qemu/hw/i386/pc.c

3006 lines
96 KiB
C
Raw Normal View History

/*
* QEMU PC System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/hw.h"
#include "hw/i386/pc.h"
#include "hw/char/serial.h"
#include "hw/char/parallel.h"
#include "hw/i386/apic.h"
#include "hw/i386/topology.h"
#include "hw/i386/fw_cfg.h"
#include "sysemu/cpus.h"
#include "hw/block/fdc.h"
#include "hw/ide.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_bus.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/timer/hpet.h"
#include "hw/firmware/smbios.h"
#include "hw/loader.h"
#include "elf.h"
#include "multiboot.h"
#include "hw/timer/mc146818rtc.h"
#include "hw/dma/i8257.h"
#include "hw/timer/i8254.h"
#include "hw/input/i8042.h"
#include "hw/audio/pcspk.h"
#include "hw/pci/msi.h"
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#include "sysemu/tcg.h"
#include "sysemu/numa.h"
#include "sysemu/kvm.h"
#include "sysemu/qtest.h"
#include "kvm_i386.h"
#include "hw/xen/xen.h"
#include "hw/xen/start_info.h"
#include "ui/qemu-spice.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "sysemu/arch_init.h"
#include "qemu/bitmap.h"
#include "qemu/config-file.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/cpu_hotplug.h"
#include "hw/boards.h"
i386: ACPI table generation code from seabios This adds C code for generating ACPI tables at runtime, imported from seabios git tree commit 51684b7ced75fb76776e8ee84833fcfb6ecf12dd Although ACPI tables come from a system BIOS on real hw, it makes sense that the ACPI tables are coupled with the virtual machine, since they have to abstract the x86 machine to the OS's. This is widely desired as a way to avoid the churn and proliferation of QEMU-specific interfaces associated with ACPI tables in bios code. Notes: As BIOS can reprogram devices prior to loading ACPI tables, we pre-format ACPI tables but defer loading hardware configuration there until tables are loaded. The code structure was intentionally kept as close to the seabios original as possible, to simplify comparison and making sure we didn't lose anything in translation. Minor code duplication results, to help ensure there are no functional regressions, I think it's better to merge it like this and do more code changes in follow-up patches. Cross-version compatibility concerns have been addressed: ACPI tables are exposed to guest as FW_CFG entries. When running with -M 1.5 and older, this patch disables ACPI table generation, and doesn't expose ACPI tables to guest. As table content is likely to change over time, the following measures are taken to simplify cross-version migration: - All tables besides the RSDP are packed in a single FW CFG entry. This entry size is currently 23K. We round it up to 64K to avoid too much churn there. - Tables are placed in special ROM blob (not mapped into guest memory) which is automatically migrated together with the guest, same as BIOS code. - Offsets where hardware configuration is loaded in ACPI tables are also migrated, this is in case future ACPI changes make us rearrange the tables in memory. This patch reuses some code from SeaBIOS, which was originally under LGPLv2 and then relicensed to GPLv3 or LGPLv3, in QEMU under GPLv2+. This relicensing has been acked by all contributors that had contributed to the code since the v2->v3 relicense. ACKs approving the v2+ relicensing are listed below. The list might include ACKs from people not holding copyright on any parts of the reused code, but it's better to err on the side of caution and include them. Affected SeaBIOS files (GPLv2+ license headers added) <http://thread.gmane.org/gmane.comp.bios.coreboot.seabios/5949>: src/acpi-dsdt-cpu-hotplug.dsl src/acpi-dsdt-dbug.dsl src/acpi-dsdt-hpet.dsl src/acpi-dsdt-isa.dsl src/acpi-dsdt-pci-crs.dsl src/acpi.c src/acpi.h src/ssdt-misc.dsl src/ssdt-pcihp.dsl src/ssdt-proc.dsl tools/acpi_extract.py tools/acpi_extract_preprocess.py Each one of the listed people agreed to the following: > If you allow the use of your contribution in QEMU under the > terms of GPLv2 or later as proposed by this patch, > please respond to this mail including the line: > > Acked-by: Name <email address> Acked-by: Gerd Hoffmann <kraxel@redhat.com> Acked-by: Jan Kiszka <jan.kiszka@siemens.com> Acked-by: Jason Baron <jbaron@akamai.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Acked-by: Gleb Natapov <gleb@redhat.com> Acked-by: Marcelo Tosatti <mtosatti@redhat.com> Acked-by: Dave Frodin <dave.frodin@se-eng.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Kevin O'Connor <kevin@koconnor.net> Acked-by: Laszlo Ersek <lersek@redhat.com> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Acked-by: Isaku Yamahata <yamahata@valinux.co.jp> Acked-by: Magnus Christensson <magnus.christensson@intel.com> Acked-by: Hu Tao <hutao@cn.fujitsu.com> Acked-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> Tested-by: Gerd Hoffmann <kraxel@redhat.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Tested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-07-24 19:56:14 +04:00
#include "acpi-build.h"
#include "hw/mem/pc-dimm.h"
#include "qapi/error.h"
#include "qapi/qapi-visit-common.h"
#include "qapi/visitor.h"
#include "qom/cpu.h"
#include "hw/nmi.h"
#include "hw/usb.h"
#include "hw/i386/intel_iommu.h"
#include "hw/net/ne2000-isa.h"
#include "standard-headers/asm-x86/bootparam.h"
#include "hw/virtio/virtio-pmem-pci.h"
#include "hw/mem/memory-device.h"
#include "sysemu/replay.h"
#include "qapi/qmp/qerror.h"
#include "config-devices.h"
/* debug PC/ISA interrupts */
//#define DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, ...) \
do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...)
#endif
#define E820_NR_ENTRIES 16
struct e820_entry {
uint64_t address;
uint64_t length;
uint32_t type;
} QEMU_PACKED __attribute((__aligned__(4)));
struct e820_table {
uint32_t count;
struct e820_entry entry[E820_NR_ENTRIES];
} QEMU_PACKED __attribute((__aligned__(4)));
static struct e820_table e820_reserve;
static struct e820_entry *e820_table;
static unsigned e820_entries;
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
/* Physical Address of PVH entry point read from kernel ELF NOTE */
static size_t pvh_start_addr;
GlobalProperty pc_compat_4_0[] = {};
const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
GlobalProperty pc_compat_3_1[] = {
{ "intel-iommu", "dma-drain", "off" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
{ "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
{ "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
{ "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
{ "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
{ "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
{ "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
{ "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
{ "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
{ "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
{ "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
{ "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
{ "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
{ TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
};
const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
GlobalProperty pc_compat_3_0[] = {
{ TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
{ "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
{ "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
};
const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
GlobalProperty pc_compat_2_12[] = {
{ TYPE_X86_CPU, "legacy-cache", "on" },
{ TYPE_X86_CPU, "topoext", "off" },
{ "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
{ "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
};
const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
GlobalProperty pc_compat_2_11[] = {
{ TYPE_X86_CPU, "x-migrate-smi-count", "off" },
{ "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
};
const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
GlobalProperty pc_compat_2_10[] = {
{ TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
{ "i440FX-pcihost", "x-pci-hole64-fix", "off" },
