have bits 63–39 all equal to bit 38, or else a page-fault exception will occur. Likewise for Sv48 and Sv57. So the high bits are equal to bit 38 for sv39. According to specification (for Hypervisor mode): For Sv39x4, address bits of the guest physical address 63:41 must all be zeros, or else a guest-page-fault exception occurs. Likewise for Sv48x4 and Sv57x4. For Sv48x4 address bits 63:50 must all be zeros, or else a guest-page-fault exception occurs. For Sv57x4 address bits 63:59 must all be zeros, or else a guest-page-fault exception occurs. For example we are trying to access address 0xffff_ffff_ff01_0000 with only G-translation enabled. So expected behavior is to generate exception. But qemu doesn't generate such exception. For the old check, we get va_bits == 41, mask == (1 << 24) - 1, masked_msbs == (0xffff_ffff_ff01_0000 >> 40) & mask == mask. Accordingly, the condition masked_msbs != 0 && masked_msbs != mask is not fulfilled and the check passes. Signed-off-by: Irina Ryapolova <irina.ryapolova@syntacore.com> Reviewed-by: Weiwei Li <liweiwei@iscas.ac.cn> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20230418075423.26217-1-irina.ryapolova@syntacore.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-04-18 10:54:23 +03:00
if (TARGET_LONG_BITS > (va_bits - 1)) {
mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
} else {
mask = 0;
}
masked_msbs = (addr >> (va_bits - 1)) & mask;
if (masked_msbs != 0 && masked_msbs != mask) {
return TRANSLATE_FAIL;
}
} else {
if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
return TRANSLATE_FAIL;
}
}
bool pbmte = env->menvcfg & MENVCFG_PBMTE;
bool adue = env->menvcfg & MENVCFG_ADUE;
if (first_stage && two_stage && env->virt_enabled) {
pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
adue = adue && (env->henvcfg & HENVCFG_ADUE);
}
int ptshift = (levels - 1) * ptidxbits;
target_ulong pte;
hwaddr pte_addr;
int i;
#if !TCG_OVERSIZED_GUEST
restart:
#endif
for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
target_ulong idx;
if (i == 0) {
idx = (addr >> (PGSHIFT + ptshift)) &
((1 << (ptidxbits + widened)) - 1);
} else {
idx = (addr >> (PGSHIFT + ptshift)) &
((1 << ptidxbits) - 1);
}
/* check that physical address of PTE is legal */
if (two_stage && first_stage) {
int vbase_prot;
hwaddr vbase;
/* Do the second stage translation on the base PTE address. */
int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
base, NULL, MMU_DATA_LOAD,
MMUIdx_U, false, true,
is_debug);
if (vbase_ret != TRANSLATE_SUCCESS) {
if (fault_pte_addr) {
*fault_pte_addr = (base + idx * ptesize) >> 2;
}
return TRANSLATE_G_STAGE_FAIL;
}
pte_addr = vbase + idx * ptesize;
} else {
pte_addr = base + idx * ptesize;
}
int pmp_prot;
int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
sizeof(target_ulong),
MMU_DATA_LOAD, PRV_S);
if (pmp_ret != TRANSLATE_SUCCESS) {
return TRANSLATE_PMP_FAIL;
}
if (riscv_cpu_mxl(env) == MXL_RV32) {
pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
} else {
pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
}
if (res != MEMTX_OK) {
return TRANSLATE_FAIL;
}
if (riscv_cpu_sxl(env) == MXL_RV32) {
ppn = pte >> PTE_PPN_SHIFT;
} else {
if (pte & PTE_RESERVED) {
return TRANSLATE_FAIL;
}
if (!pbmte && (pte & PTE_PBMT)) {
return TRANSLATE_FAIL;
}
if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
return TRANSLATE_FAIL;
}
ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
}
if (!(pte & PTE_V)) {
/* Invalid PTE */
return TRANSLATE_FAIL;
}
if (pte & (PTE_R | PTE_W | PTE_X)) {
goto leaf;
}
/* Inner PTE, continue walking */
if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
return TRANSLATE_FAIL;
}
base = ppn << PGSHIFT;
}
/* No leaf pte at any translation level. */
return TRANSLATE_FAIL;
leaf:
if (ppn & ((1ULL << ptshift) - 1)) {
/* Misaligned PPN */
return TRANSLATE_FAIL;
}
if (!pbmte && (pte & PTE_PBMT)) {
