Accesses from a 32-bit environment (32-bit code segment for instruction
accesses, EFER.LMA==0 for processor accesses) have to mask away the
upper 32 bits of the address. While a bit wasteful, the easiest way
to do so is to use separate MMU indexes. These days, QEMU anyway is
compiled with a fixed value for NB_MMU_MODES. Split MMU_USER_IDX,
MMU_KSMAP_IDX and MMU_KNOSMAP_IDX in two.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove knowledge of specific MMU indexes (other than MMU_NESTED_IDX and
MMU_PHYS_IDX) from mmu_translate(). This will make it possible to split
32-bit and 64-bit MMU indexes.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_VM_HSAVE_PA bits 0-11 are reserved, as are the bits above the
maximum physical address width of the processor. Setting them to
1 causes a #GP (see "15.30.4 VM_HSAVE_PA MSR" in the AMD manual).
The same is true of VMCB addresses passed to VMRUN/VMLOAD/VMSAVE,
even though the manual is not clear on that.
Cc: qemu-stable@nongnu.org
Fixes: 4a1e9d4d11 ("target/i386: Use atomic operations for pte updates", 2022-10-18)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CR3 bits 63:32 are ignored in 32-bit mode (either legacy 2-level
paging or PAE paging). Do this in mmu_translate() to remove
the last where get_physical_address() meaningfully drops the high
bits of the address.
Cc: qemu-stable@nongnu.org
Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Fixes: 4a1e9d4d11 ("target/i386: Use atomic operations for pte updates", 2022-10-18)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
target/i386: As specified by Intel Manual Vol2 3-180, cmp instructions
are not allowed to have lock prefix and a `UD` should be raised. Without
this patch, s1->T0 will be uninitialized and used in the case OP_CMPL.
Signed-off-by: Ziqiao Kong <ziqiaokong@gmail.com>
Message-ID: <20240215095015.570748-2-ziqiaokong@gmail.com>
Cc: qemu-stable@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit adds support for x2APIC transitions when writing to
MSR_IA32_APICBASE register and finally adds CPUID_EXT_X2APIC to
TCG_EXT_FEATURES.
The set_base in APICCommonClass now returns an integer to indicate error in
execution. apic_set_base return -1 on invalid APIC state transition,
accelerator can use this to raise appropriate exception.
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Message-Id: <20240111154404.5333-4-minhquangbui99@gmail.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This commit creates apic_register_read/write which are used by both
apic_mem_read/write for MMIO access and apic_msr_read/write for MSR access.
The apic_msr_read/write returns -1 on error, accelerator can use this to
raise the appropriate exception.
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Message-Id: <20240111154404.5333-2-minhquangbui99@gmail.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Move this x86-specific code out of the generic accel/tcg/.
Reported-by: Anton Johansson <anjo@rev.ng>
Reviewed-by: Anton Johansson <anjo@rev.ng>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20240124101639.30056-10-philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Move this x86-specific code out of the generic accel/tcg/.
Reviewed-by: Anton Johansson <anjo@rev.ng>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Pavel Dovgalyuk <Pavel.Dovgalyuk@ispras.ru>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20240124101639.30056-8-philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
QEMU coding style recommends using structure typedefs.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Makes gen_intermediate_code() signature target agnostic so the function
can be called from accel/tcg/translate-all.c without target specifics.
Signed-off-by: Anton Johansson <anjo@rev.ng>
Message-Id: <20240119144024.14289-9-anjo@rev.ng>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
The tcg_cpu_FOO() names are x86 specific, so rename
them as x86_tcg_cpu_FOO() (as other names in this file)
to ease navigating the code.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Michael Tokarev <mjt@tls.msk.ru>
Message-ID: <20240111120221.35072-5-philmd@linaro.org>
For PC-relative translation blocks, env->eip changes during the
execution of a translation block, Therefore, QEMU must be able to
recover an instruction's PC just from the TranslationBlock struct and
the instruction data with. Because a TB will not span two pages, QEMU
stores all the low bits of EIP in the instruction data and replaces them
in x86_restore_state_to_opc. Bits 12 and higher (which may vary between
executions of a PCREL TB, since these only use the physical address in
the hash key) are kept unmodified from env->eip. The assumption is that
these bits of EIP, unlike bits 0-11, will not change as the translation
block executes.
Unfortunately, this is incorrect when the CS base is not aligned to a page.
Then the linear address of the instructions (i.e. the one with the
CS base addred) indeed will never span two pages, but bits 12+ of EIP
can actually change. For example, if CS base is 0x80262200 and EIP =
0x6FF4, the first instruction in the translation block will be at linear
address 0x802691F4. Even a very small TB will cross to EIP = 0x7xxx,
while the linear addresses will remain comfortably within a single page.
The fix is simply to use the low bits of the linear address for data[0],
since those don't change. Then x86_restore_state_to_opc uses tb->cs_base
to compute a temporary linear address (referring to some unknown
instruction in the TB, but with the correct values of bits 12 and higher);
the low bits are replaced with data[0], and EIP is obtained by subtracting
again the CS base.
Huge thanks to Mark Cave-Ayland for the image and initial debugging,
and to Gitlab user @kjliew for help with bisecting another occurrence
of (hopefully!) the same bug.
It should be relatively easy to write a testcase that performs MMIO on
an EIP with different bits 12+ than the first instruction of the translation
block; any help is welcome.
Fixes: e3a79e0e87 ("target/i386: Enable TARGET_TB_PCREL", 2022-10-11)
Cc: qemu-stable@nongnu.org
Cc: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Cc: Richard Henderson <richard.henderson@linaro.org>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1759
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1964
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2012
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The PCREL patches introduced a bug when updating EIP in the !CF_PCREL case.
Using s->pc in func gen_update_eip_next() solves the problem.