{ "q35-pcihost", "x-pci-hole64-fix", "off" },
};
const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
GlobalProperty pc_compat_2_9[] = {
{ "mch", "extended-tseg-mbytes", "0" },
};
const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
GlobalProperty pc_compat_2_8[] = {
{ TYPE_X86_CPU, "tcg-cpuid", "off" },
{ "kvmclock", "x-mach-use-reliable-get-clock", "off" },
{ "ICH9-LPC", "x-smi-broadcast", "off" },
{ TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
{ "Haswell-" TYPE_X86_CPU, "stepping", "1" },
};
const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
GlobalProperty pc_compat_2_7[] = {
{ TYPE_X86_CPU, "l3-cache", "off" },
{ TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
{ "isa-pcspk", "migrate", "off" },
};
const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
GlobalProperty pc_compat_2_6[] = {
{ TYPE_X86_CPU, "cpuid-0xb", "off" },
{ "vmxnet3", "romfile", "" },
{ TYPE_X86_CPU, "fill-mtrr-mask", "off" },
{ "apic-common", "legacy-instance-id", "on", }
};
const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
GlobalProperty pc_compat_2_5[] = {};
const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
GlobalProperty pc_compat_2_4[] = {
PC_CPU_MODEL_IDS("2.4.0")
{ "Haswell-" TYPE_X86_CPU, "abm", "off" },
{ "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
{ "Broadwell-" TYPE_X86_CPU, "abm", "off" },
{ "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
{ "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
{ TYPE_X86_CPU, "check", "off" },
{ "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
{ "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
{ "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
{ "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
{ "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
{ "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
{ "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
};
const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
GlobalProperty pc_compat_2_3[] = {
PC_CPU_MODEL_IDS("2.3.0")
{ TYPE_X86_CPU, "arat", "off" },
{ "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
{ "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
{ "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
{ "n270" "-" TYPE_X86_CPU, "min-level", "5" },
{ "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
{ "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
{ "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
{ "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
{ TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
};
const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
GlobalProperty pc_compat_2_2[] = {
PC_CPU_MODEL_IDS("2.2.0")
{ "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
{ "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
{ "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
{ "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
{ "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
{ "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
{ "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
{ "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
{ "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
{ "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
{ "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
{ "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
{ "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
{ "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
{ "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
{ "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
{ "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
{ "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
};
const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
GlobalProperty pc_compat_2_1[] = {
PC_CPU_MODEL_IDS("2.1.0")
{ "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
{ "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
};
const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
GlobalProperty pc_compat_2_0[] = {
PC_CPU_MODEL_IDS("2.0.0")
{ "virtio-scsi-pci", "any_layout", "off" },
{ "PIIX4_PM", "memory-hotplug-support", "off" },
{ "apic", "version", "0x11" },
{ "nec-usb-xhci", "superspeed-ports-first", "off" },
{ "nec-usb-xhci", "force-pcie-endcap", "on" },
{ "pci-serial", "prog_if", "0" },
{ "pci-serial-2x", "prog_if", "0" },
{ "pci-serial-4x", "prog_if", "0" },
{ "virtio-net-pci", "guest_announce", "off" },
{ "ICH9-LPC", "memory-hotplug-support", "off" },
{ "xio3130-downstream", COMPAT_PROP_PCP, "off" },
{ "ioh3420", COMPAT_PROP_PCP, "off" },
};
const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
GlobalProperty pc_compat_1_7[] = {
PC_CPU_MODEL_IDS("1.7.0")
{ TYPE_USB_DEVICE, "msos-desc", "no" },
{ "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
{ "hpet", HPET_INTCAP, "4" },
};
const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
GlobalProperty pc_compat_1_6[] = {
PC_CPU_MODEL_IDS("1.6.0")
{ "e1000", "mitigation", "off" },
{ "qemu64-" TYPE_X86_CPU, "model", "2" },
{ "qemu32-" TYPE_X86_CPU, "model", "3" },
{ "i440FX-pcihost", "short_root_bus", "1" },
{ "q35-pcihost", "short_root_bus", "1" },
};
const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
GlobalProperty pc_compat_1_5[] = {
PC_CPU_MODEL_IDS("1.5.0")
{ "Conroe-" TYPE_X86_CPU, "model", "2" },
{ "Conroe-" TYPE_X86_CPU, "min-level", "2" },
{ "Penryn-" TYPE_X86_CPU, "model", "2" },
{ "Penryn-" TYPE_X86_CPU, "min-level", "2" },
{ "Nehalem-" TYPE_X86_CPU, "model", "2" },
{ "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
{ "virtio-net-pci", "any_layout", "off" },
{ TYPE_X86_CPU, "pmu", "on" },
{ "i440FX-pcihost", "short_root_bus", "0" },
{ "q35-pcihost", "short_root_bus", "0" },
};
const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
GlobalProperty pc_compat_1_4[] = {
PC_CPU_MODEL_IDS("1.4.0")
{ "scsi-hd", "discard_granularity", "0" },
{ "scsi-cd", "discard_granularity", "0" },
{ "scsi-disk", "discard_granularity", "0" },
{ "ide-hd", "discard_granularity", "0" },
{ "ide-cd", "discard_granularity", "0" },
{ "ide-drive", "discard_granularity", "0" },
{ "virtio-blk-pci", "discard_granularity", "0" },
/* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
{ "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
{ "virtio-net-pci", "ctrl_guest_offloads", "off" },
{ "e1000", "romfile", "pxe-e1000.rom" },
{ "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
{ "pcnet", "romfile", "pxe-pcnet.rom" },
{ "rtl8139", "romfile", "pxe-rtl8139.rom" },
{ "virtio-net-pci", "romfile", "pxe-virtio.rom" },
{ "486-" TYPE_X86_CPU, "model", "0" },
{ "n270" "-" TYPE_X86_CPU, "movbe", "off" },
{ "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
};
const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
void gsi_handler(void *opaque, int n, int level)
{
GSIState *s = opaque;
DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
if (n < ISA_NUM_IRQS) {
qemu_set_irq(s->i8259_irq[n], level);
}
qemu_set_irq(s->ioapic_irq[n], level);
}
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
}
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* MSDOS compatibility mode FPU exception support */
static qemu_irq ferr_irq;
void pc_register_ferr_irq(qemu_irq irq)
{
ferr_irq = irq;
}
/* XXX: add IGNNE support */
void cpu_set_ferr(CPUX86State *s)
{
qemu_irq_raise(ferr_irq);
}
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
qemu_irq_lower(ferr_irq);
}
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_ticks();
}
/* IRQ handling */
int cpu_get_pic_interrupt(CPUX86State *env)
{
X86CPU *cpu = env_archcpu(env);
int intno;
