Bochs instruction emulation handlers won't refer to direct fields of instructions like MODRM.NNN or MODRM.RM anymore.
Use generic source/destination indications like SRC1, SRC2 and DST.
All handlers are modified to support new notation. In addition fetchDecode module was modified to assign sources to instructions properly.
Immediate benefits:
- Removal of several duplicated handlers (FMA3 duplicated with FMA4 is a trivial example)
- Simpler to understand fetch-decode code
Future benefits:
- Integration of disassembler into Bochs CPU module, ability to disasm bx_instruction_c instance (planned)
Huge patch. Almost all source files wre modified.
Starting convergence to new lazy flags scheme by Darek Mihocka (www.emulators.com). The new flags code is still being validated and perfected but I try to minimize the diff between 2 versionS
Averything that required cpu.h include now has it explicitly and there are a lot of files not dependant by CPU at all which will compile a lot faster now ...
Manual says that GP(0) shouldd be generated in this case ALWAYS
Fixed instructions PANIC messages to ERROR for this case
And ... do not leave PANIC messages w/o taking care that user could push CONTINUE button and program should know to continue after the PANIC code line. Mainly in rerurn instructions were several problems ...
1. Review and commit patch
[ 896733 ] Lazy flags, for more instructions, only 1 src op
May be partially, but I hope to get all ideas from patch in
2. Get Bochs speedup after lazy flags optimization
3. Most important for me: improve correctness of emulation by handling several
undocumented EFLAGS modifications. And finally pass
UFLAGS - Undefined Flags Test v 3.0
Copyright (C) Potemkin's Hackers Group (PHG) 1989,1995
The test still fails on > 50% of its checks.
there to offer a way to substitute more efficient code
to do the RMW cases. At the moment, they just map to
the normal functions.
Sorry, restored the previous version ...
into inline functions with asm() statements in cpu.h. This cleans
up the *.cc code (which now doesn't have any asm()s in it), and
centralizes the asm() code so constraints can be modified in one
place. This also makes it easier to cover more instructions
with asm()s for more efficient eflags handling.
coverage of the high-frequency eflags instructions. That should
complete the asm() eflags updates for now, as we should be stabilizing
moving towards bochs 2.0.
of (1 & (val32>>N)), and added a getB_?F() accessor for special
cases which need a strict binary value (exactly 0 or 1). Most
code only needed a value for logical comparison. I modified the
special cases which do need a binary number for shifting and
comparison between flags, to use the special getB_?F() accessor.
Cleaned up memory.cc functions a little, now that all accesses
are within a single page.
Fixed a (not very likely encountered) bug in fetchdecode.cc (and
fetchdecode64.cc) where a 2-byte opcode starting with a prefix
starts at the last offset on a page. There were no checks
on the segment overrides for a boundary condition. I added them.
The eflags enhancements added just a tiny bit of performance.
in cpu.cc out of the main loop, and into the asynchronous
events handling. I went through all the code paths, and
there doesn't seem to be any reason for that code to be
in the hot loop.
Added another accessor for getting instruction data, called
modC0(). A lot of instructions test whether the mod field
of mod-nnn-rm is 0xc0 or not, ie., it's a register operation
and not memory. So I flag this in fetchdecode{,64}.cc.
This added on the order of 1% performance improvement for
a Win95 boot.
Macroized a few leftover calls to Write_RMV_virtual_xyz()
that didn't get modified in the x86-64 merge. Really, they
just call the real function for now, but I want to have them
available to do direct writes with the guest2host TLB pointers.