Cc: qemu-stable@nongnu.org
Fixes: b5e0d5d22f ("target/i386: Fix 32-bit wrapping of pc/eip computation")
Signed-off-by: guoguangyao <guoguangyao18@mails.ucas.ac.cn>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-ID: <20240115020804.30272-1-guoguangyao18@mails.ucas.ac.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With PCREL, we have a page-relative view of EIP, and an
approximation of PC = EIP+CSBASE that is good enough to
detect page crossings. If we try to recompute PC after
masking EIP, we will mess up that approximation and write
a corrupt value to EIP.
We already handled masking properly for PCREL, so the
fix in b5e0d5d2 was only needed for the !PCREL path.
Cc: qemu-stable@nongnu.org
Fixes: b5e0d5d22f ("target/i386: Fix 32-bit wrapping of pc/eip computation")
Reported-by: Michael Tokarev <mjt@tls.msk.ru>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-ID: <20240101230617.129349-1-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Big QEMU Lock (BQL) has many names and they are confusing. The
actual QemuMutex variable is called qemu_global_mutex but it's commonly
referred to as the BQL in discussions and some code comments. The
locking APIs, however, are called qemu_mutex_lock_iothread() and
qemu_mutex_unlock_iothread().
The "iothread" name is historic and comes from when the main thread was
split into into KVM vcpu threads and the "iothread" (now called the main
loop thread). I have contributed to the confusion myself by introducing
a separate --object iothread, a separate concept unrelated to the BQL.
The "iothread" name is no longer appropriate for the BQL. Rename the
locking APIs to:
- void bql_lock(void)
- void bql_unlock(void)
- bool bql_locked(void)
There are more APIs with "iothread" in their names. Subsequent patches
will rename them. There are also comments and documentation that will be
updated in later patches.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Acked-by: Fabiano Rosas <farosas@suse.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Eric Farman <farman@linux.ibm.com>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Acked-by: Hyman Huang <yong.huang@smartx.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-2-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The main difficulty here is that a page fault when writing to the destination
must not overwrite the flags. Therefore, the flags computation must be
inlined instead of using gen_jcc1*.
For simplicity, I am using an unconditional cmpxchg operation, that becomes
a NOP if the comparison fails.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ALU instructions can write to both memory and flags. If the CC_SRC*
and CC_DST locations have been written already when a memory access
causes a fault, the value in CC_SRC* and CC_DST might be interpreted
with the wrong CC_OP (the one that is in effect before the instruction.
Besides just using the wrong result for the flags, something like
subtracting -1 can have disastrous effects if the current CC_OP is
CC_OP_EFLAGS: this is because QEMU does not expect bits outside the ALU
flags to be set in CC_SRC, and env->eflags can end up set to all-ones.
In the case of the attached testcase, this sets IOPL to 3 and would
cause an assertion failure if SUB is moved to the new decoder.
This mechanism is not really needed for BMI instructions, which can
only write to a register, but put it to use anyway for cleanliness.
In the case of BZHI, the code has to be modified slightly to ensure
that decode->cc_src is written, otherwise the new assertions trigger.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
gen_jcc() has been changed to accept a relative offset since the
new decoder was written. Adjust the J operand, which is meant
to be used with jump instructions such as gen_jcc(), to not
include the program counter and to not truncate the result, as
both operations are now performed by common code.
The result is that J is now the same as the I operand.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to gen_setcc1, make gen_cmovcc1 receive TCGv. This is more friendly
to simultaneous implementation in the old and the new decoder.
A small wart is that s->T0 of CMOV is currently the *second* argument (which
would ordinarily be in T1). Therefore, the condition has to be inverted in
order to overwrite s->T0 with cpu_regs[reg] if the MOV is not performed.
This only applies to the old decoder, and this code will go away soon.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not use gen_op, and pull the load from the accumulator into
disas_insn.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Create a new temporary, to ease the register allocator's work.
Creation of the temporary is pushed into gen_ext_tl, which
also allows NULL as the first parameter now.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Just create a temporary for the occasion.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new x86 decoder wants the gen_* functions to compute EFLAGS before
writeback, which can be an issue for instructions with a memory
destination such as ARPL or shifts.
Extract code to compute the EFLAGS without clobbering CC_SRC, in case
the memory write causes a fault. The flags writeback mechanism will
take care of copying the result to CC_SRC.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new decoder would rather have the operand in T0 when expanding SCAS, rather
than use R_EAX directly as gen_scas currently does. This makes SCAS more similar
to CMP and SUB, in that CC_DST = T0 - T1.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new decoder likes to compute the address in A0 very early, so the
gen_lea_v_seg in gen_pop_T0 would clobber the address of the memory
operand. Instead use T0 since it is already available and will be
overwritten immediately after.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
decode->mem is only used if one operand has has_ea == true. String
operations will not use decode->mem and will load A0 on their own, because
they are the only case of two memory operands in a single instruction.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Usually the registers are just moved into s->T0 without much care for
their operand size. However, in some cases we can get more efficient
code if the operand fetching logic syncs with the emission function
on what is nicer.
All the current uses are mostly demonstrative and only reduce the code
in the emission functions, because the instructions do not support
memory operands. However the logic is generic and applies to several
more instructions such as MOVSXD (aka movslq), one-byte shift
instructions, multiplications, XLAT, and indirect calls/jumps.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
X86_SPECIAL_ZExtOp0 and X86_SPECIAL_ZExtOp2 are poorly named; they are a hack
that is needed by scalar insertion and extraction instructions, and not really
related to zero extension: for PEXTR the zero extension is done by the generation
functions, for PINSR the high bits are not used at all and in fact are *not*
filled with zeroes when loaded into s->T1.