pc: apic: fix touch LAPIC when irqchip is split Add -kernel_irqchip=split ./x86-run x86/eventinj.flat qemu-system-x86_64 -enable-kvm -machine kernel_irqchip=split -cpu host -device pc-testdev -device isa-debug-exit,iobase=0xf4,iosize=0x4 -vnc none -serial stdio -device pci-testdev -kernel x86/eventinj.flat enabling apic paging enabled cr0 = 80010011 cr3 = 7fff000 cr4 = 20 Sending vec 33 and 62 and mask one with TPR irq1 running irq1 running After 33/62 TPR test FAIL: TPR irq0 running irq0 running Both irq1 and irq0 are executing twice. kvm_entry: vcpu 0 kvm_exit: reason MSR_WRITE rip 0x401f33 info 0 0 kvm_apic: apic_write APIC_EOI = 0x0 kvm_eoi: apicid 0 vector 62 kvm_msr: msr_write 80b = 0x0 kvm_entry: vcpu 0 kvm_exit: reason PENDING_INTERRUPT rip 0x401f35 info 0 0 kvm_userspace_exit: reason KVM_EXIT_IRQ_WINDOW_OPEN (7) kvm_inj_virq: irq 62 kvm_entry: vcpu 0 kvm_exit: reason IO_INSTRUCTION rip 0x4016ec info 3fd0008 0 From the trace we can see there is an interrupt window exit after the first interrupt EOI(irq 62), and the same irq(62) is injected duplicately after the interrupt window. QEMU does KVM_INTERRUPT(62) ioctl after KVM exits with KVM_EXIT_IRQ_WINDOW_OPEN, which QEMU requested while the guest was printing. The printing calls serial_update_irq() -> qemu_irq_lower() -> qemu_set_irq() -> gsi_handler() -> qemu_set_irq() -> pic_irq_request() -> apic_deliver_pic_intr() -> kvm_handle_interrupt() kvm_handle_interrupt() does interrupt_request |= CPU_INTERRUPT_HARD which later calls cpu_get_pic_interrupt() in kvm_arch_pre_run(), but that function uses stale information from APIC and injects 62 again. If we synchronized the APIC, then the test would #GP, because there would be no injectable interrupt in LAPIC or PIC, so pic_read_irq() would return 15, thinking it was spurious. This patch fix it by don't touch LAPIC if LAPIC is in kernel. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Suggested-by: Radim Krčmář <rkrcmar@redhat.com> Cc: qemu-stable@nongnu.org Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Eduardo Habkost <ehabkost@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Message-Id: <1473832464-3478-1-git-send-email-wanpeng.li@hotmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-09-14 08:54:24 +03:00
if (!kvm_irqchip_in_kernel()) {
intno = apic_get_interrupt(cpu->apic_state);
if (intno >= 0) {
return intno;
}
/* read the irq from the PIC */
if (!apic_accept_pic_intr(cpu->apic_state)) {
return -1;
}
}
intno = pic_read_irq(isa_pic);
return intno;
}
static void pic_irq_request(void *opaque, int irq, int level)
{
CPUState *cs = first_cpu;
X86CPU *cpu = X86_CPU(cs);
DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
pc: apic: fix touch LAPIC when irqchip is split Add -kernel_irqchip=split ./x86-run x86/eventinj.flat qemu-system-x86_64 -enable-kvm -machine kernel_irqchip=split -cpu host -device pc-testdev -device isa-debug-exit,iobase=0xf4,iosize=0x4 -vnc none -serial stdio -device pci-testdev -kernel x86/eventinj.flat enabling apic paging enabled cr0 = 80010011 cr3 = 7fff000 cr4 = 20 Sending vec 33 and 62 and mask one with TPR irq1 running irq1 running After 33/62 TPR test FAIL: TPR irq0 running irq0 running Both irq1 and irq0 are executing twice. kvm_entry: vcpu 0 kvm_exit: reason MSR_WRITE rip 0x401f33 info 0 0 kvm_apic: apic_write APIC_EOI = 0x0 kvm_eoi: apicid 0 vector 62 kvm_msr: msr_write 80b = 0x0 kvm_entry: vcpu 0 kvm_exit: reason PENDING_INTERRUPT rip 0x401f35 info 0 0 kvm_userspace_exit: reason KVM_EXIT_IRQ_WINDOW_OPEN (7) kvm_inj_virq: irq 62 kvm_entry: vcpu 0 kvm_exit: reason IO_INSTRUCTION rip 0x4016ec info 3fd0008 0 From the trace we can see there is an interrupt window exit after the first interrupt EOI(irq 62), and the same irq(62) is injected duplicately after the interrupt window. QEMU does KVM_INTERRUPT(62) ioctl after KVM exits with KVM_EXIT_IRQ_WINDOW_OPEN, which QEMU requested while the guest was printing. The printing calls serial_update_irq() -> qemu_irq_lower() -> qemu_set_irq() -> gsi_handler() -> qemu_set_irq() -> pic_irq_request() -> apic_deliver_pic_intr() -> kvm_handle_interrupt() kvm_handle_interrupt() does interrupt_request |= CPU_INTERRUPT_HARD which later calls cpu_get_pic_interrupt() in kvm_arch_pre_run(), but that function uses stale information from APIC and injects 62 again. If we synchronized the APIC, then the test would #GP, because there would be no injectable interrupt in LAPIC or PIC, so pic_read_irq() would return 15, thinking it was spurious. This patch fix it by don't touch LAPIC if LAPIC is in kernel. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Suggested-by: Radim Krčmář <rkrcmar@redhat.com> Cc: qemu-stable@nongnu.org Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Eduardo Habkost <ehabkost@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Message-Id: <1473832464-3478-1-git-send-email-wanpeng.li@hotmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-09-14 08:54:24 +03:00
if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
if (apic_accept_pic_intr(cpu->apic_state)) {
apic_deliver_pic_intr(cpu->apic_state, level);
}
}
} else {
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
}
/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE 0x14
int cmos_get_fd_drive_type(FloppyDriveType fd0)
{
int val;
switch (fd0) {
case FLOPPY_DRIVE_TYPE_144:
/* 1.44 Mb 3"5 drive */
val = 4;
break;
case FLOPPY_DRIVE_TYPE_288:
/* 2.88 Mb 3"5 drive */
val = 5;
break;
case FLOPPY_DRIVE_TYPE_120:
/* 1.2 Mb 5"5 drive */
val = 2;
break;
case FLOPPY_DRIVE_TYPE_NONE:
default:
val = 0;
break;
}
return val;
}
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
int16_t cylinders, int8_t heads, int8_t sectors)
{
rtc_set_memory(s, type_ofs, 47);
rtc_set_memory(s, info_ofs, cylinders);
rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
rtc_set_memory(s, info_ofs + 2, heads);
rtc_set_memory(s, info_ofs + 3, 0xff);
rtc_set_memory(s, info_ofs + 4, 0xff);
rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
rtc_set_memory(s, info_ofs + 6, cylinders);
rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
rtc_set_memory(s, info_ofs + 8, sectors);
}
/* convert boot_device letter to something recognizable by the bios */
static int boot_device2nibble(char boot_device)
{
switch(boot_device) {
case 'a':
case 'b':
return 0x01; /* floppy boot */
case 'c':
return 0x02; /* hard drive boot */
case 'd':
return 0x03; /* CD-ROM boot */
case 'n':
return 0x04; /* Network boot */
}
return 0;
}
static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
{
#define PC_MAX_BOOT_DEVICES 3
int nbds, bds[3] = { 0, };
int i;
nbds = strlen(boot_device);
if (nbds > PC_MAX_BOOT_DEVICES) {
error_setg(errp, "Too many boot devices for PC");
return;
}
for (i = 0; i < nbds; i++) {
bds[i] = boot_device2nibble(boot_device[i]);
if (bds[i] == 0) {
error_setg(errp, "Invalid boot device for PC: '%c'",
boot_device[i]);
return;
}
}
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
}
static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
{
set_boot_dev(opaque, boot_device, errp);
}
static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
{
int val, nb, i;
FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
FLOPPY_DRIVE_TYPE_NONE };
/* floppy type */
if (floppy) {
for (i = 0; i < 2; i++) {
fd_type[i] = isa_fdc_get_drive_type(floppy, i);
}
}
val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
cmos_get_fd_drive_type(fd_type[1]);
rtc_set_memory(rtc_state, 0x10, val);
val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
nb = 0;
if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
nb++;
}
if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
nb++;
}
switch (nb) {
case 0:
break;
case 1:
val |= 0x01; /* 1 drive, ready for boot */
break;
case 2:
val |= 0x41; /* 2 drives, ready for boot */
break;
}
rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
}
typedef struct pc_cmos_init_late_arg {
ISADevice *rtc_state;
BusState *idebus[2];
} pc_cmos_init_late_arg;
typedef struct check_fdc_state {
ISADevice *floppy;
bool multiple;
} CheckFdcState;
static int check_fdc(Object *obj, void *opaque)
{
CheckFdcState *state = opaque;
Object *fdc;
uint32_t iobase;
Error *local_err = NULL;
fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
if (!fdc) {
return 0;
}
iobase = object_property_get_uint(obj, "iobase", &local_err);
if (local_err || iobase != 0x3f0) {
error_free(local_err);
return 0;
}
if (state->floppy) {
state->multiple = true;
} else {
state->floppy = ISA_DEVICE(obj);
}
return 0;
}
static const char * const fdc_container_path[] = {
"/unattached", "/peripheral", "/peripheral-anon"
};
/*
* Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
* and ACPI objects.