/* Reserved without Svpbmt. */
return TRANSLATE_FAIL;
}
/* Check for reserved combinations of RWX flags. */
switch (pte & (PTE_R | PTE_W | PTE_X)) {
case PTE_W:
case PTE_W | PTE_X:
return TRANSLATE_FAIL;
}
int prot = 0;
if (pte & PTE_R) {
prot |= PAGE_READ;
}
if (pte & PTE_W) {
prot |= PAGE_WRITE;
}
if (pte & PTE_X) {
bool mxr = false;
/*
* Use mstatus for first stage or for the second stage without
* virt_enabled (MPRV+MPV)
*/
if (first_stage || !env->virt_enabled) {
mxr = get_field(env->mstatus, MSTATUS_MXR);
}
/* MPRV+MPV case, check VSSTATUS */
if (first_stage && two_stage && !env->virt_enabled) {
mxr |= get_field(env->vsstatus, MSTATUS_MXR);
}
/*
* Setting MXR at HS-level overrides both VS-stage and G-stage
* execute-only permissions
*/
if (env->virt_enabled) {
mxr |= get_field(env->mstatus_hs, MSTATUS_MXR);
}
if (mxr) {
prot |= PAGE_READ;
}
prot |= PAGE_EXEC;
}
if (pte & PTE_U) {
if (mode != PRV_U) {
if (!mmuidx_sum(mmu_idx)) {
return TRANSLATE_FAIL;
}
/* SUM allows only read+write, not execute. */
prot &= PAGE_READ | PAGE_WRITE;
}
} else if (mode != PRV_S) {
/* Supervisor PTE flags when not S mode */
return TRANSLATE_FAIL;
}
if (!((prot >> access_type) & 1)) {
/* Access check failed */
return TRANSLATE_FAIL;
}
/* If necessary, set accessed and dirty bits. */
target_ulong updated_pte = pte | PTE_A |
(access_type == MMU_DATA_STORE ? PTE_D : 0);
/* Page table updates need to be atomic with MTTCG enabled */
if (updated_pte != pte && !is_debug) {
if (!adue) {
return TRANSLATE_FAIL;
}
/*
* - if accessed or dirty bits need updating, and the PTE is
* in RAM, then we do so atomically with a compare and swap.
* - if the PTE is in IO space or ROM, then it can't be updated
* and we return TRANSLATE_FAIL.
* - if the PTE changed by the time we went to update it, then
* it is no longer valid and we must re-walk the page table.
*/
MemoryRegion *mr;
hwaddr l = sizeof(target_ulong), addr1;
mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
false, MEMTXATTRS_UNSPECIFIED);
if (memory_region_is_ram(mr)) {
target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
#if TCG_OVERSIZED_GUEST
/*
* MTTCG is not enabled on oversized TCG guests so
* page table updates do not need to be atomic
*/
*pte_pa = pte = updated_pte;
#else
target_ulong old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
if (old_pte != pte) {
goto restart;
}
pte = updated_pte;
#endif
} else {
/*
* Misconfigured PTE in ROM (AD bits are not preset) or
* PTE is in IO space and can't be updated atomically.
*/
return TRANSLATE_FAIL;
}
}
/* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
target_ulong vpn = addr >> PGSHIFT;
if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
napot_bits = ctzl(ppn) + 1;
if ((i != (levels - 1)) || (napot_bits != 4)) {
return TRANSLATE_FAIL;
}
}
napot_mask = (1 << napot_bits) - 1;
*physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
(vpn & (((target_ulong)1 << ptshift) - 1))
) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
/*
* Remove write permission unless this is a store, or the page is
* already dirty, so that we TLB miss on later writes to update
* the dirty bit.
*/
if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
prot &= ~PAGE_WRITE;
}
*ret_prot = prot;
return TRANSLATE_SUCCESS;
}
static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
MMUAccessType access_type, bool pmp_violation,
bool first_stage, bool two_stage,
bool two_stage_indirect)
{
CPUState *cs = env_cpu(env);
switch (access_type) {
case MMU_INST_FETCH:
if (env->virt_enabled && !first_stage) {
cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
} else {
cs->exception_index = pmp_violation ?
RISCV_EXCP_INST_ACCESS_FAULT : RISCV_EXCP_INST_PAGE_FAULT;
}
break;
case MMU_DATA_LOAD:
if (two_stage && !first_stage) {
cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
} else {
cs->exception_index = pmp_violation ?