Rename the values to match the effect described in the manual, and explain
better in the comments.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use _tl operations for 32-bit operands on 32-bit targets, and only go
through trunc and extu ops for 64-bit targets. While the trunc/ext
ops should be pretty much free after optimization, the optimizer also
does not like having the same temporary used in multiple EBBs.
Therefore it is nicer to not use tmpN* unless necessary.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The previous check erroneously allowed CMP to be modified with LOCK.
Instead, tag explicitly the instructions that do support LOCK.
Acked-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
cpu_cc_compute_all() has an argument that is always equal to CC_OP for historical
reasons (dating back to commit a7812ae412, "TCG variable type checking.", 2008-11-17,
which added the argument to helper_cc_compute_all). It does not make sense for the
argument to have any other value, so remove it and clean up some lines that are not
too long anymore.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
gen_lea_v_seg (called by gen_add_A0_ds_seg) already zeroes any
bits of s->A0 beyond s->aflag. It does so before summing the
segment base and, if not in 64-bit mode, also after summing it.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
is_int is always 1, and error_code is always zero.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
OF is equal to the carry flag, so use the same CCPrepare.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Take advantage of the fact that there can be no 1 bits between SF and OF.
If they were adjacent, you could sum SF and get a carry only if SF was
already set. Then the value of OF in the sum is the XOR of OF itself,
the carry (which is SF) and 0 (the value of the OF bit in the addend):
this is OF^SF exactly.
Because OF and SF are not adjacent, just place more 1 bits to the
left so that the carry propagates, which means summing CC_O - CC_S.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In 32-bit mode, pc = eip + cs_base is also 32-bit, and must wrap.
Failure to do so results in incorrect memory exceptions to the guest.
Before 732d548732, this was implicitly done via truncation to
target_ulong but only in qemu-system-i386, not qemu-system-x86_64.
To fix this, we must add conditional zero-extensions.
Since we have to test for 32 vs 64-bit anyway, note that cs_base
is always zero in 64-bit mode.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2022
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20231212172510.103305-1-richard.henderson@linaro.org>
Instructions in VEX exception class 6 generally look at the value of
VEX.W. Note that the manual places some instructions incorrectly in
class 4, for example VPERMQ which has no non-VEX encoding and no legacy
SSE analogue. AMD does a mess of its own, as documented in the comment
that this patch adds.
Most of them are checked for VEX.W=0, and are listed in the manual
(though with an omission) in table 2-16; VPERMQ and VPERMPD check for
VEX.W=1, which is only listed in the instruction description. Others,
such as VPSRLV, VPSLLV and the FMA3 instructions, use VEX.W to switch
between a 32-bit and 64-bit operation.
Fix more of the class 4/class 6 mismatches, and implement the check for
VEX.W in TCG.
Acked-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation for adding more similar checks, move the VEX.L=0 check
and several X86_SPECIAL_* checks to a new field, where each bit represent
a common check on unused bits, or a restriction on the processor mode.
Likewise, many SVM intercepts can be checked during the decoding phase,
the main exception being the selective CR0 write, MSR and IOIO intercepts.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The implementation was validated with OpenSSL and with the test vectors in
https://github.com/rust-lang/stdarch/blob/master/crates/core_arch/src/x86/sha.rs.
The instructions provide a ~25% improvement on hashing a 64 MiB file:
runtime goes down from 1.8 seconds to 1.4 seconds; instruction count on
the host goes down from 5.8 billion to 4.8 billion with slightly better
IPC too. Good job Intel. ;)
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit a908985971 ("target/i386/seg_helper: introduce tss_set_busy",
2023-09-26) failed to use the tss_selector argument of the new function,
which was therefore unused.
This shows up as a #GP fault when booting old versions of 32-bit
Linux.
Fixes: a908985971 ("target/i386/seg_helper: introduce tss_set_busy", 2023-09-26)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20231011135350.438492-1-pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Since we *might* have user emulation with softmmu,
replace the system emulation check by !user emulation one.
(target/ was cleaned from invalid CONFIG_SOFTMMU uses at
commit cab35c73be, but these files were merged few days
after, thus missed the cleanup.)
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20231004082239.27251-1-philmd@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow the name 'cpu_env' to be used for something else.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
The AccelCPUClass::cpu_realizefn handler is meant for target
specific code, rename it using '_target_' to emphasis it.