*/
ISADevice *pc_find_fdc0(void)
{
int i;
Object *container;
CheckFdcState state = { 0 };
for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
container = container_get(qdev_get_machine(), fdc_container_path[i]);
object_child_foreach(container, check_fdc, &state);
}
if (state.multiple) {
Convert error_report() to warn_report() Convert all uses of error_report("warning:"... to use warn_report() instead. This helps standardise on a single method of printing warnings to the user. All of the warnings were changed using these two commands: find ./* -type f -exec sed -i \ 's|error_report(".*warning[,:] |warn_report("|Ig' {} + Indentation fixed up manually afterwards. The test-qdev-global-props test case was manually updated to ensure that this patch passes make check (as the test cases are case sensitive). Signed-off-by: Alistair Francis <alistair.francis@xilinx.com> Suggested-by: Thomas Huth <thuth@redhat.com> Cc: Jeff Cody <jcody@redhat.com> Cc: Kevin Wolf <kwolf@redhat.com> Cc: Max Reitz <mreitz@redhat.com> Cc: Ronnie Sahlberg <ronniesahlberg@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Lieven <pl@kamp.de> Cc: Josh Durgin <jdurgin@redhat.com> Cc: "Richard W.M. Jones" <rjones@redhat.com> Cc: Markus Armbruster <armbru@redhat.com> Cc: Peter Crosthwaite <crosthwaite.peter@gmail.com> Cc: Richard Henderson <rth@twiddle.net> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Greg Kurz <groug@kaod.org> Cc: Rob Herring <robh@kernel.org> Cc: Peter Maydell <peter.maydell@linaro.org> Cc: Peter Chubb <peter.chubb@nicta.com.au> Cc: Eduardo Habkost <ehabkost@redhat.com> Cc: Marcel Apfelbaum <marcel@redhat.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Alexander Graf <agraf@suse.de> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Cornelia Huck <cohuck@redhat.com> Cc: Stefan Hajnoczi <stefanha@redhat.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> Acked-by: Greg Kurz <groug@kaod.org> Acked-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed by: Peter Chubb <peter.chubb@data61.csiro.au> Acked-by: Max Reitz <mreitz@redhat.com> Acked-by: Marcel Apfelbaum <marcel@redhat.com> Message-Id: <e1cfa2cd47087c248dd24caca9c33d9af0c499b0.1499866456.git.alistair.francis@xilinx.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2017-07-12 16:57:41 +03:00
warn_report("multiple floppy disk controllers with "
"iobase=0x3f0 have been found");
error_printf("the one being picked for CMOS setup might not reflect "
"your intent");
}
return state.floppy;
}
static void pc_cmos_init_late(void *opaque)
{
pc_cmos_init_late_arg *arg = opaque;
ISADevice *s = arg->rtc_state;
int16_t cylinders;
int8_t heads, sectors;
int val;
int i, trans;
val = 0;
if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
&cylinders, &heads, &sectors) >= 0) {
cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
val |= 0xf0;
}
if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
&cylinders, &heads, &sectors) >= 0) {
cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
val |= 0x0f;
}
rtc_set_memory(s, 0x12, val);
val = 0;
for (i = 0; i < 4; i++) {
/* NOTE: ide_get_geometry() returns the physical
geometry. It is always such that: 1 <= sects <= 63, 1
<= heads <= 16, 1 <= cylinders <= 16383. The BIOS
geometry can be different if a translation is done. */
if (arg->idebus[i / 2] &&
ide_get_geometry(arg->idebus[i / 2], i % 2,
&cylinders, &heads, &sectors) >= 0) {
trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
assert((trans & ~3) == 0);
val |= trans << (i * 2);
}
}
rtc_set_memory(s, 0x39, val);
pc_cmos_init_floppy(s, pc_find_fdc0());
qemu_unregister_reset(pc_cmos_init_late, opaque);
}
void pc_cmos_init(PCMachineState *pcms,
BusState *idebus0, BusState *idebus1,
ISADevice *s)
{
int val;
static pc_cmos_init_late_arg arg;
/* various important CMOS locations needed by PC/Bochs bios */
/* memory size */
/* base memory (first MiB) */
val = MIN(pcms->below_4g_mem_size / KiB, 640);
rtc_set_memory(s, 0x15, val);
rtc_set_memory(s, 0x16, val >> 8);
/* extended memory (next 64MiB) */
if (pcms->below_4g_mem_size > 1 * MiB) {
val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x17, val);
rtc_set_memory(s, 0x18, val >> 8);
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
/* memory between 16MiB and 4GiB */
if (pcms->below_4g_mem_size > 16 * MiB) {
val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
/* memory above 4GiB */
val = pcms->above_4g_mem_size / 65536;
rtc_set_memory(s, 0x5b, val);
rtc_set_memory(s, 0x5c, val >> 8);
rtc_set_memory(s, 0x5d, val >> 16);
object_property_add_link(OBJECT(pcms), "rtc_state",
TYPE_ISA_DEVICE,
(Object **)&pcms->rtc,
object_property_allow_set_link,
OBJ_PROP_LINK_STRONG, &error_abort);
object_property_set_link(OBJECT(pcms), OBJECT(s),
"rtc_state", &error_abort);
set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
val = 0;
val |= 0x02; /* FPU is there */
val |= 0x04; /* PS/2 mouse installed */
rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
/* hard drives and FDC */
arg.rtc_state = s;
arg.idebus[0] = idebus0;
arg.idebus[1] = idebus1;
qemu_register_reset(pc_cmos_init_late, &arg);
}
#define TYPE_PORT92 "port92"
#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
/* port 92 stuff: could be split off */
typedef struct Port92State {
ISADevice parent_obj;
MemoryRegion io;
uint8_t outport;
qemu_irq a20_out;
} Port92State;
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
Port92State *s = opaque;
int oldval = s->outport;
Fix debug print warning Steps: 1.enable qemu debug print, using simply scprit as below: grep "//#define DEBUG" * -rl | xargs sed -i "s/\/\/#define DEBUG/#define DEBUG/g" 2. make -j 3. get some warning: hw/i2c/pm_smbus.c: In function 'smb_ioport_writeb': hw/i2c/pm_smbus.c:142: warning: format '%04x' expects type 'unsigned int', but argument 2 has type 'hwaddr' hw/i2c/pm_smbus.c:142: warning: format '%02x' expects type 'unsigned int', but argument 3 has type 'uint64_t' hw/i2c/pm_smbus.c: In function 'smb_ioport_readb': hw/i2c/pm_smbus.c:209: warning: format '%04x' expects type 'unsigned int', but argument 2 has type 'hwaddr' hw/intc/i8259.c: In function 'pic_ioport_read': hw/intc/i8259.c:373: warning: format '%02x' expects type 'unsigned int', but argument 2 has type 'hwaddr' hw/input/pckbd.c: In function 'kbd_write_command': hw/input/pckbd.c:232: warning: format '%02x' expects type 'unsigned int', but argument 2 has type 'uint64_t' hw/input/pckbd.c: In function 'kbd_write_data': hw/input/pckbd.c:333: warning: format '%02x' expects type 'unsigned int', but argument 2 has type 'uint64_t' hw/isa/apm.c: In function 'apm_ioport_writeb': hw/isa/apm.c:44: warning: format '%x' expects type 'unsigned int', but argument 2 has type 'hwaddr' hw/isa/apm.c:44: warning: format '%02x' expects type 'unsigned int', but argument 3 has type 'uint64_t' hw/isa/apm.c: In function 'apm_ioport_readb': hw/isa/apm.c:67: warning: format '%x' expects type 'unsigned int', but argument 2 has type 'hwaddr' hw/timer/mc146818rtc.c: In function 'cmos_ioport_write': hw/timer/mc146818rtc.c:394: warning: format '%02x' expects type 'unsigned int', but argument 3 has type 'uint64_t' hw/i386/pc.c: In function 'port92_write': hw/i386/pc.c:479: warning: format '%02x' expects type 'unsigned int', but argument 2 has type 'uint64_t' Fix them. Cc: qemu-trivial@nongnu.org Signed-off-by: Gonglei <arei.gonglei@huawei.com> Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2014-08-25 06:01:27 +04:00
DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
s->outport = val;
qemu_set_irq(s->a20_out, (val >> 1) & 1);
if ((val & 1) && !(oldval & 1)) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
}
static uint64_t port92_read(void *opaque, hwaddr addr,
unsigned size)
{
Port92State *s = opaque;
uint32_t ret;
ret = s->outport;
DPRINTF("port92: read 0x%02x\n", ret);
return ret;
}
static void port92_init(ISADevice *dev, qemu_irq a20_out)
{
qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
}
static const VMStateDescription vmstate_port92_isa = {
.name = "port92",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(outport, Port92State),
VMSTATE_END_OF_LIST()
}
};
static void port92_reset(DeviceState *d)
{
Port92State *s = PORT92(d);
s->outport &= ~1;
}
static const MemoryRegionOps port92_ops = {
.read = port92_read,
.write = port92_write,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void port92_initfn(Object *obj)
{
Port92State *s = PORT92(obj);
memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
s->outport = 0;
qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
}
static void port92_realizefn(DeviceState *dev, Error **errp)
{
ISADevice *isadev = ISA_DEVICE(dev);
Port92State *s = PORT92(dev);
isa_register_ioport(isadev, &s->io, 0x92);
}
static void port92_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = port92_realizefn;
dc->reset = port92_reset;
dc->vmsd = &vmstate_port92_isa;
/*
* Reason: unlike ordinary ISA devices, this one needs additional
* wiring: its A20 output line needs to be wired up by
* port92_init().