RISCV_EXCP_LOAD_ACCESS_FAULT : RISCV_EXCP_LOAD_PAGE_FAULT;
}
break;
case MMU_DATA_STORE:
if (two_stage && !first_stage) {
cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
} else {
cs->exception_index = pmp_violation ?
RISCV_EXCP_STORE_AMO_ACCESS_FAULT :
RISCV_EXCP_STORE_PAGE_FAULT;
}
break;
default:
g_assert_not_reached();
}
env->badaddr = address;
env->two_stage_lookup = two_stage;
env->two_stage_indirect_lookup = two_stage_indirect;
}
hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
hwaddr phys_addr;
int prot;
int mmu_idx = cpu_mmu_index(&cpu->env, false);
if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
true, env->virt_enabled, true)) {
return -1;
}
if (env->virt_enabled) {
if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
0, mmu_idx, false, true, true)) {
return -1;
}
}
return phys_addr & TARGET_PAGE_MASK;
}
void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
if (access_type == MMU_DATA_STORE) {
cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
} else if (access_type == MMU_DATA_LOAD) {
cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
} else {
cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
}
env->badaddr = addr;
env->two_stage_lookup = mmuidx_2stage(mmu_idx);
env->two_stage_indirect_lookup = false;
cpu_loop_exit_restore(cs, retaddr);
}
void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
MMUAccessType access_type, int mmu_idx,
uintptr_t retaddr)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
switch (access_type) {
case MMU_INST_FETCH:
cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
break;
case MMU_DATA_LOAD:
cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
break;
case MMU_DATA_STORE:
cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
break;
default:
g_assert_not_reached();
}
env->badaddr = addr;
env->two_stage_lookup = mmuidx_2stage(mmu_idx);
env->two_stage_indirect_lookup = false;
cpu_loop_exit_restore(cs, retaddr);
}
static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
{
enum riscv_pmu_event_idx pmu_event_type;
switch (access_type) {
case MMU_INST_FETCH:
pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
break;
case MMU_DATA_LOAD:
pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
break;
case MMU_DATA_STORE:
pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
break;
default:
return;
}
riscv_pmu_incr_ctr(cpu, pmu_event_type);
}
bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
vaddr im_address;
hwaddr pa = 0;
int prot, prot2, prot_pmp;
bool pmp_violation = false;
bool first_stage_error = true;
bool two_stage_lookup = mmuidx_2stage(mmu_idx);
bool two_stage_indirect_error = false;
int ret = TRANSLATE_FAIL;
int mode = mmu_idx;
/* default TLB page size */
target_ulong tlb_size = TARGET_PAGE_SIZE;
env->guest_phys_fault_addr = 0;
qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
__func__, address, access_type, mmu_idx);
pmu_tlb_fill_incr_ctr(cpu, access_type);
if (two_stage_lookup) {
/* Two stage lookup */
ret = get_physical_address(env, &pa, &prot, address,
&env->guest_phys_fault_addr, access_type,
mmu_idx, true, true, false);
/*
* A G-stage exception may be triggered during two state lookup.
* And the env->guest_phys_fault_addr has already been set in
* get_physical_address().
*/
if (ret == TRANSLATE_G_STAGE_FAIL) {
first_stage_error = false;
two_stage_indirect_error = true;
}
qemu_log_mask(CPU_LOG_MMU,
"%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
HWADDR_FMT_plx " prot %d\n",
__func__, address, ret, pa, prot);
if (ret == TRANSLATE_SUCCESS) {
/* Second stage lookup */
im_address = pa;
ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
access_type, MMUIdx_U, false, true,
false);
qemu_log_mask(CPU_LOG_MMU,
"%s 2nd-stage address=%" VADDR_PRIx
" ret %d physical "
HWADDR_FMT_plx " prot %d\n",
__func__, im_address, ret, pa, prot2);
prot &= prot2;
if (ret == TRANSLATE_SUCCESS) {
ret = get_physical_address_pmp(env, &prot_pmp, pa,
size, access_type, mode);
tlb_size = pmp_get_tlb_size(env, pa);
qemu_log_mask(CPU_LOG_MMU,