Suggested-by: Claudio Fontana <cfontana@suse.de>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20231003123026.99229-3-philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Just remove the declaration. There is nothing in the function after the
switch statement, so it is safe to do.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* target/i386: fix BQL handling of the legacy FERR interrupts
* target/i386: fix memory operand size for CVTPS2PD
* target/i386: Add support for AMX-COMPLEX in CPUID enumeration
* compile plugins on Darwin
* configure and meson cleanups
* drop mkvenv support for Python 3.7 and Debian10
* add wrap file for libblkio
* tweak KVM stubs
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmT5t6UUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMmjwf+MpvVuq+nn+3PqGUXgnzJx5ccA5ne
O9Xy8+1GdlQPzBw/tPovxXDSKn3HQtBfxObn2CCE1tu/4uHWpBA1Vksn++NHdUf2
P0yoHxGskJu5iYYTtIcNw5cH2i+AizdiXuEjhfNjqD5Y234cFoHnUApt9e3zBvVO
cwGD7WpPuSb4g38hHkV6nKcx72o7b4ejDToqUVZJ2N+RkddSqB03fSdrOru0hR7x
V+lay0DYdFszNDFm05LJzfDbcrHuSryGA91wtty7Fzj6QhR/HBHQCUZJxMB5PI7F
Zy4Zdpu60zxtSxUqeKgIi7UhNFgMcax2Hf9QEqdc/B4ARoBbboh4q4u8kQ==
=dH7/
-----END PGP SIGNATURE-----
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
* only build util/async-teardown.c when system build is requested
* target/i386: fix BQL handling of the legacy FERR interrupts
* target/i386: fix memory operand size for CVTPS2PD
* target/i386: Add support for AMX-COMPLEX in CPUID enumeration
* compile plugins on Darwin
* configure and meson cleanups
* drop mkvenv support for Python 3.7 and Debian10
* add wrap file for libblkio
* tweak KVM stubs
# -----BEGIN PGP SIGNATURE-----
#
# iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmT5t6UUHHBib256aW5p
# QHJlZGhhdC5jb20ACgkQv/vSX3jHroMmjwf+MpvVuq+nn+3PqGUXgnzJx5ccA5ne
# O9Xy8+1GdlQPzBw/tPovxXDSKn3HQtBfxObn2CCE1tu/4uHWpBA1Vksn++NHdUf2
# P0yoHxGskJu5iYYTtIcNw5cH2i+AizdiXuEjhfNjqD5Y234cFoHnUApt9e3zBvVO
# cwGD7WpPuSb4g38hHkV6nKcx72o7b4ejDToqUVZJ2N+RkddSqB03fSdrOru0hR7x
# V+lay0DYdFszNDFm05LJzfDbcrHuSryGA91wtty7Fzj6QhR/HBHQCUZJxMB5PI7F
# Zy4Zdpu60zxtSxUqeKgIi7UhNFgMcax2Hf9QEqdc/B4ARoBbboh4q4u8kQ==
# =dH7/
# -----END PGP SIGNATURE-----
# gpg: Signature made Thu 07 Sep 2023 07:44:37 EDT
# gpg: using RSA key F13338574B662389866C7682BFFBD25F78C7AE83
# gpg: issuer "pbonzini@redhat.com"
# gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>" [full]
# gpg: aka "Paolo Bonzini <pbonzini@redhat.com>" [full]
# Primary key fingerprint: 46F5 9FBD 57D6 12E7 BFD4 E2F7 7E15 100C CD36 69B1
# Subkey fingerprint: F133 3857 4B66 2389 866C 7682 BFFB D25F 78C7 AE83
* tag 'for-upstream' of https://gitlab.com/bonzini/qemu: (51 commits)
docs/system/replay: do not show removed command line option
subprojects: add wrap file for libblkio
sysemu/kvm: Restrict kvm_pc_setup_irq_routing() to x86 targets
sysemu/kvm: Restrict kvm_has_pit_state2() to x86 targets
sysemu/kvm: Restrict kvm_get_apic_state() to x86 targets
sysemu/kvm: Restrict kvm_arch_get_supported_cpuid/msr() to x86 targets
target/i386: Restrict declarations specific to CONFIG_KVM
target/i386: Allow elision of kvm_hv_vpindex_settable()
target/i386: Allow elision of kvm_enable_x2apic()
target/i386: Remove unused KVM stubs
target/i386/cpu-sysemu: Inline kvm_apic_in_kernel()
target/i386/helper: Restrict KVM declarations to system emulation
hw/i386/fw_cfg: Include missing 'cpu.h' header
hw/i386/pc: Include missing 'cpu.h' header
hw/i386/pc: Include missing 'sysemu/tcg.h' header
Revert "mkvenv: work around broken pip installations on Debian 10"
mkvenv: assume presence of importlib.metadata
Python: Drop support for Python 3.7
configure: remove dead code
meson: list leftover CONFIG_* symbols
...
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
CVTPS2PD only loads a half-register for memory, unlike the other
operations under 0x0F 0x5A. "Unpack" the group into separate
emission functions instead of using gen_unary_fp_sse.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
CVTPS2PD only loads a half-register for memory, like CVTPH2PS. It can
reuse the "ph" packed half-precision size to load a half-register,
but rename it to "xh" because it is now a variation of "x" (it is not
used only for half-precision values).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All these files access the CPU LD/ST API declared in "exec/cpu_ldst.h".
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230828221314.18435-4-philmd@linaro.org>
When CR0.TS=1, execution of x87 FPU, MMX, and some SSE instructions will
cause a Device Not Available (DNA) exception (#NM). System software uses
this exception event to lazily context switch FPU state.
Before this patch, enter_mmx helpers may be generated just before #NM
generation, prematurely resetting FPU state before the guest has a
chance to save it.
Signed-off-by: Matt Borgerson <contact@mborgerson.com>
Message-ID: <CADc=-s5F10muEhLs4f3mxqsEPAHWj0XFfOC2sfFMVHrk9fcpMg@mail.gmail.com>
Cc: qemu-stable@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
32-bit binaries can run on a long mode processor even if the kernel
is 64-bit, of course, and this can have slightly different behavior;
for example, SYSCALL is allowed on Intel processors.
Allow reporting LM to programs running under user mode emulation,
so that "-cpu" can be used with named CPU models even for qemu-i386
and even without disabling LM by hand.
Fortunately, most of the runtime code in QEMU has to depend on HF_LMA_MASK
or on HF_CS64_MASK (which is anyway false for qemu-i386's 32-bit code
segment) rather than TARGET_X86_64, therefore all that is needed is an
update of linux-user's ring 0 setup.
Fixes: https://gitlab.com/qemu-project/qemu/-/issues/1534
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD supports both 32-bit and 64-bit SYSCALL/SYSRET, but the TCG only
exposes it for 64-bit targets. For system emulation just reuse the
helper; for user-mode emulation the ABI is the same as "int $80".
The BSDs does not support any fast system call mechanism in 32-bit
mode so add to bsd-user the same stub that FreeBSD has for 64-bit
compatibility mode.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RDPID corresponds to a RDMSR(TSC_AUX); however, it is unprivileged
so for user-mode emulation we must provide the value that the kernel
places in the MSR. For Linux, it is a combination of the current CPU
and the current NUMA node, both of which can be retrieved with getcpu(2).