*/
qdev: Replace cannot_instantiate_with_device_add_yet with !user_creatable cannot_instantiate_with_device_add_yet was introduced by commit efec3dd631d94160288392721a5f9c39e50fb2bc to replace no_user. It was supposed to be a temporary measure. When it was introduced, we had 54 cannot_instantiate_with_device_add_yet=true lines in the code. Today (3 years later) this number has not shrunk: we now have 57 cannot_instantiate_with_device_add_yet=true lines. I think it is safe to say it is not a temporary measure, and we won't see the flag go away soon. Instead of a long field name that misleads people to believe it is temporary, replace it a shorter and less misleading field: user_creatable. Except for code comments, changes were generated using the following Coccinelle patch: @@ expression DC; @@ ( -DC->cannot_instantiate_with_device_add_yet = false; +DC->user_creatable = true; | -DC->cannot_instantiate_with_device_add_yet = true; +DC->user_creatable = false; ) @@ typedef ObjectClass; expression dc; identifier class, data; @@ static void device_class_init(ObjectClass *class, void *data) { ... dc->hotpluggable = true; +dc->user_creatable = true; ... } @@ @@ struct DeviceClass { ... -bool cannot_instantiate_with_device_add_yet; +bool user_creatable; ... } @@ expression DC; @@ ( -!DC->cannot_instantiate_with_device_add_yet +DC->user_creatable | -DC->cannot_instantiate_with_device_add_yet +!DC->user_creatable ) Cc: Alistair Francis <alistair.francis@xilinx.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Marcel Apfelbaum <marcel@redhat.com> Cc: Markus Armbruster <armbru@redhat.com> Cc: Peter Maydell <peter.maydell@linaro.org> Cc: Thomas Huth <thuth@redhat.com> Acked-by: Alistair Francis <alistair.francis@xilinx.com> Reviewed-by: Thomas Huth <thuth@redhat.com> Reviewed-by: Marcel Apfelbaum <marcel@redhat.com> Acked-by: Marcel Apfelbaum <marcel@redhat.com> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com> Message-Id: <20170503203604.31462-2-ehabkost@redhat.com> [ehabkost: kept "TODO remove once we're there" comment] Reviewed-by: Markus Armbruster <armbru@redhat.com> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2017-05-03 23:35:44 +03:00
dc->user_creatable = false;
}
static const TypeInfo port92_info = {
.name = TYPE_PORT92,
.parent = TYPE_ISA_DEVICE,
.instance_size = sizeof(Port92State),
.instance_init = port92_initfn,
.class_init = port92_class_initfn,
};
static void port92_register_types(void)
{
type_register_static(&port92_info);
}
type_init(port92_register_types)
static void handle_a20_line_change(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
/* XXX: send to all CPUs ? */
/* XXX: add logic to handle multiple A20 line sources */
x86_cpu_set_a20(cpu, level);
}
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
{
int index = le32_to_cpu(e820_reserve.count);
struct e820_entry *entry;
if (type != E820_RAM) {
/* old FW_CFG_E820_TABLE entry -- reservations only */
if (index >= E820_NR_ENTRIES) {
return -EBUSY;
}
entry = &e820_reserve.entry[index++];
entry->address = cpu_to_le64(address);
entry->length = cpu_to_le64(length);
entry->type = cpu_to_le32(type);
e820_reserve.count = cpu_to_le32(index);
}
/* new "etc/e820" file -- include ram too */
e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
e820_table[e820_entries].address = cpu_to_le64(address);
e820_table[e820_entries].length = cpu_to_le64(length);
e820_table[e820_entries].type = cpu_to_le32(type);
e820_entries++;
return e820_entries;
}
int e820_get_num_entries(void)
{
return e820_entries;
}
bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
{
if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
*address = le64_to_cpu(e820_table[idx].address);
*length = le64_to_cpu(e820_table[idx].length);
return true;
}
return false;
}
/* Calculates initial APIC ID for a specific CPU index
*
* Currently we need to be able to calculate the APIC ID from the CPU index
* alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
* no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
* all CPUs up to max_cpus.
*/
static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
unsigned int cpu_index)
{
MachineState *ms = MACHINE(pcms);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
uint32_t correct_id;
static bool warned;
correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores,
ms->smp.threads, cpu_index);
if (pcmc->compat_apic_id_mode) {
if (cpu_index != correct_id && !warned && !qtest_enabled()) {
error_report("APIC IDs set in compatibility mode, "
"CPU topology won't match the configuration");
warned = true;
}
return cpu_index;
} else {
return correct_id;
}
}
static void pc_build_smbios(PCMachineState *pcms)
{
uint8_t *smbios_tables, *smbios_anchor;
size_t smbios_tables_len, smbios_anchor_len;
struct smbios_phys_mem_area *mem_array;
unsigned i, array_count;
MachineState *ms = MACHINE(pcms);
X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
/* tell smbios about cpuid version and features */
smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
if (smbios_tables) {
fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
smbios_tables, smbios_tables_len);
}
/* build the array of physical mem area from e820 table */
mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
uint64_t addr, len;
if (e820_get_entry(i, E820_RAM, &addr, &len)) {
mem_array[array_count].address = addr;
mem_array[array_count].length = len;
array_count++;
}
}
smbios_get_tables(ms, mem_array, array_count,
&smbios_tables, &smbios_tables_len,
&smbios_anchor, &smbios_anchor_len);
g_free(mem_array);
if (smbios_anchor) {
fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
smbios_tables, smbios_tables_len);
fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
smbios_anchor, smbios_anchor_len);
}
}
static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
{
FWCfgState *fw_cfg;
uint64_t *numa_fw_cfg;
int i;
const CPUArchIdList *cpus;
MachineClass *mc = MACHINE_GET_CLASS(pcms);
fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
/* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
*
* For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
* building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
* that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
* for CPU hotplug also uses APIC ID and not "CPU index".
* This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
* but the "limit to the APIC ID values SeaBIOS may see".
*
* So for compatibility reasons with old BIOSes we are stuck with
* "etc/max-cpus" actually being apic_id_limit
*/
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
acpi_tables, acpi_tables_len);
fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
&e820_reserve, sizeof(e820_reserve));
fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
sizeof(struct e820_entry) * e820_entries);
fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
/* allocate memory for the NUMA channel: one (64bit) word for the number
* of nodes, one word for each VCPU->node and one word for each node to
* hold the amount of memory.
*/
numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
for (i = 0; i < cpus->len; i++) {
unsigned int apic_id = cpus->cpus[i].arch_id;
assert(apic_id < pcms->apic_id_limit);
numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
}
for (i = 0; i < nb_numa_nodes; i++) {
numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
cpu_to_le64(numa_info[i].node_mem);
}
fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
(1 + pcms->apic_id_limit + nb_numa_nodes) *
sizeof(*numa_fw_cfg));
return fw_cfg;
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
struct setup_data {
uint64_t next;
uint32_t type;
uint32_t len;
uint8_t data[0];
} __attribute__((packed));
/*
* The entry point into the kernel for PVH boot is different from
* the native entry point. The PVH entry is defined by the x86/HVM
* direct boot ABI and is available in an ELFNOTE in the kernel binary.
*
* This function is passed to load_elf() when it is called from
* load_elfboot() which then additionally checks for an ELF Note of
* type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
* parse the PVH entry address from the ELF Note.
*
* Due to trickery in elf_opts.h, load_elf() is actually available as
* load_elf32() or load_elf64() and this routine needs to be able
* to deal with being called as 32 or 64 bit.
*
* The address of the PVH entry point is saved to the 'pvh_start_addr'
* global variable. (although the entry point is 32-bit, the kernel
* binary can be either 32-bit or 64-bit).
*/
static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
{
size_t *elf_note_data_addr;
/* Check if ELF Note header passed in is valid */
if (arg1 == NULL) {
return 0;
}
if (is64) {
struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
uint64_t nhdr_size64 = sizeof(struct elf64_note);
uint64_t phdr_align = *(uint64_t *)arg2;
uint64_t nhdr_namesz = nhdr64->n_namesz;
elf_note_data_addr =
((void *)nhdr64) + nhdr_size64 +
QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
} else {
struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
uint32_t nhdr_size32 = sizeof(struct elf32_note);
uint32_t phdr_align = *(uint32_t *)arg2;
uint32_t nhdr_namesz = nhdr32->n_namesz;
elf_note_data_addr =
((void *)nhdr32) + nhdr_size32 +
QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
}
pvh_start_addr = *elf_note_data_addr;
return pvh_start_addr;
}
static bool load_elfboot(const char *kernel_filename,
int kernel_file_size,
uint8_t *header,
size_t pvh_xen_start_addr,
FWCfgState *fw_cfg)
{
uint32_t flags = 0;
uint32_t mh_load_addr = 0;
uint32_t elf_kernel_size = 0;
uint64_t elf_entry;
uint64_t elf_low, elf_high;
int kernel_size;
if (ldl_p(header) != 0x464c457f) {
return false; /* no elfboot */
}
bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
flags = elf_is64 ?