"%s PMP address=" HWADDR_FMT_plx " ret %d prot"
" %d tlb_size " TARGET_FMT_lu "\n",
__func__, pa, ret, prot_pmp, tlb_size);
prot &= prot_pmp;
}
if (ret != TRANSLATE_SUCCESS) {
/*
* Guest physical address translation failed, this is a HS
* level exception
*/
first_stage_error = false;
env->guest_phys_fault_addr = (im_address |
(address &
(TARGET_PAGE_SIZE - 1))) >> 2;
}
}
} else {
/* Single stage lookup */
ret = get_physical_address(env, &pa, &prot, address, NULL,
access_type, mmu_idx, true, false, false);
qemu_log_mask(CPU_LOG_MMU,
"%s address=%" VADDR_PRIx " ret %d physical "
HWADDR_FMT_plx " prot %d\n",
__func__, address, ret, pa, prot);
if (ret == TRANSLATE_SUCCESS) {
ret = get_physical_address_pmp(env, &prot_pmp, pa,
size, access_type, mode);
tlb_size = pmp_get_tlb_size(env, pa);
qemu_log_mask(CPU_LOG_MMU,
"%s PMP address=" HWADDR_FMT_plx " ret %d prot"
" %d tlb_size " TARGET_FMT_lu "\n",
__func__, pa, ret, prot_pmp, tlb_size);
prot &= prot_pmp;
}
}
if (ret == TRANSLATE_PMP_FAIL) {
pmp_violation = true;
}
if (ret == TRANSLATE_SUCCESS) {
tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
prot, mmu_idx, tlb_size);
return true;
} else if (probe) {
return false;
} else {
raise_mmu_exception(env, address, access_type, pmp_violation,
first_stage_error, two_stage_lookup,
two_stage_indirect_error);
cpu_loop_exit_restore(cs, retaddr);
}
return true;
}
static target_ulong riscv_transformed_insn(CPURISCVState *env,
target_ulong insn,
target_ulong taddr)
{
target_ulong xinsn = 0;
target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
/*
* Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
* be uncompressed. The Quadrant 1 of RVC instruction space need
* not be transformed because these instructions won't generate
* any load/store trap.
*/
if ((insn & 0x3) != 0x3) {
/* Transform 16bit instruction into 32bit instruction */
switch (GET_C_OP(insn)) {
case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
switch (GET_C_FUNC(insn)) {
case OPC_RISC_C_FUNC_FLD_LQ:
if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
xinsn = OPC_RISC_FLD;
xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
access_rs1 = GET_C_RS1S(insn);
access_imm = GET_C_LD_IMM(insn);
access_size = 8;
}
break;
case OPC_RISC_C_FUNC_LW: /* C.LW */
xinsn = OPC_RISC_LW;
xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
access_rs1 = GET_C_RS1S(insn);
access_imm = GET_C_LW_IMM(insn);
access_size = 4;
break;
case OPC_RISC_C_FUNC_FLW_LD:
if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
xinsn = OPC_RISC_FLW;
xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
access_rs1 = GET_C_RS1S(insn);
access_imm = GET_C_LW_IMM(insn);
access_size = 4;
} else { /* C.LD (RV64/RV128) */
xinsn = OPC_RISC_LD;
xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
access_rs1 = GET_C_RS1S(insn);
access_imm = GET_C_LD_IMM(insn);
access_size = 8;
}
break;
case OPC_RISC_C_FUNC_FSD_SQ:
if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
xinsn = OPC_RISC_FSD;
xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
access_rs1 = GET_C_RS1S(insn);
access_imm = GET_C_SD_IMM(insn);
access_size = 8;
}
break;
case OPC_RISC_C_FUNC_SW: /* C.SW */
xinsn = OPC_RISC_SW;
xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
access_rs1 = GET_C_RS1S(insn);
access_imm = GET_C_SW_IMM(insn);
access_size = 4;
break;
case OPC_RISC_C_FUNC_FSW_SD:
if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
xinsn = OPC_RISC_FSW;
xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
access_rs1 = GET_C_RS1S(insn);
access_imm = GET_C_SW_IMM(insn);
access_size = 4;
} else { /* C.SD (RV64/RV128) */
xinsn = OPC_RISC_SD;
xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
access_rs1 = GET_C_RS1S(insn);
access_imm = GET_C_SD_IMM(insn);
access_size = 8;
}
break;
default:
break;
}
break;
case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
switch (GET_C_FUNC(insn)) {
case OPC_RISC_C_FUNC_FLDSP_LQSP:
if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
xinsn = OPC_RISC_FLD;
xinsn = SET_RD(xinsn, GET_C_RD(insn));
