According to the Intel manuals:
The LOCK prefix can be prepended only to the following instructions
and only to those forms of the instructions where the destination
operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG,
CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG. If
the LOCK prefix is used with one of these instructions and the source
operand is a memory operand, an undefined opcode exception (#UD) will
be generated. An undefined opcode exception will also be generated if
the LOCK prefix is used with any instruction not in the above list.
Checking of the LOCK prefix done in fetchDecode state and not overloads
Bochs's execution.
- it works only on x86 with gcc2.95+
- uses the GCC function atribute "regparm(n)" to declare that certain
functions use the register calling convention
- performance improvement is about 6%
1) fixed the type of "hostPageAddr" and associated typecasts.
2) fixed the type of "pages" and associated typecasts (overloaded variable)
3) patch to cpu.cc to calculate "eipPageBias" correctly in 64 bit mode
* renamed CPU_ID to BX_CPU_ID.
with this new name there is no possibility for name contentions and BX_CPU_ID
definition could be moved out to NEED_CPU_REG_SHORTCUTS block
* returned back `unsigned BX_CPU::which_cpu(void)` function
* added BX_CPU_ID parameter for
BX_INSTR_PHY_READ(a20addr, len);
BX_INSTR_PHY_WRITE(a20addr, len);
now it will be
BX_INSTR_PHY_READ(cpu_id, a20addr, len);
BX_INSTR_PHY_WRITE(cpu_id, a20addr, len);
> CPU_ID is defined as
> #define CPU_ID (BX_CPU_THIS_PTR local_apic.get_id())
> This is not true when the APIC name is changed (true in Linux). Please
> change this to:
> #define CPU_ID (BX_CPU_THIS - BX_CPU(0))
Because source files were added/removed it would require an update
of the windows and macos project files, so I want to wait until after 2.0.
M Makefile.in 1.51 back to 1.50
M cpu.h 1.121 back to 1.120
M fetchdecode.cc 1.37 back to 1.36
M fetchdecode64.cc 1.33 back to 1.32
M sse.cc 1.17 back to 1.16
A sse2.cc 1.27 back to 1.26 (added back)
R sse_move.cc removed
R sse_pfp.cc removed
- to bring these changes back again, all we have to do is
"cvs update -j tmp-before1 -j tmp-after1"
sse.cc -> general SSE stuff and SSE integer (MMX extensions)
sse_move.cc -> memory transfer and shuffle opcodes
sse_pfp.cc -> packed floating point operations
debugger, SMP, and x86-64. A few macros were missing the CPU_ID argument,
and a few passed nonexistent variables to the instrumentation macros.
- I changed CPU_ID into a plain old macro instead of an inline call to a
trivial which_cpu() function, and removed which_cpu().
Modified Files:
cpu/cpu.h cpu/ctrl_xfer64.cc debug/dbg_main.cc
- Now compiles for plain ia-32
- Fixed some printf formatting for ia32 only.
- Update to latest Win32 DLL
- Added an ICEBP (Undoc 0xF8, INT 01) facility.
- updated to use latest VGA refresh routine
there to offer a way to substitute more efficient code
to do the RMW cases. At the moment, they just map to
the normal functions.
Sorry, restored the previous version ...
"bx_bool" which is always defined as Bit32u on all platforms. In Carbon
specific code, Boolean is still used because the Carbon header files
define it to unsigned char.
- this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95.
The bug was that some code in Bochs depends on Boolean to be a
32 bit value. (This should be fixed, but I don't know all the places
where it needs to be fixed yet.) Because Carbon defined Boolean as
an unsigned char, Bochs just followed along and used the unsigned char
definition to avoid compile problems. This exposed the dependency
on 32 bit Boolean on MacOS X only and led to major simulation problems,
that could only be reproduced and debugged on that platform.
- On the mailing list we debated whether to make all Booleans into "bool" or
our own type. I chose bx_bool for several reasons.
1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all
platforms, which makes it much less likely to have more platform-specific
simulation differences in the future. (I spent hours on a borrowed
MacOSX machine chasing bug 618388 before discovering that different sized
Booleans were the problem, and I don't want to repeat that.)
2. We still have at least one dependency on 32 bit Booleans which must be
fixed some time, but I don't want to risk introducing new bugs into the
simulation just before the 2.0 release.
Modified Files:
bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc
pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc
cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc
cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc
cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc
cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc
cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc
cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc
cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc
cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc
cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc
disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile
docs-html/cosimulation.html fpu/wmFPUemu_glue.cc
gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h
gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc
gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h
gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h
gui/x.cc instrument/example0/instrument.cc
instrument/example0/instrument.h
instrument/example1/instrument.cc
instrument/example1/instrument.h
instrument/stubs/instrument.cc instrument/stubs/instrument.h
iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc
iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc
iodev/eth_packetmaker.cc iodev/eth_packetmaker.h
iodev/floppy.cc iodev/floppy.h iodev/guest2host.h
iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc
iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h
iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h
iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h
iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h
iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h
iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
SSE/SSE2 for Stanislav. Also, some method prototypes and
skeletal functions in access.cc for read/write double quadword
features.