((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
error_report("elfboot unsupported flags = %x", flags);
exit(1);
}
uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
NULL, &elf_note_type, &elf_entry,
&elf_low, &elf_high, 0, I386_ELF_MACHINE,
0, 0);
if (kernel_size < 0) {
error_report("Error while loading elf kernel");
exit(1);
}
mh_load_addr = elf_low;
elf_kernel_size = elf_high - elf_low;
if (pvh_start_addr == 0) {
error_report("Error loading uncompressed kernel without PVH ELF Note");
exit(1);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
return true;
}
static void load_linux(PCMachineState *pcms,
FWCfgState *fw_cfg)
{
uint16_t protocol;
int setup_size, kernel_size, cmdline_size;
int dtb_size, setup_data_offset;
uint32_t initrd_max;
uint8_t header[8192], *setup, *kernel;
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f;
char *vmode;
MachineState *machine = MACHINE(pcms);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
struct setup_data *setup_data;
const char *kernel_filename = machine->kernel_filename;
const char *initrd_filename = machine->initrd_filename;
const char *dtb_filename = machine->dtb;
const char *kernel_cmdline = machine->kernel_cmdline;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
#if 0
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
if (ldl_p(header+0x202) == 0x53726448) {
protocol = lduw_p(header+0x206);
} else {
/*
* This could be a multiboot kernel. If it is, let's stop treating it
* like a Linux kernel.
* Note: some multiboot images could be in the ELF format (the same of
* PVH), so we try multiboot first since we check the multiboot magic
* header before to load it.
*/
if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
kernel_cmdline, kernel_size, header)) {
return;
}
/*
* Check if the file is an uncompressed kernel file (ELF) and load it,
* saving the PVH entry point used by the x86/HVM direct boot ABI.
* If load_elfboot() is successful, populate the fw_cfg info.
*/
if (pcmc->pvh_enabled &&
load_elfboot(kernel_filename, kernel_size,
header, pvh_start_addr, fw_cfg)) {
fclose(f);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
header, sizeof(header));
/* load initrd */
if (initrd_filename) {
gsize initrd_size;
gchar *initrd_data;
GError *gerr = NULL;
if (!g_file_get_contents(initrd_filename, &initrd_data,
&initrd_size, &gerr)) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, gerr->message);
exit(1);
}
initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
if (initrd_size >= initrd_max) {
fprintf(stderr, "qemu: initrd is too large, cannot support."
"(max: %"PRIu32", need %"PRId64")\n",
initrd_max, (uint64_t)initrd_size);
exit(1);
}
initrd_addr = (initrd_max - initrd_size) & ~4095;
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
initrd_size);
}
option_rom[nb_option_roms].bootindex = 0;
option_rom[nb_option_roms].name = "pvh.bin";
nb_option_roms++;
return;
}
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
real_addr,
cmdline_addr,
prot_addr);
#endif
/* highest address for loading the initrd */
if (protocol >= 0x20c &&
lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
/*
* Linux has supported initrd up to 4 GB for a very long time (2007,
* long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
* though it only sets initrd_max to 2 GB to "work around bootloader
* bugs". Luckily, QEMU firmware(which does something like bootloader)
* has supported this.
*
* It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
* be loaded into any address.
*
* In addition, initrd_max is uint32_t simply because QEMU doesn't
* support the 64-bit boot protocol (specifically the ext_ramdisk_image
* field).
*
* Therefore here just limit initrd_max to UINT32_MAX simply as well.
*/
initrd_max = UINT32_MAX;
} else if (protocol >= 0x203) {
initrd_max = ldl_p(header+0x22c);
} else {
initrd_max = 0x37ffffff;
}
if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
}
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
video_mode = strtol(vmode, NULL, 0);
}
stw_p(header+0x1fa, video_mode);
}
/* loader type */
/* High nybble = B reserved for QEMU; low nybble is revision number.
If this code is substantially changed, you may want to consider
incrementing the revision. */
if (protocol >= 0x200) {
header[0x210] = 0xB0;
}
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
}
/* load initrd */
if (initrd_filename) {
gsize initrd_size;
gchar *initrd_data;
GError *gerr = NULL;
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
if (!g_file_get_contents(initrd_filename, &initrd_data,
&initrd_size, &gerr)) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, gerr->message);
exit(1);
}
if (initrd_size >= initrd_max) {
fprintf(stderr, "qemu: initrd is too large, cannot support."
"(max: %"PRIu32", need %"PRId64")\n",
initrd_max, (uint64_t)initrd_size);
exit(1);
}
initrd_addr = (initrd_max-initrd_size) & ~4095;
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* load kernel and setup */
setup_size = header[0x1f1];
if (setup_size == 0) {
setup_size = 4;
}
setup_size = (setup_size+1)*512;
if (setup_size > kernel_size) {
fprintf(stderr, "qemu: invalid kernel header\n");
exit(1);
}
kernel_size -= setup_size;
setup = g_malloc(setup_size);
kernel = g_malloc(kernel_size);
fseek(f, 0, SEEK_SET);
if (fread(setup, 1, setup_size, f) != setup_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
fclose(f);
/* append dtb to kernel */
if (dtb_filename) {
if (protocol < 0x209) {
fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
exit(1);
}
dtb_size = get_image_size(dtb_filename);
if (dtb_size <= 0) {
fprintf(stderr, "qemu: error reading dtb %s: %s\n",
dtb_filename, strerror(errno));
exit(1);
}
setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
kernel = g_realloc(kernel, kernel_size);
stq_p(header+0x250, prot_addr + setup_data_offset);
setup_data = (struct setup_data *)(kernel + setup_data_offset);
setup_data->next = 0;
setup_data->type = cpu_to_le32(SETUP_DTB);
setup_data->len = cpu_to_le32(dtb_size);
load_image_size(dtb_filename, setup_data->data, dtb_size);
}
memcpy(setup, header, MIN(sizeof(header), setup_size));
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
option_rom[nb_option_roms].bootindex = 0;
option_rom[nb_option_roms].name = "linuxboot.bin";
if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
option_rom[nb_option_roms].name = "linuxboot_dma.bin";
}
nb_option_roms++;
}
#define NE2000_NB_MAX 6
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
0x280, 0x380 };
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
{
static int nb_ne2k = 0;
if (nb_ne2k == NE2000_NB_MAX)
return;
isa_ne2000_init(bus, ne2000_io[nb_ne2k],
ne2000_irq[nb_ne2k], nd);
nb_ne2k++;
}
DeviceState *cpu_get_current_apic(void)
{
if (current_cpu) {
X86CPU *cpu = X86_CPU(current_cpu);
return cpu->apic_state;
} else {
return NULL;
}
}
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
if (level) {
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
}
}
static void pc_new_cpu(PCMachineState *pcms, int64_t apic_id, Error **errp)
{
Object *cpu = NULL;
Error *local_err = NULL;
CPUX86State *env = NULL;
cpu = object_new(MACHINE(pcms)->cpu_type);
env = &X86_CPU(cpu)->env;
env->nr_dies = pcms->smp_dies;
object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
object_property_set_bool(cpu, true, "realized", &local_err);
object_unref(cpu);
error_propagate(errp, local_err);
}
/*
* This function is very similar to smp_parse()
* in hw/core/machine.c but includes CPU die support.
*/
void pc_smp_parse(MachineState *ms, QemuOpts *opts)
{
PCMachineState *pcms = PC_MACHINE(ms);
if (opts) {
unsigned cpus = qemu_opt_get_number(opts, "cpus", 0);
unsigned sockets = qemu_opt_get_number(opts, "sockets", 0);
unsigned dies = qemu_opt_get_number(opts, "dies", 1);
unsigned cores = qemu_opt_get_number(opts, "cores", 0);
unsigned threads = qemu_opt_get_number(opts, "threads", 0);
/* compute missing values, prefer sockets over cores over threads */
if (cpus == 0 || sockets == 0) {
cores = cores > 0 ? cores : 1;
threads = threads > 0 ? threads : 1;
if (cpus == 0) {
sockets = sockets > 0 ? sockets : 1;
cpus = cores * threads * dies * sockets;
} else {
ms->smp.max_cpus =
qemu_opt_get_number(opts, "maxcpus", cpus);
sockets = ms->smp.max_cpus / (cores * threads * dies);
}
} else if (cores == 0) {
threads = threads > 0 ? threads : 1;
cores = cpus / (sockets * dies * threads);
cores = cores > 0 ? cores : 1;
} else if (threads == 0) {
threads = cpus / (cores * dies * sockets);
threads = threads > 0 ? threads : 1;
} else if (sockets * dies * cores * threads < cpus) {
error_report("cpu topology: "
"sockets (%u) * dies (%u) * cores (%u) * threads (%u) < "
"smp_cpus (%u)",
sockets, dies, cores, threads, cpus);
exit(1);
}
ms->smp.max_cpus =
qemu_opt_get_number(opts, "maxcpus", cpus);
if (ms->smp.max_cpus < cpus) {
error_report("maxcpus must be equal to or greater than smp");
exit(1);
}
if (sockets * dies * cores * threads > ms->smp.max_cpus) {
error_report("cpu topology: "
"sockets (%u) * dies (%u) * cores (%u) * threads (%u) > "
"maxcpus (%u)",
sockets, dies, cores, threads,
ms->smp.max_cpus);
exit(1);
}
if (sockets * dies * cores * threads != ms->smp.max_cpus) {
warn_report("Invalid CPU topology deprecated: "
"sockets (%u) * dies (%u) * cores (%u) * threads (%u) "
"!= maxcpus (%u)",
sockets, dies, cores, threads,
ms->smp.max_cpus);
}
ms->smp.cpus = cpus;
ms->smp.cores = cores;
ms->smp.threads = threads;
pcms->smp_dies = dies;
}
if (ms->smp.cpus > 1) {
Error *blocker = NULL;
error_setg(&blocker, QERR_REPLAY_NOT_SUPPORTED, "smp");
replay_add_blocker(blocker);
}
}
void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(ms);
int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
Error *local_err = NULL;
if (id < 0) {
error_setg(errp, "Invalid CPU id: %" PRIi64, id);
return;
}
if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", resulting APIC ID (%" PRIi64 ") is too large",
id, apic_id);
return;
}
pc_new_cpu(PC_MACHINE(ms), apic_id, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
void pc_cpus_init(PCMachineState *pcms)
{
int i;
const CPUArchIdList *possible_cpus;
MachineState *ms = MACHINE(pcms);
MachineClass *mc = MACHINE_GET_CLASS(pcms);
PCMachineClass *pcmc = PC_MACHINE_CLASS(mc);
x86_cpu_set_default_version(pcmc->default_cpu_version);
/* Calculates the limit to CPU APIC ID values
*
* Limit for the APIC ID value, so that all
* CPU APIC IDs are < pcms->apic_id_limit.