access_rs1 = 2;
access_imm = GET_C_LDSP_IMM(insn);
access_size = 8;
}
break;
case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
xinsn = OPC_RISC_LW;
xinsn = SET_RD(xinsn, GET_C_RD(insn));
access_rs1 = 2;
access_imm = GET_C_LWSP_IMM(insn);
access_size = 4;
break;
case OPC_RISC_C_FUNC_FLWSP_LDSP:
if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
xinsn = OPC_RISC_FLW;
xinsn = SET_RD(xinsn, GET_C_RD(insn));
access_rs1 = 2;
access_imm = GET_C_LWSP_IMM(insn);
access_size = 4;
} else { /* C.LDSP (RV64/RV128) */
xinsn = OPC_RISC_LD;
xinsn = SET_RD(xinsn, GET_C_RD(insn));
access_rs1 = 2;
access_imm = GET_C_LDSP_IMM(insn);
access_size = 8;
}
break;
case OPC_RISC_C_FUNC_FSDSP_SQSP:
if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
xinsn = OPC_RISC_FSD;
xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
access_rs1 = 2;
access_imm = GET_C_SDSP_IMM(insn);
access_size = 8;
}
break;
case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
xinsn = OPC_RISC_SW;
xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
access_rs1 = 2;
access_imm = GET_C_SWSP_IMM(insn);
access_size = 4;
break;
case 7:
if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
xinsn = OPC_RISC_FSW;
xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
access_rs1 = 2;
access_imm = GET_C_SWSP_IMM(insn);
access_size = 4;
} else { /* C.SDSP (RV64/RV128) */
xinsn = OPC_RISC_SD;
xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
access_rs1 = 2;
access_imm = GET_C_SDSP_IMM(insn);
access_size = 8;
}
break;
default:
break;
}
break;
default:
break;
}
/*
* Clear Bit1 of transformed instruction to indicate that
* original insruction was a 16bit instruction
*/
xinsn &= ~((target_ulong)0x2);
} else {
/* Transform 32bit (or wider) instructions */
switch (MASK_OP_MAJOR(insn)) {
case OPC_RISC_ATOMIC:
xinsn = insn;
access_rs1 = GET_RS1(insn);
access_size = 1 << GET_FUNCT3(insn);
break;
case OPC_RISC_LOAD:
case OPC_RISC_FP_LOAD:
xinsn = SET_I_IMM(insn, 0);
access_rs1 = GET_RS1(insn);
access_imm = GET_IMM(insn);
access_size = 1 << GET_FUNCT3(insn);
break;
case OPC_RISC_STORE:
case OPC_RISC_FP_STORE:
xinsn = SET_S_IMM(insn, 0);
access_rs1 = GET_RS1(insn);
access_imm = GET_STORE_IMM(insn);
access_size = 1 << GET_FUNCT3(insn);
break;
case OPC_RISC_SYSTEM:
if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
xinsn = insn;
access_rs1 = GET_RS1(insn);
access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
access_size = 1 << access_size;
}
break;
default:
break;
}
}
if (access_size) {
xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
(access_size - 1));
}
return xinsn;
}
#endif /* !CONFIG_USER_ONLY */
/*
* Handle Traps
*
* Adapted from Spike's processor_t::take_trap.
*
*/
void riscv_cpu_do_interrupt(CPUState *cs)
{
#if !defined(CONFIG_USER_ONLY)
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
bool write_gva = false;
uint64_t s;
/*
* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
* so we mask off the MSB and separate into trap type and cause.
*/
bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
uint64_t deleg = async ? env->mideleg : env->medeleg;
bool s_injected = env->mvip & (1 << cause) & env->mvien &&
!(env->mip & (1 << cause));
bool vs_injected = env->hvip & (1 << cause) & env->hvien &&
!(env->mip & (1 << cause));
target_ulong tval = 0;
target_ulong tinst = 0;
target_ulong htval = 0;
target_ulong mtval2 = 0;
if (!async) {
/* set tval to badaddr for traps with address information */
switch (cause) {
case RISCV_EXCP_SEMIHOST:
do_common_semihosting(cs);
env->pc += 4;
return;
case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
case RISCV_EXCP_LOAD_ADDR_MIS:
case RISCV_EXCP_STORE_AMO_ADDR_MIS:
case RISCV_EXCP_LOAD_ACCESS_FAULT:
case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
case RISCV_EXCP_LOAD_PAGE_FAULT:
case RISCV_EXCP_STORE_PAGE_FAULT:
write_gva = env->two_stage_lookup;
tval = env->badaddr;
if (env->two_stage_indirect_lookup) {
/*
* special pseudoinstruction for G-stage fault taken while
* doing VS-stage page table walk.
