We rename it flush_damage() as it's the point where we update our rendering
API source (eg, the gles2 texture) according to the accumulated damage,
if necessary.
We move the EGL and GLES2 output repaint code into a new gles2-render.c
file. The eglMakeCurrent, glViewPort, surface loop etc was duplicated
across all backends, but this patch moves it to a new file.
Remove weston_surface::opaque_rect completely.
Instead, set the opaque region in xwayland.
Before this patch, black text in xterm was transparent. Now it is not.
However, this patch fixes only a part of the alpha problem. If you apply
full-surface alpha with super+alt+wheel, the problem reappears. This
problem is still due to bad alpha channel contents on xwayland windows.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Draw the borders of all the triangles.
v1: original
v2: add keybinding to enable/disable fan debug (super-alt-space),
cycle colors to make it easier to see individual draws, and
redraw undamaged region to clean up previous frames debug
lines
Signed-off-by: Rob Clark <rob@ti.com>
Remove the weston_surface::blend attribute, which really meant that the
texture produced valid alpha values. This was used to override the opaque
region for RGBX surfaces, which produce undefined values for alpha.
Instead, compile a new shader especially for RGBX surfaces, that
hardcodes the sampled alpha as 1.0.
Before "compositor: optimize/simplify shaders" there was a 'vec4 opaque'
in the shaders, that would cause part of the texture to be forced to
alpha=1.0. Now that is gone, and we need this replacement.
To test: launch simple-shm, and use the super+alt+mousewheel combination
to make it transparent. It should not show a light cross over the window.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
Re-work how the shaders and emitted vertices work. Rather than always
rendering clip-rect sized quads and doing transformation in tex coords
(and requiring the corresponding clipping in frag shader), instead
emit transformed vertices, clipped wrt. dirty region, and use simpler
frag shaders. Also, split the rendering, so blended surfaces with an
opaque region have the opaque region drawn with blend disabled. The
result is considerably fewer pixels drawn with blend enabled, and much
fewer cycles in the frag shader.
This requires having some more complex logic to figure out the vertices
of the shape which forms the intersection of the clip rect and the
transformed surface. Which has perhaps got a few bugs or missing cases,
still (visual glitches in some cases) but at this point more or less is
starting to work. I think it is at least far enough along to get some
initial review.
The result, on small SoC GPU (omap4/pandaboard) on 1920x1080 display,
for simple stuff like moving windows around, I get 60fps (before 30fps
or less), and pushing YUV buffers for hw decoded 1080p video goes from
~6fps to 30fps, with no drop in framerate for transformed/rotated video
surface.
v1: original
v2: check that perpendicular intersect vertex falls within bounds of
transformed surface
v3: update w/ comments and fixes from Pekka Paalanen
v4: fix for full surface alpha from Pekka Paalanen, fix compositor-
wayland build
Signed-off-by: Rob Clark <rob@ti.com>
In cases where the GPU can natively handle certain YUV formats,
eglQueryWaylandBufferWL() can return the value EGL_TEXTURE_EXTERNAL_WL
and the compositor will treat the buffer as a single egl-image-external.
See:
http://www.khronos.org/registry/gles/extensions/OES/OES_EGL_image_external.txt
v1: original
v2: rename EGL_TEXTURE_EXTERNAL_OES -> EGL_TEXTURE_EXTERNAL_WL and query
for the extension
v3: fix build without updated mesa headers, if EGL_TEXTURE_EXTERNAL_WL
#define is missing from older mesa headers.
v4: resend without missing parts
Signed-off-by: Rob Clark <rob@ti.com>
This patch allows rotation and mirroring outputs for x11 and drm backends.
A new 'transform' key can be set in the [output] section. From the protocol:
"The flipped values correspond to an initial flip around a vertical axis
followed by rotation."
The transform key can be one of the following 8 strings:
normal
90
180
270
flipped
flipped-90
flipped-180
flipped-270
Add a wl_seat argument to the activate and deactivate requests of
text_method.
On activation a text_model gets assigned to the input_method of the
wl_seat specified in the activate request.
In cases where we know the surface bounding box doesn't change in the
next frame, we can limit redraws to only the outputs the surface is
currently on. We could do even better by forcing the transform
update so we know where the surface will be in the next frame, but
this is a much simpler first step.
When the entire output is transformed or we're capturing the output
for screenshot or video, disable all output specific overlays
(drm planes, hw cursors etc) and move all surfaces into the primary
plane.
