Starting convergence to new lazy flags scheme by Darek Mihocka (www.emulators.com). The new flags code is still being validated and perfected but I try to minimize the diff between 2 versionS
Averything that required cpu.h include now has it explicitly and there are a lot of files not dependant by CPU at all which will compile a lot faster now ...
1. Review and commit patch
[ 896733 ] Lazy flags, for more instructions, only 1 src op
May be partially, but I hope to get all ideas from patch in
2. Get Bochs speedup after lazy flags optimization
3. Most important for me: improve correctness of emulation by handling several
undocumented EFLAGS modifications. And finally pass
UFLAGS - Undefined Flags Test v 3.0
Copyright (C) Potemkin's Hackers Group (PHG) 1989,1995
The test still fails on > 50% of its checks.
For a whole lot of configure options, I put #if...#endif around code that
is specific to the option, even in files which are normally only compiled
when the option is on. This allows me to create a MS Visual C++ 6.0
workspace that supports many of these options. The workspace will basically
compile every file all the time, but the code for disabled options will
be commented out by the #if...#endif.
This may one day lead to simplification of the Makefiles and configure
scripts, but for the moment I'm leaving Makefiles and configure scripts
alone.
Affected options:
BX_SUPPORT_APIC (cpu/apic.cc)
BX_SUPPORT_X86_64 (cpu/*64.cc)
BX_DEBUGGER (debug/*)
BX_DISASM (disasm/*)
BX_WITH_nameofgui (gui/*)
BX_SUPPORT_CDROM (iodev/cdrom.cc)
BX_NE2K_SUPPORT (iodev/eth*.cc, iodev/ne2k.cc)
BX_SUPPORT_APIC (iodev/ioapic.cc)
BX_IODEBUG_SUPPORT (iodev/iodebug.cc)
BX_PCI_SUPPORT (iodev/pci*.cc)
BX_SUPPORT_SB16 (iodev/sb*.cc)
Modified Files:
cpu/apic.cc cpu/arith64.cc cpu/ctrl_xfer64.cc
cpu/data_xfer64.cc cpu/fetchdecode64.cc cpu/logical64.cc
cpu/mult64.cc cpu/resolve64.cc cpu/shift64.cc cpu/stack64.cc
debug/Makefile.in debug/crc.cc debug/dbg_main.cc debug/lexer.l
debug/linux.cc debug/parser.c debug/parser.y
disasm/dis_decode.cc disasm/dis_groups.cc gui/amigaos.cc
gui/beos.cc gui/carbon.cc gui/macintosh.cc gui/rfb.cc
gui/sdl.cc gui/term.cc gui/win32.cc gui/wx.cc gui/wxdialog.cc
gui/wxmain.cc gui/x.cc iodev/cdrom.cc iodev/eth.cc
iodev/eth_arpback.cc iodev/eth_fbsd.cc iodev/eth_linux.cc
iodev/eth_null.cc iodev/eth_packetmaker.cc iodev/eth_tap.cc
iodev/eth_tuntap.cc iodev/eth_win32.cc iodev/ioapic.cc
iodev/iodebug.cc iodev/ne2k.cc iodev/pci.cc iodev/pci2isa.cc
iodev/sb16.cc iodev/soundlnx.cc iodev/soundwin.cc
there to offer a way to substitute more efficient code
to do the RMW cases. At the moment, they just map to
the normal functions.
Sorry, restored the previous version ...
"bx_bool" which is always defined as Bit32u on all platforms. In Carbon
specific code, Boolean is still used because the Carbon header files
define it to unsigned char.
- this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95.
The bug was that some code in Bochs depends on Boolean to be a
32 bit value. (This should be fixed, but I don't know all the places
where it needs to be fixed yet.) Because Carbon defined Boolean as
an unsigned char, Bochs just followed along and used the unsigned char
definition to avoid compile problems. This exposed the dependency
on 32 bit Boolean on MacOS X only and led to major simulation problems,
that could only be reproduced and debugged on that platform.
- On the mailing list we debated whether to make all Booleans into "bool" or
our own type. I chose bx_bool for several reasons.