*
* This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
*/
pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
ms->smp.max_cpus - 1) + 1;
possible_cpus = mc->possible_cpu_arch_ids(ms);
for (i = 0; i < ms->smp.cpus; i++) {
pc_new_cpu(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
}
}
static void pc_build_feature_control_file(PCMachineState *pcms)
{
MachineState *ms = MACHINE(pcms);
X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
CPUX86State *env = &cpu->env;
uint32_t unused, ecx, edx;
uint64_t feature_control_bits = 0;
uint64_t *val;
cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
if (ecx & CPUID_EXT_VMX) {
feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
}
if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
(CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
(env->mcg_cap & MCG_LMCE_P)) {
feature_control_bits |= FEATURE_CONTROL_LMCE;
}
if (!feature_control_bits) {
return;
}
val = g_malloc(sizeof(*val));
*val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
}
static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
{
if (cpus_count > 0xff) {
/* If the number of CPUs can't be represented in 8 bits, the
* BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
* to make old BIOSes fail more predictably.
*/
rtc_set_memory(rtc, 0x5f, 0);
} else {
rtc_set_memory(rtc, 0x5f, cpus_count - 1);
}
}
static
void pc_machine_done(Notifier *notifier, void *data)
{
PCMachineState *pcms = container_of(notifier,
PCMachineState, machine_done);
PCIBus *bus = pcms->bus;
/* set the number of CPUs */
rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
if (bus) {
int extra_hosts = 0;
QLIST_FOREACH(bus, &bus->child, sibling) {
/* look for expander root buses */
if (pci_bus_is_root(bus)) {
extra_hosts++;
}
}
if (extra_hosts && pcms->fw_cfg) {
uint64_t *val = g_malloc(sizeof(*val));
*val = cpu_to_le64(extra_hosts);
fw_cfg_add_file(pcms->fw_cfg,
"etc/extra-pci-roots", val, sizeof(*val));
}
}
acpi_setup();
if (pcms->fw_cfg) {
pc_build_smbios(pcms);
pc_build_feature_control_file(pcms);
/* update FW_CFG_NB_CPUS to account for -device added CPUs */
fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
}
if (pcms->apic_id_limit > 255 && !xen_enabled()) {
IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
iommu->intr_eim != ON_OFF_AUTO_ON) {
error_report("current -smp configuration requires "
"Extended Interrupt Mode enabled. "
"You can add an IOMMU using: "
"-device intel-iommu,intremap=on,eim=on");
exit(EXIT_FAILURE);
}
}
}
void pc_guest_info_init(PCMachineState *pcms)
{
int i;
pcms->apic_xrupt_override = kvm_allows_irq0_override();
pcms->numa_nodes = nb_numa_nodes;
pcms->node_mem = g_malloc0(pcms->numa_nodes *
sizeof *pcms->node_mem);
for (i = 0; i < nb_numa_nodes; i++) {
pcms->node_mem[i] = numa_info[i].node_mem;
}
pcms->machine_done.notify = pc_machine_done;
qemu_add_machine_init_done_notifier(&pcms->machine_done);
}
/* setup pci memory address space mapping into system address space */
void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
MemoryRegion *pci_address_space)
{
/* Set to lower priority than RAM */
memory_region_add_subregion_overlap(system_memory, 0x0,
pci_address_space, -1);
}
void xen_load_linux(PCMachineState *pcms)
{
int i;
FWCfgState *fw_cfg;
assert(MACHINE(pcms)->kernel_filename != NULL);
fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
rom_set_fw(fw_cfg);
load_linux(pcms, fw_cfg);
for (i = 0; i < nb_option_roms; i++) {
assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
!strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
!strcmp(option_rom[i].name, "pvh.bin") ||
!strcmp(option_rom[i].name, "multiboot.bin"));
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
pcms->fw_cfg = fw_cfg;
}
void pc_memory_init(PCMachineState *pcms,
MemoryRegion *system_memory,
MemoryRegion *rom_memory,
MemoryRegion **ram_memory)
{
int linux_boot, i;
MemoryRegion *ram, *option_rom_mr;
MemoryRegion *ram_below_4g, *ram_above_4g;
FWCfgState *fw_cfg;
MachineState *machine = MACHINE(pcms);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
assert(machine->ram_size == pcms->below_4g_mem_size +
pcms->above_4g_mem_size);
linux_boot = (machine->kernel_filename != NULL);
/* Allocate RAM. We allocate it as a single memory region and use
* aliases to address portions of it, mostly for backwards compatibility
* with older qemus that used qemu_ram_alloc().