Also try sched_getcpu(), which might be there on the BSDs. If there is
no portable way to retrieve the current CPU id from userspace, return 0.
RDTSCP is reimplemented as RDTSC + RDPID ECX; the differences in terms
of serializability are not relevant to QEMU.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WBNOINVD is the same as INVD or WBINVD as far as TCG is concerned,
since there is no cache in TCG and therefore no invalidation side effect
in WBNOINVD.
With respect to SVM emulation, processors that do not support WBNOINVD
will ignore the prefix and treat it as WBINVD, while those that support
it will generate exactly the same vmexit.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Due to a typo or perhaps a brain fart, the INVD vmexit was never generated.
Fix it (but not that fixing just the typo would break both INVD and WBINVD,
due to a case of two wrongs making a right).
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We use the user_ss[] array to hold the user emulation sources,
and the softmmu_ss[] array to hold the system emulation ones.
Hold the latter in the 'system_ss[]' array for parity with user
emulation.
Mechanical change doing:
$ sed -i -e s/softmmu_ss/system_ss/g $(git grep -l softmmu_ss)
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230613133347.82210-10-philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Since we *might* have user emulation with softmmu,
use the clearer 'CONFIG_SYSTEM_ONLY' key to check
for system emulation.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230613133347.82210-9-philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Since cpu_mmu_index() is well-defined for user-only,
we can remove the surrounding #ifdef'ry entirely.
Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230613133347.82210-2-philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Since commit 139c1837db ("meson: rename included C source files
to .c.inc"), QEMU standard procedure for included C files is to
use *.c.inc.
Besides, since commit 6a0057aa22 ("docs/devel: make a statement
about includes") this is documented as the Coding Style:
If you do use template header files they should be named with
the ``.c.inc`` or ``.h.inc`` suffix to make it clear they are
being included for expansion.
Therefore move the included templates in the tcg/ directory and
rename as '.h.inc'.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20230608133108.72655-5-philmd@linaro.org>
New wrapper around gen_io_start which takes care of the USE_ICOUNT
check, as well as marking the DisasContext to end the TB.
Remove exec/gen-icount.h.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
In preparation for compiling tcg/ only once, eliminate
the all_helpers array. Instantiate the info structs for
the generic helpers in accel/tcg/, and the structs for
the target-specific helpers in each translate.c.
Since we don't see all of the info structs at startup,
initialize at first use, using g_once_init_* to make
sure we don't race while doing so.
Reviewed-by: Anton Johansson <anjo@rev.ng>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Before this change, MOVNTPS and MOVNTPD were labeled as Exception Class
4 (only requiring alignment for legacy SSE instructions). This changes
them to Exception Class 1 (always requiring memory alignment), as
documented in the Intel manual.
Message-Id: <20230501111428.95998-3-ricky@rzhou.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix the exception classes for some SSE/AVX instructions to match what is
documented in the Intel manual.
These changes are expected to have no functional effect on the behavior
that qemu implements (primarily >= 16-byte memory alignment checks). For
instance, since qemu does not implement the AC flag, there is no
difference in behavior between Exception Classes 4 and 5 for
instructions where the SSE version only takes <16 byte memory operands.
Message-Id: <20230501111428.95998-2-ricky@rzhou.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adds some comments describing what instructions correspond to decoding
table entries and fixes some existing comments which named the wrong
instruction.
Message-Id: <20230501111428.95998-1-ricky@rzhou.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vzeroall: xmm_regs should be used instead of xmm_t0
vpermdq: bit 3 and 7 of imm should be considered
Signed-off-by: Xinyu Li <lixinyu20s@ict.ac.cn>
Message-Id: <20230510145222.586487-1-lixinyu20s@ict.ac.cn>
Cc: qemu-stable@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Compared to other SSE instructions, VUCOMISx and VCOMISx are different:
the single and double precision versions are distinguished through a
prefix, however they use no-prefix and 0x66 for SS and SD respectively.
Scalar values usually are associated with 0xF2 and 0xF3.
Because of these, they incorrectly perform a 128-bit memory load instead
of a 32- or 64-bit load. Fix this by writing a custom decoding function.
I tested that the reproducer is fixed and the test-avx output does not
change.
Reported-by: Gabriele Svelto <gsvelto@mozilla.com>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1637
Fixes: f8d19eec0d ("target/i386: reimplement 0x0f 0x28-0x2f, add AVX", 2022-10-18)
Cc: qemu-stable@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Coverity complains (CID 1507880) that the declaration "int error_code;"
in mmu_translate() is unreachable code. Since this is only a declaration,
this isn't actually a bug, but:
* it's a bear-trap for future changes, because if it was changed to
include an initialization 'int error_code = foo;' then the
initialization wouldn't actually happen (being dead code)
* it's against our coding style, which wants declarations to be
at the start of blocks
* it means that anybody reading the code has to go and look up
exactly what the C rules are for skipping over variable declarations
using a goto
Move the declaration to the top of the function.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20230406155946.3362077-1-peter.maydell@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All uses are strictly read-only. Most of the obviously so,
as direct arguments to gen_helper_*.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Compute the eflags write mask separately, leaving one call
to the helper. Use tcg_constant_i32.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Translators are no longer required to free tcg temporaries.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Since tcg_temp_new is now identical, use that.
In some cases we can avoid a copy from A0 or T0.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
In preparation for returning the number of insns generated
via the same pointer. Adjust only the prototypes so far.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Anton Johansson <anjo@rev.ng>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20230227135202.9710-23-anjo@rev.ng>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Anton Johansson <anjo@rev.ng>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20230227135202.9710-8-anjo@rev.ng>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Change to match the recent change to probe_access_flags.