1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all
platforms, which makes it much less likely to have more platform-specific
simulation differences in the future. (I spent hours on a borrowed
MacOSX machine chasing bug 618388 before discovering that different sized
Booleans were the problem, and I don't want to repeat that.)
2. We still have at least one dependency on 32 bit Booleans which must be
fixed some time, but I don't want to risk introducing new bugs into the
simulation just before the 2.0 release.
Modified Files:
bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc
pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc
cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc
cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc
cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc
cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc
cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc
cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc
cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc
cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc
cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc
disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile
docs-html/cosimulation.html fpu/wmFPUemu_glue.cc
gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h
gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc
gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h
gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h
gui/x.cc instrument/example0/instrument.cc
instrument/example0/instrument.h
instrument/example1/instrument.cc
instrument/example1/instrument.h
instrument/stubs/instrument.cc instrument/stubs/instrument.h
iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc
iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc
iodev/eth_packetmaker.cc iodev/eth_packetmaker.h
iodev/floppy.cc iodev/floppy.h iodev/guest2host.h
iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc
iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h
iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h
iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h
iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h
iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h
iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
use getB_CF() etc. getB_CF() and friends are only for a relatively
small number of cases where a true boolean/binary number (0 or 1) is required
rather than 0 or non-0 as is returned by get_CF().
of (1 & (val32>>N)), and added a getB_?F() accessor for special
cases which need a strict binary value (exactly 0 or 1). Most
code only needed a value for logical comparison. I modified the
special cases which do need a binary number for shifting and
comparison between flags, to use the special getB_?F() accessor.
Cleaned up memory.cc functions a little, now that all accesses
are within a single page.
Fixed a (not very likely encountered) bug in fetchdecode.cc (and
fetchdecode64.cc) where a 2-byte opcode starting with a prefix
starts at the last offset on a page. There were no checks
on the segment overrides for a boundary condition. I added them.
The eflags enhancements added just a tiny bit of performance.
also extended by the REX.B field on Hammer) is passed to instructions.
I rearranged the bxInstruction_c to free up a field to be used
to pass this info when mod-rm bytes are not used. This got rid
of the ugly ((i->b1 & 7) + i->rex_b) code.
Probably shaved just a very little run time off Hammer emulation,
and even less on x86-32. The resultant is a little cleaner anyways.
in cpu.cc out of the main loop, and into the asynchronous
events handling. I went through all the code paths, and
there doesn't seem to be any reason for that code to be
in the hot loop.
Added another accessor for getting instruction data, called
modC0(). A lot of instructions test whether the mod field
of mod-nnn-rm is 0xc0 or not, ie., it's a register operation
and not memory. So I flag this in fetchdecode{,64}.cc.
This added on the order of 1% performance improvement for
a Win95 boot.
Macroized a few leftover calls to Write_RMV_virtual_xyz()
that didn't get modified in the x86-64 merge. Really, they
just call the real function for now, but I want to have them
available to do direct writes with the guest2host TLB pointers.
to bitfields. bxInstruction_c is now 24 bytes, including 4 for
the memory addr resolution function pointer, and 4 for the
execution function pointer (16 + 4 + 4).
Coded more accessors, to abstract access from most code.
with accessors. Had to touch a number of files to update the
access using the new accessors.
Moved rm_addr to the CPU structure, to slim down bxInstruction_c
and to prevent future instruction caching from getting sprayed
with writes to individual rm_addr fields. There only needs to
be one. Though need to deal with instructions which have
static non-modrm addresses, but which are using rm_addr since
that will change.
bxInstruction_c is down to about 40 bytes now. Trying to
get down to 24 bytes.
use accessors. This lets me work on compressing the
size of fetch-decode structure (now called bxInstruction_c).
I've reduced it down to about 76 bytes. We should be able
to do much better soon. I needed the abstraction of the
accessors, so I have a lot of freedom to re-arrange things
without making massive future changes.
Lost a few percent of performance in these mods, but my
main focus was to get the abstraction.