*/
tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
} else {
/*
* The "Addr. Offset" field in transformed instruction is
* non-zero only for misaligned access.
*/
tinst = riscv_transformed_insn(env, env->bins, tval);
}
break;
case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
case RISCV_EXCP_INST_ADDR_MIS:
case RISCV_EXCP_INST_ACCESS_FAULT:
case RISCV_EXCP_INST_PAGE_FAULT:
write_gva = env->two_stage_lookup;
tval = env->badaddr;
if (env->two_stage_indirect_lookup) {
/*
* special pseudoinstruction for G-stage fault taken while
* doing VS-stage page table walk.
*/
tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
}
break;
case RISCV_EXCP_ILLEGAL_INST:
case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
tval = env->bins;
break;
case RISCV_EXCP_BREAKPOINT:
if (cs->watchpoint_hit) {
tval = cs->watchpoint_hit->hitaddr;
cs->watchpoint_hit = NULL;
}
break;
default:
break;
}
/* ecall is dispatched as one cause so translate based on mode */
if (cause == RISCV_EXCP_U_ECALL) {
assert(env->priv <= 3);
if (env->priv == PRV_M) {
cause = RISCV_EXCP_M_ECALL;
} else if (env->priv == PRV_S && env->virt_enabled) {
cause = RISCV_EXCP_VS_ECALL;
} else if (env->priv == PRV_S && !env->virt_enabled) {
cause = RISCV_EXCP_S_ECALL;
} else if (env->priv == PRV_U) {
cause = RISCV_EXCP_U_ECALL;
}
}
}
trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
riscv_cpu_get_trap_name(cause, async));
qemu_log_mask(CPU_LOG_INT,
"%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
"epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
__func__, env->mhartid, async, cause, env->pc, tval,
riscv_cpu_get_trap_name(cause, async));
if (env->priv <= PRV_S && cause < 64 &&
(((deleg >> cause) & 1) || s_injected || vs_injected)) {
/* handle the trap in S-mode */
if (riscv_has_ext(env, RVH)) {
uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
if (env->virt_enabled &&
(((hdeleg >> cause) & 1) || vs_injected)) {
/* Trap to VS mode */
/*
* See if we need to adjust cause. Yes if its VS mode interrupt
* no if hypervisor has delegated one of hs mode's interrupt
*/
if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
cause == IRQ_VS_EXT) {
cause = cause - 1;
}
write_gva = false;
} else if (env->virt_enabled) {
/* Trap into HS mode, from virt */
riscv_cpu_swap_hypervisor_regs(env);
env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
env->priv);
env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
htval = env->guest_phys_fault_addr;
riscv_cpu_set_virt_enabled(env, 0);
} else {
/* Trap into HS mode */
env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
htval = env->guest_phys_fault_addr;
}
env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
}
s = env->mstatus;
s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
s = set_field(s, MSTATUS_SPP, env->priv);
s = set_field(s, MSTATUS_SIE, 0);
env->mstatus = s;
env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
env->sepc = env->pc;
env->stval = tval;
env->htval = htval;
env->htinst = tinst;
env->pc = (env->stvec >> 2 << 2) +
((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
riscv_cpu_set_mode(env, PRV_S);
} else {
/* handle the trap in M-mode */
if (riscv_has_ext(env, RVH)) {
if (env->virt_enabled) {
riscv_cpu_swap_hypervisor_regs(env);
}
env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
env->virt_enabled);
if (env->virt_enabled && tval) {
env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
}
mtval2 = env->guest_phys_fault_addr;
/* Trapping to M mode, virt is disabled */
riscv_cpu_set_virt_enabled(env, 0);
}
s = env->mstatus;
s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
s = set_field(s, MSTATUS_MPP, env->priv);
s = set_field(s, MSTATUS_MIE, 0);
env->mstatus = s;
env->mcause = cause | ~(((target_ulong)-1) >> async);
env->mepc = env->pc;
env->mtval = tval;
env->mtval2 = mtval2;
env->mtinst = tinst;
env->pc = (env->mtvec >> 2 << 2) +
((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
riscv_cpu_set_mode(env, PRV_M);
}
/*
* NOTE: it is not necessary to yield load reservations here. It is only
* necessary for an SC from "another hart" to cause a load reservation
* to be yielded. Refer to the memory consistency model section of the
* RISC-V ISA Specification.
*/
env->two_stage_lookup = false;
env->two_stage_indirect_lookup = false;
#endif
cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
}