Also cleaned up one warning in protect_ctrl.cc for non-64 bit compiles.
There was an unused variable, only used for 64-bit.
This is an interim update to allow others to test.
We have userland code running!!! (up to a point)
Able to start executing "sash" as /sbin/init in userland from linux 64 bit
kernel until it crashes trying to access a null pointer. No kernel panics
though, just a segfault loop.
into inline functions with asm() statements in cpu.h. This cleans
up the *.cc code (which now doesn't have any asm()s in it), and
centralizes the asm() code so constraints can be modified in one
place. This also makes it easier to cover more instructions
with asm()s for more efficient eflags handling.
hack with longjmp() back to cpu.cc main decode loop, and added a
check in there to return control when bx_guard.special_unwind_stack
is set (compiling with debugger enabled only).
If in the debugger you try to execute further instructions
(which you shouldn't), other fields need to be reset I would
think, such as EXT and errorno, and have to make sure ESP/EIP
are corrected properly. Basically, this hack is only good
for examining the current situation of a nasty fault.
exit out of cpu_loop() and back to the caller can be honored.
Previously, code in this function was a part of cpu_loop so
a "return;" would already do that. Now, a value is passed
back to cpu_loop() to denote such a request, and then a return
is executed from cpu_loop().
I haven't tested this yet, but previously I must have broke
certain debugging requests by moving the code to a separate
function and not fixing the "return;" statements.
Symptom: Linux kernel 2.4.19 would hang in random places. CPU still
running, but in dle loop.
Cause: if APIC interrupt occurred while a PIC interrupt was pending, the
PIC interrupt would be lost. This is because either an APIC or PIC
interrupt would trash any pending interrupt event because INTR is only a state,
not an event queue.
Temporary fix: reworked apic.cc to have it's own copy of INTR state. cpu.cc now
checks for both cpu.INTR and local_apic.INTR.
Need to do further research to see if local_apic and pic can be integrated in such
a way as properly manage the combined effects of both devices accessing INTR state.
value and a change-mask, rather than passing all the boolean
change flags as arguments.
Recoded the POPF instruction in flag_ctrl.cc to use the
new writeEFlags() function, and to make it more sane.
Also, the old write_flags() and write_eflags() functions
redirect to writeEFlags() for now. Later, when we get
back in a development mode, it would be better to make
all calls use the new function and get rid of the old ones.
been using the Boolean type for a number of multi-bit fields on the
assumption that it is actually many bits wide. However, this assumption is
unsafe and has caused some bugs that are hard to track down.
- in the Carbon library on MacOS X, Boolean is defined to be an unsigned char.
This has been causing some of the EFLAGS accessors to fail (bits 8-31)
because they depended on Boolean being 32 bits wide. I changed these
accessors to return Bit32u instead. I believe that this will finally fix
[ 618388 ] Unable to boot under MacOS X.
- It would be possible to create a bochs specific type for booleans (bx_bool),
but it's cleaner to simply use "Boolean" when we actually mean a 1-bit true
or false field, and Bit8u/Bit32u when it is a multibit field.
32-bits rather than 64. This is possible, because there is
always an active null (heartbeat) timer, with periodicity
of less than or equal to the maximum 32-bit int value.
This generates a little less code in the hot part of cpu_loop,
and saved about 3% execution time on a Win95 boot.
Moved the asynchronous handling code from cpu_loop() to its
own function since it's a long path. This neatened up the
code a little (less gotos and all), and made it more clear
to use a "while (1)" around the iterative code in cpu_loop().
These seem to be working better, are a more simple design,
easier to understand, and AFAIK don't have race conditions
in them like the old ones do.
Re-coded the apic timer, to return cycle accurate values
which vary with each iteration of a read from a guest OS.
The previous implementation had very poor resolution. It
also didn't check the mask bit to see if an apic timer
interrupt should occur on countdown to 0. The apic timer
now calls its own bochs timer, rather than tag on the
one in iodev/devices.cc.
I needed to use one new function which is an inline in
pc_sytem.h. That would have to be added to the old pc_system.h if
we have to back-out to it.
Linux/x86-64 now boots until it hits two undefined opcodes:
FXRSTOR (0f ae). This restores FPU, MMX, XMM and MXCSR registers
from a 512-byte region of memory. We don't implement this yet.
MOVNTDQ (66 0f e7). This is a move involving an XMM register.
The 0x66 prefix is used so it's a double quadword, rather than
MOVNTQ (0f e7) which operates on a single quadword.
The Linux kernel panic is on the MOVNTQD opcodes. Perhaps that's
because that opcode is used in exception handling of the 1st?
Looks like we need to implement some new instructions.
restart another one in wxWindows. Fixed that. Also, on restart, the
apic id's left over from the first run were causing panics. Fixed that.
- modified: main.cc cpu/apic.cc cpu/cpu.h cpu/init.cc
now simply return a cached value which is set upon mode changes.
The biggest problem was protected_mode() which did something like:
return CR0.PM && ! EFLAGS.VM
This adds up when it was being executed many times in branch functions
etc. Now, cached values are set and sampled instead.