All existing callers updated to supply 0, so no change in behaviour.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
We did not correctly handle N >= operand size.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1374
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230114233206.3118472-1-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Failure to truncate the inputs results in garbage for the carry-out.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1373
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20230115012103.3131796-1-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When ADCX is followed by ADOX or vice versa, the second instruction's
carry comes from EFLAGS and the condition codes use the CC_OP_ADCOX
operation. Retrieving the carry from EFLAGS is handled by this bit
of gen_ADCOX:
tcg_gen_extract_tl(carry_in, cpu_cc_src,
ctz32(cc_op == CC_OP_ADCX ? CC_C : CC_O), 1);
Unfortunately, in this case cc_op has been overwritten by the previous
"if" statement to CC_OP_ADCOX. This works by chance when the first
instruction is ADCX; however, if the first instruction is ADOX,
ADCX will incorrectly take its carry from OF instead of CF.
Fix by moving the computation of the new cc_op at the end of the function.
The included exhaustive test case fails without this patch and passes
afterwards.
Because ADCX/ADOX need not be invoked through the VEX prefix, this
regression bisects to commit 16fc5726a6 ("target/i386: reimplement
0x0f 0x38, add AVX", 2022-10-18). However, the mistake happened a
little earlier, when BMI instructions were rewritten using the new
decoder framework.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1471
Reported-by: Paul Jolly <https://gitlab.com/myitcv>
Fixes: 1d0b926150 ("target/i386: move scalar 0F 38 and 0F 3A instruction to new decoder", 2022-10-18)
Cc: qemu-stable@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We forgot to set cc_src, which is used for computing C.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1370
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230114180601.2993644-1-richard.henderson@linaro.org>
Cc: qemu-stable@nongnu.org
Fixes: 1d0b926150 ("target/i386: move scalar 0F 38 and 0F 3A instruction to new decoder", 2022-10-18)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There were two problems here: not limiting the input to operand bits,
and not correctly handling large extraction length.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1372
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230114230542.3116013-3-richard.henderson@linaro.org>
Cc: qemu-stable@nongnu.org
Fixes: 1d0b926150 ("target/i386: move scalar 0F 38 and 0F 3A instruction to new decoder", 2022-10-18)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use tcg_gen_atomic_cmpxchg_i128 for the atomic case,
and tcg_gen_qemu_ld/st_i128 otherwise.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Use tcg_gen_atomic_cmpxchg_i64 for the atomic case,
and tcg_gen_nonatomic_cmpxchg_i64 otherwise.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
VRCPSS, VRSQRTSS and VCVTSx2Sx have a 32-bit or 64-bit memory operand,
which is represented in the decoding tables by X86_VEX_REPScalar. Add it
to the tables, and make validate_vex() handle the case of an instruction
that is in exception type 4 without the REP prefix and exception type 5
with it; this is the cas of VRCP and VRSQRT.
Reported-by: yongwoo <https://gitlab.com/yongwoo36>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1377
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When in 64-bit mode, IDT entiries are 16 bytes, so `intno * 16` is used
for base/limit/offset calculations. However, even in 64-bit mode, the
exception error code still uses bits [3,16) for the invlaid interrupt
index.
This means the error code should still be `intno * 8 + 2` even in 64-bit
mode.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1382
Signed-off-by: Joe Richey <joerichey@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In get_physical_address, the canonical address check failed to
set TranslateFault.stage2, which resulted in an uninitialized
read from the struct when reporting the fault in x86_cpu_tlb_fill.
Adjust all error paths to use structure assignment so that the
entire struct is always initialized.
Reported-by: Daniel Hoffman <dhoff749@gmail.com>
Fixes: 9bbcf37219 ("target/i386: Reorg GET_HPHYS")
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221201074522.178498-1-richard.henderson@linaro.org>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1324
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MMX state is saved/restored by FSAVE/FRSTOR so the instructions are
not illegal opcodes even if CR4.OSFXSR=0. Make sure that validate_vex
takes into account the prefix and only checks HF_OSFXSR_MASK in the
presence of an SSE instruction.
Fixes: 20581aadec ("target/i386: validate VEX prefixes via the instructions' exception classes", 2022-10-18)
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1350
Reported-by: Helge Konetzka (@hejko on gitlab.com)
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When translating code that is using LAHF and SAHF in combination with the
REX prefix, the instructions should not use any other register than AH;
however, QEMU selects SPL (SP being register 4, just like AH) if the
REX prefix is present. To fix this, use deposit directly without
going through gen_op_mov_v_reg and gen_op_mov_reg_v.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/130
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Unlike the memory case, where "the destination operand receives a write
cycle without regard to the result of the comparison", rm must not be
touched altogether if the write fails, including not zero-extending
it on 64-bit processors. This is not how the movcond currently works,
because it is always followed by a gen_op_mov_reg_v to rm.
To fix it, introduce a new function that is similar to gen_op_mov_reg_v
but writes to a TCG temporary.
Considering that gen_extu(ot, oldv) is not needed in the memory case
either, the two cases for register and memory destinations are different
enough that one might as well fuse the two "if (mod == 3)" into one.
So do that too.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/508
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[rth: Add a test case ]
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
If CR0.PG is unset, pg_mode will be zero, but it will also be zero
for non-PAE/non-PSE page tables with CR0.WP=0. Restore the
correct test for paging enabled.
Fixes: 98281984a3 ("target/i386: Add MMU_PHYS_IDX and MMU_NESTED_IDX")
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1269
Reported-by: Andreas Gustafsson <gson@gson.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221102091232.1092552-1-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The helpers for reset_rf, cli, sti, clac, stac are
completely trivial; implement them inline.
Drop some nearby #if 0 code.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
The value passed is always true, and if the target's
synchronize_from_tb hook is non-trivial, not exiting
may be erroneous.