When we analyze and accumulate damage prior to repainting, we need to
accumulate damage per plane, so that whatever damage a surface
contributes is accumulated in the plane that it's assigned to. Before,
we would always accumulate damge in the primary plane, which caused
repaints in the primary plane whenever a surface in a sprite or
framebuffer was damaged. Eliminating this repaint is a big win for
cases where we pageflip to a client surface or use a sprite overlay.
This also prepares for fixing the missing cursor updates, since we
now track damage to the cursor surface in a dedicated sprite plane.
In the wl_seat conversion, struct wl_touch got fields for the focused
surface and the client resource for the input device being focused.
However, the conversion was incomplete: the old fields
weston_seat::touch_focus* we still used by the event dispatching code,
but the new code never set them. Therefore no touch events were ever
sent.
From weston_seat, remove the fields touch_focus, touch_focus_listener,
touch_focus_resource, and touch_focus_resource_listener. They are
replaced by the corresponding fields and listeners from struct
wl_touch.
While doing this, fix touch_set_focus().
If touch_set_focus() was called first with surface A, and then with
surface B, without being called with NULL in between, it would corrupt
the destroy_signal list. It was equivalent of calling wl_signal_add()
for different signal sources with the same listener without removing in
between.
Now, touch_set_focus() first removes focus and listeners, and then
attempts to assign focus if requested. If the target client has not
subscribed for touch events, the touch focus will now be NULL.
Before this patch, the touch focus was left to the previous surface.
NOTE: this patch depends on the patch "server: add lose_touch_focus()"
for Wayland.
Signed-off-by: Pekka Paalanen <ppaalanen@gmail.com>
When we hit a segv, it's often the case that we might crash again in
the attempt to clean up. Instead we introduce a minimal restore callback
in the backend abstraction, that shuts down as simply as possible. Then
we can call that from the segv handler, and then to aid debugging, we
raise SIGTRAP in the segv handler. This lets us run gdb on weston from
a different vt, and if we tell gdb
(gdb) handle SIGSEGV nostop
gdb won't stop when the segv happens but let weston clean up and switch vt,
and then stop when SIGTRAP is raised.
It's also possible to just let gdb catch the segv, and then use sysrq+k
followed by manual vt switch to get back.
Simplify RGB shader code and split off common code that could be reused.
This is preparatory work for YUV shaders.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
Make weston_surface::texture and ::surface an array, while keeping
[0] for RGB surfaces.
Signed-off-by: Gwenole Beauchesne <gwenole.beauchesne@intel.com>
weston_compositor_init is always called late because most
implementations can't initialise GL until fairly late in the game.
Split it into a base version with the same name, followed by
weston_compositor_init_gl which can be called later on.
This simplifies compositor-wayland, which no longer needs a separate
global handler just for wl_seat.
Signed-off-by: Daniel Stone <daniel@fooishbar.org>
notify_modifiers will now synchronise Weston's internal state with the
XKB state, and send a modifier event if necessary. This eliminates the
need for update_modifier_state to have a return value at all.
Signed-off-by: Daniel Stone <daniel@fooishbar.org>
If update_state is true, then notify_key will continue to call
xkb_key_update_state to update the local state mask, as before this
commit. Otherwise, it will rely on the compositor to manually update
the state itself, for nested compositors.
Signed-off-by: Daniel Stone <daniel@fooishbar.org>
X11 has a set of eight modifiers which we want to represent. Cache
their indices when we create a weston_xkb_info, so we can use this from
compositor-x11 to keep the state synchronised exactly between the host X
server and a nested Weston instance.
Signed-off-by: Daniel Stone <daniel@fooishbar.org>
When the focus changes, wl_keyboard_set_focus (and, as an added bonus,
wl_pointer_set_focus) will now send wl_keyboard::modifier events for us
if we store the modifier state in the right place, so we don't have to
worry about that anymore.
Signed-off-by: Daniel Stone <daniel@fooishbar.org>
This is the point where we have just finished rendering the new scene
but before we swap it to the front buffer. At this point, the
output->previous_damage region exactly corresponds to what was just
renders, as compared to previous frame.
We start tracking which hardware plane a surface is displayed on, which
lets us avoid generating damage when a hardware overlay/cursor is moved
around.
EGLDisplay is helpfully typedeffed as void *, which means that you won't
get conflicting-pointer-type warnings if you accidentally confuse it
with weston_compositor::wl_display. Rename it to make it more clear
which display you're dealing with, and also rename compositor-wayland's
parent.display member to parent.wl_display.
Signed-off-by: Daniel Stone <daniel@fooishbar.org>