Reviewed-by: Claudio Fontana <cfontana@suse.de>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
The only issue with FMA instructions is that there are _a lot_ of them (30
opcodes, each of which comes in up to 4 versions depending on VEX.W and
VEX.L; a total of 96 possibilities). However, they can be implement with
only 6 helpers, two for scalar operations and four for packed operations.
(Scalar versions do not do any merging; they only affect the bottom 32
or 64 bits of the output operand. Therefore, there is no separate XMM
and YMM of the scalar helpers).
First, we can reduce the number of helpers to one third by passing four
operands (one output and three inputs); the reordering of which operands
go to the multiply and which go to the add is done in emit.c.
Second, the different instructions also dispatch to the same softfloat
function, so the flags for float32_muladd and float64_muladd are passed
in the helper as int arguments, with a little extra complication to
handle FMADDSUB and FMSUBADD.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
F16C only consists of two instructions, which are a bit peculiar
nevertheless.
First, they access only the low half of an YMM or XMM register for the
packed-half operand; the exact size still depends on the VEX.L flag.
This is similar to the existing avx_movx flag, but not exactly because
avx_movx is hardcoded to affect operand 2. To this end I added a "ph"
format name; it's possible to reuse this approach for the VPMOVSX and
VPMOVZX instructions, though that would also require adding two more
formats for the low-quarter and low-eighth of an operand.
Second, VCVTPS2PH is somewhat weird because it *stores* the result of
the instruction into memory rather than loading it.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VROUND, FSTCW and STMXCSR all have to perform the same conversion from
x86 rounding modes to softfloat constants. Since the ISA is consistent
on the meaning of the two-bit rounding modes, extract the common code
into a wrapper for set_float_rounding_mode.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the destination is a memory register, op->n is -1. Going through
tcg_gen_gvec_dup_imm path is both useless (the value has been stored
by the gen_* function already) and wrong because of the out-of-bounds
access.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
With all SSE (and AVX!) instructions now implemented in disas_insn_new,
it's possible to remove gen_sse, as well as the helpers for instructions
that now use gvec.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds another kind of weirdness when you thought you had seen it all:
an opcode byte that comes _after_ the address, not before. It's not
worth adding a new X86_SPECIAL_* constant for it, but it's actually
not unlike VCMP; so, forgive me for exploiting the similarity and just
deciding to dispatch to the right gen_helper_* call in a single code
generation function.
In fact, the old decoder had a bug where s->rip_offset should have
been set to 1 for 3DNow! instructions, and it's fixed now.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are exactly the same as the non-VEX version, but one has to be careful
that only VEX.L=0 is allowed.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Here the code is a bit uglier due to the truncation and extension
of registers to and from 32-bit. There is also a mistake in the
manual with respect to the size of the memory operand of CVTPS2PI
and CVTTPS2PI, reported by Ricky Zhou.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are mostly moves, and yet are a total pain. The main issue
is that:
1) some instructions are selected by mod==11 (register operand)
vs. mod=00/01/10 (memory operand)
2) stores to memory are two-operand operations, while the 3-register
and load-from-memory versions operate on the entire contents of the
destination; this makes it easier to separate the gen_* function for
the store case
3) it's inefficient to load into xmm_T0 only to move the value out
again, so the gen_* function for the load case is separated too
The manual also has various mistakes in the operands here, for example
the store case of MOVHPS operates on a 128-bit source (albeit discarding
the bottom 64 bits) and therefore should be Mq,Vdq rather than Mq,Vq.
Likewise for the destination and source of MOVHLPS.
VUNPCK?PS and VUNPCK?PD are the same as VUNPCK?DQ and VUNPCK?QDQ,
but encoded as prefixes rather than separate operands. The helpers
can be reused however.
For MOVSLDUP, MOVSHDUP and MOVDDUP I chose to reimplement them as
helpers. I named the helper for MOVDDUP "movdldup" in preparation
for possible future introduction of MOVDHDUP and to clarify the
similarity with MOVSLDUP.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nothing special going on here, for once.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are several special cases here:
1) extending moves have different widths for the helpers vs. for the
memory loads, and the width for memory loads depends on VEX.L too.
This is represented by X86_SPECIAL_AVXExtMov.
2) some instructions, such as variable-width shifts, select the vector element
size via REX.W.
3) VSIB instructions (VGATHERxPy, VPGATHERxy) are also part of this group,
and they have (among other things) two output operands.
3) the macros for 4-operand blends (which are under 0x0f 0x3a) have to be
extended to support 2-operand blends. The 2-operand variant actually
came a few years earlier, but it is clearer to implement them in the
opposite order.
X86_TYPE_WM, introduced earlier for unaligned loads, is reused for helpers
that accept a Reg* but have a M argument.
These three-byte opcodes also include AVX new instructions, for which
the helpers were originally implemented by Paul Brook <paul@nowt.org>.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As pmovmskb is used by strlen et al, this is the third
highest overhead sse operation at %0.8.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
[Reorganize to generate code for any vector size. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The more complicated operations here are insertions and extractions.
Otherwise, there are just more entries than usual because the PS/PD/SS/SD
variations are encoded in the opcode rater than in the prefixes.
These three-byte opcodes also include AVX new instructions, whose
implementation in the helpers was originally done by Paul Brook
<paul@nowt.org>.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The more complicated ones here are d6-d7, e6-e7, f7. The others
are trivial.
For LDDQU, using gen_load_sse directly might corrupt the register if
the second part of the load fails. Therefore, add a custom X86_TYPE_WM
value; like X86_TYPE_W it does call gen_load(), but it also rejects a
value of 11 in the ModRM field like X86_TYPE_M.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This includes shifts by immediate, which use bits 3-5 of the ModRM byte
as an opcode extension. With the exception of 128-bit shifts, they are
implemented using gvec.
This also covers VZEROALL and VZEROUPPER, which use the same opcode
as EMMS. If we were wanting to optimize out gen_clear_ymmh then this
would be one of the starting points. The implementation of the VZEROALL
and VZEROUPPER helpers is by Paul Brook.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are a mixed batch, including the first two horizontal
(66 and F2 only) operations, more moves, and SSE4a extract/insert.
Because SSE4a is pretty rare, I chose to leave the helper as they are,
but it is possible to unify them by loading index and length from the
source XMM register and generating deposit or extract TCG ops.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are mostly floating-point SSE operations. The odd ones out
are MOVMSK and CVTxx2yy, the others are straightforward.
Unary operations are a bit special in AVX because they have 2 operands
for PD/PS operands (VEX.vvvv must be 1111b), and 3 operands for SD/SS.
They are handled using X86_OP_GROUP3 for compactness.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are more simple integer instructions present in both MMX and SSE/AVX,
with no holes that were later occupied by newer instructions.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These are both MMX and SSE/AVX instructions, except for vmovdqu. In both
cases the inputs and output is in s->ptr{0,1,2}, so the only difference
between MMX, SSE, and AVX is which helper to call.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new implementation of SSE will cover AVX from the get go, because
all the work for the helper functions is already done. We just need to
build them.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Compared to Paul's implementation, the new decoder will use a different approach
to implement AVX's merging of dst with src1 on scalar operations. Adjust the
old SSE decoder to be compatible with new-style helpers.
The affected instructions are CVTSx2Sx, ROUNDSx, RSQRTSx, SQRTSx, RCPSx.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add to the helpers all the operands that are needed to implement AVX.
Extracted from a patch by Paul Brook <paul@nowt.org>.
Message-Id: <20220424220204.2493824-26-paul@nowt.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Because these are the only VEX instructions that QEMU supports, the
new decoder is entered on the first byte of a valid VEX prefix, and VEX
decoding only needs to be done in decode-new.c.inc.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Many SSE and AVX instructions are only valid with specific prefixes
(none, 66, F3, F2). Introduce a direct way to encode this in the
decoding table to avoid using decode groups too much.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new hflag bit to determine whether AVX instructions are allowed
Signed-off-by: Paul Brook <paul@nowt.org>
Message-Id: <20220424220204.2493824-4-paul@nowt.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
TCG will shortly implement VAES instructions, so add the relevant feature
word to the DisasContext.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add generic code generation that takes care of preparing operands
around calls to decode.e.gen in a table-driven manner, so that ALU
operations need not take care of that.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new decoder is based on three principles:
- use mostly table-driven decoding, using tables derived as much as possible
from the Intel manual. Centralizing the decode the operands makes it
more homogeneous, for example all immediates are signed. All modrm
handling is in one function, and can be shared between SSE and ALU
instructions (including XMM<->GPR instructions). The SSE/AVX decoder
will also not have duplicated code between the 0F, 0F38 and 0F3A tables.
- keep the code as "non-branchy" as possible. Generally, the code for
the new decoder is more verbose, but the control flow is simpler.
Conditionals are not nested and have small bodies. All instruction
groups are resolved even before operands are decoded, and code
generation is separated as much as possible within small functions
that only handle one instruction each.
- keep address generation and (for ALU operands) memory loads and writeback
as much in common code as possible. All ALU operations for example
are implemented as T0=f(T0,T1). For non-ALU instructions,
read-modify-write memory operations are rare, but registers do not
have TCGv equivalents: therefore, the common logic sets up pointer
temporaries with the operands, while load and writeback are handled
by gvec or by helpers.
These principles make future code review and extensibility simpler, at
the cost of having a relatively large amount of code in the form of this
patch. Even EVEX should not be _too_ hard to implement (it's just a crazy
large amount of possibilities).
This patch introduces the main decoder flow, and integrates the old
decoder with the new one. The old decoder takes care of parsing
prefixes and then optionally drops to the new one. The changes to the
old decoder are minimal and allow it to be replaced incrementally with
the new one.
There is a debugging mechanism through a "LIMIT" environment variable.
In user-mode emulation, the variable is the number of instructions
decoded by the new decoder before permanently switching to the old one.
In system emulation, the variable is the highest opcode that is decoded
by the new decoder (this is less friendly, but it's the best that can
be done without requiring deterministic execution).
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
REX.W can be used even in 32-bit mode by AVX instructions, where it is retroactively
renamed to VEX.W. Make the field available even in 32-bit mode but keep the REX_W()
macro as it was; this way, that the handling of dflag does not use it by mistake and
the AVX code more clearly points at the special VEX behavior of the bit.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ldq takes a pointer to the first byte to load the 64-bit word in;
ldo takes a pointer to the first byte of the ZMMReg. Make them
consistent, which will be useful in the new SSE decoder's
load/writeback routines.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rather than recurse directly on mmu_translate, go through the
same softmmu lookup that we did for the page table walk.
This centralizes all knowledge of MMU_NESTED_IDX, with respect
to setup of TranslationParams, to get_physical_address.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221002172956.265735-10-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use probe_access_full in order to resolve to a host address,
which then lets us use a host cmpxchg to update the pte.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/279
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221002172956.265735-9-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We don't need one variable set per translation level,
which requires copying into pte/pte_addr for huge pages.
Standardize on pte/pte_addr for all levels.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221002172956.265735-8-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use MMU_NESTED_IDX for each memory access, rather than
just a single translation to physical. Adjust svm_save_seg
and svm_load_seg to pass in mmu_idx.
This removes the last use of get_hphys so remove it.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221002172956.265735-7-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These new mmu indexes will be helpful for improving
paging and code throughout the target.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20221002172956.265735-6-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>