*/
ram = g_malloc(sizeof(*ram));
memory_region_allocate_system_memory(ram, NULL, "pc.ram",
machine->ram_size);
*ram_memory = ram;
ram_below_4g = g_malloc(sizeof(*ram_below_4g));
memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
0, pcms->below_4g_mem_size);
memory_region_add_subregion(system_memory, 0, ram_below_4g);
e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
if (pcms->above_4g_mem_size > 0) {
ram_above_4g = g_malloc(sizeof(*ram_above_4g));
memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
pcms->below_4g_mem_size,
pcms->above_4g_mem_size);
memory_region_add_subregion(system_memory, 0x100000000ULL,
ram_above_4g);
e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
}
if (!pcmc->has_reserved_memory &&
(machine->ram_slots ||
(machine->maxram_size > machine->ram_size))) {
MachineClass *mc = MACHINE_GET_CLASS(machine);
error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
mc->name);
exit(EXIT_FAILURE);
}
/* always allocate the device memory information */
machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
/* initialize device memory address space */
if (pcmc->has_reserved_memory &&
(machine->ram_size < machine->maxram_size)) {
ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
error_report("unsupported amount of memory slots: %"PRIu64,
machine->ram_slots);
exit(EXIT_FAILURE);
}
if (QEMU_ALIGN_UP(machine->maxram_size,
TARGET_PAGE_SIZE) != machine->maxram_size) {
error_report("maximum memory size must by aligned to multiple of "
"%d bytes", TARGET_PAGE_SIZE);
exit(EXIT_FAILURE);
}
machine->device_memory->base =
ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
if (pcmc->enforce_aligned_dimm) {
/* size device region assuming 1G page max alignment per slot */
device_mem_size += (1 * GiB) * machine->ram_slots;
}
if ((machine->device_memory->base + device_mem_size) <
device_mem_size) {
error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
machine->maxram_size);
exit(EXIT_FAILURE);
}
memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
"device-memory", device_mem_size);
memory_region_add_subregion(system_memory, machine->device_memory->base,
&machine->device_memory->mr);
}
/* Initialize PC system firmware */
pc_system_firmware_init(pcms, rom_memory);
option_rom_mr = g_malloc(sizeof(*option_rom_mr));
memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 17:51:43 +03:00
&error_fatal);
pc: make 'pc.rom' readonly when machine has PCI enabled looking at bios ROM mapping in QEMU it seems that only isapc (i.e. not PCI enabled machine) requires ROM being mapped as RW in other cases BIOS is mapped as RO. Do the same for option ROM 'pc.rom' when machine has PCI enabled. As useful side-effect pc.rom MemoryRegion stops being put in vhost memory map (filtered out by vhost_section()), which reduces number of entries by 1. Coincidentally it fixes migration failure reported in "[PATCH V2] vhost: fix a migration failed because of vhost region merge" where following destination CLI with /sys/module/vhost/parameters/max_mem_regions = 8 export DIMMSCOUNT=6 QEMU -enable-kvm \ -netdev type=tap,id=guest0,vhost=on,script=no,vhostforce \ -device virtio-net-pci,netdev=guest0 \ -m 256,slots=256,maxmem=2G \ `i=0; while [ $i -lt $DIMMSCOUNT ]; do echo \ "-object memory-backend-ram,id=m$i,size=128M \ -device pc-dimm,id=d$i,memdev=m$i"; i=$(($i + 1)); \ done` will fail to startup with error: "-device pc-dimm,id=d5,memdev=m5: a used vhost backend has no free memory slots left" while it's possible to add the 6th DIMM during hotplug on source. Issue is caused by the fact that number of entries in vhost map is bigger on 1 entry, when -device is processed, than after guest boots up, and that offending entry belongs to 'pc.rom', it's not like vhost intends to do IO in ROM range so making it RO hides region from vhost and makes number of entries in vhost memory map at -device/machine_done time match number of entries after guest boots. Signed-off-by: Igor Mammedov <imammedo@redhat.com> Reported-by: Peng Hao <peng.hao2@zte.com.cn> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2017-07-28 12:09:05 +03:00
if (pcmc->pci_enabled) {
memory_region_set_readonly(option_rom_mr, true);
}
memory_region_add_subregion_overlap(rom_memory,
PC_ROM_MIN_VGA,
option_rom_mr,
1);
fw_cfg = bochs_bios_init(&address_space_memory, pcms);
rom_set_fw(fw_cfg);
if (pcmc->has_reserved_memory && machine->device_memory->base) {
uint64_t *val = g_malloc(sizeof(*val));
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
uint64_t res_mem_end = machine->device_memory->base;
if (!pcmc->broken_reserved_end) {
res_mem_end += memory_region_size(&machine->device_memory->mr);
}
*val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
}
if (linux_boot) {
load_linux(pcms, fw_cfg);
}
for (i = 0; i < nb_option_roms; i++) {
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
pcms->fw_cfg = fw_cfg;
/* Init default IOAPIC address space */
pcms->ioapic_as = &address_space_memory;
}
/*
* The 64bit pci hole starts after "above 4G RAM" and
* potentially the space reserved for memory hotplug.
*/
uint64_t pc_pci_hole64_start(void)
{
PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
MachineState *ms = MACHINE(pcms);
uint64_t hole64_start = 0;
if (pcmc->has_reserved_memory && ms->device_memory->base) {
hole64_start = ms->device_memory->base;
if (!pcmc->broken_reserved_end) {
hole64_start += memory_region_size(&ms->device_memory->mr);
}
} else {
hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
}
return ROUND_UP(hole64_start, 1 * GiB);
}
qemu_irq pc_allocate_cpu_irq(void)
{
return qemu_allocate_irq(pic_irq_request, NULL, 0);
}
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
{
DeviceState *dev = NULL;
rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
if (pci_bus) {
PCIDevice *pcidev = pci_vga_init(pci_bus);
dev = pcidev ? &pcidev->qdev : NULL;
} else if (isa_bus) {
ISADevice *isadev = isa_vga_init(isa_bus);
dev = isadev ? DEVICE(isadev) : NULL;
}
rom_reset_order_override();
return dev;
}
static const MemoryRegionOps ioport80_io_ops = {
.write = ioport80_write,
.read = ioport80_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static const MemoryRegionOps ioportF0_io_ops = {
.write = ioportF0_write,
.read = ioportF0_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
{
int i;
DriveInfo *fd[MAX_FD];
qemu_irq *a20_line;
ISADevice *i8042, *port92, *vmmouse;
serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
for (i = 0; i < MAX_FD; i++) {
fd[i] = drive_get(IF_FLOPPY, 0, i);
create_fdctrl |= !!fd[i];
}
if (create_fdctrl) {
fdctrl_init_isa(isa_bus, fd);
}
i8042 = isa_create_simple(isa_bus, "i8042");
if (!no_vmport) {
vmport_init(isa_bus);
vmmouse = isa_try_create(isa_bus, "vmmouse");
} else {
vmmouse = NULL;
}
if (vmmouse) {
DeviceState *dev = DEVICE(vmmouse);
qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
qdev_init_nofail(dev);
}
port92 = isa_create_simple(isa_bus, "port92");
a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
i8042_setup_a20_line(i8042, a20_line[0]);
port92_init(port92, a20_line[1]);
g_free(a20_line);
}
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
ISADevice **rtc_state,
bool create_fdctrl,
bool no_vmport,
bool has_pit,
uint32_t hpet_irqs)
{
int i;
DeviceState *hpet = NULL;
int pit_isa_irq = 0;
qemu_irq pit_alt_irq = NULL;
qemu_irq rtc_irq = NULL;
ISADevice *pit = NULL;
MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
/*
* Check if an HPET shall be created.
*
* Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
* when the HPET wants to take over. Thus we have to disable the latter.
*/
if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
/* In order to set property, here not using sysbus_try_create_simple */
hpet = qdev_try_create(NULL, TYPE_HPET);
if (hpet) {
/* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
* and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
* IRQ8 and IRQ2.
*/
uint8_t compat = object_property_get_uint(OBJECT(hpet),
HPET_INTCAP, NULL);
if (!compat) {
qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
}
qdev_init_nofail(hpet);
sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
for (i = 0; i < GSI_NUM_PINS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
}
pit_isa_irq = -1;
pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
}
}
*rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
qemu_register_boot_set(pc_boot_set, *rtc_state);
if (!xen_enabled() && has_pit) {
if (kvm_pit_in_kernel()) {
pit = kvm_pit_init(isa_bus, 0x40);
} else {
pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
}
if (hpet) {
/* connect PIT to output control line of the HPET */
qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
}
pcspk_init(isa_bus, pit);
}
i8257_dma_init(isa_bus, 0);
/* Super I/O */
pc_superio_init(isa_bus, create_fdctrl, no_vmport);
}
void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
{
int i;
rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
const char *model = nd->model ? nd->model : pcmc->default_nic_model;
if (g_str_equal(model, "ne2k_isa")) {
pc_init_ne2k_isa(isa_bus, nd);
} else {
pci_nic_init_nofail(nd, pci_bus, model, NULL);
}
}
rom_reset_order_override();
}
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
{
DeviceState *dev;
SysBusDevice *d;
unsigned int i;
if (kvm_ioapic_in_kernel()) {
dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
} else {
dev = qdev_create(NULL, TYPE_IOAPIC);
}
if (parent_name) {
object_property_add_child(object_resolve_path(parent_name, NULL),
"ioapic", OBJECT(dev), NULL);
}
qdev_init_nofail(dev);
d = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
for (i = 0; i < IOAPIC_NUM_PINS; i++) {
gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
}
}
static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
const MachineState *ms = MACHINE(hotplug_dev);
const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
const uint64_t legacy_align = TARGET_PAGE_SIZE;
Error *local_err = NULL;
/*
* When -no-acpi is used with Q35 machine type, no ACPI is built,
* but pcms->acpi_dev is still created. Check !acpi_enabled in
* addition to cover this case.
*/
if (!pcms->acpi_dev || !acpi_enabled) {
error_setg(errp,
"memory hotplug is not enabled: missing acpi device or acpi disabled");
return;
}
if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
return;
}
hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
}
static void pc_memory_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
Error *local_err = NULL;
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
MachineState *ms = MACHINE(hotplug_dev);
hw/i386: fix nvdimm check error path Commit e987c37aee1752177906847630d32477da57e705 ("hw/i386: check if nvdimm is enabled before plugging") introduced a check to reject nvdimm hotplug if -machine pc,nvdimm=on was not given. This check executes after pc_dimm_memory_plug() has already completed and does not reverse the effect of this function in the case of failure. Perform the check before calling pc_dimm_memory_plug(). This fixes the following abort: $ qemu -M accel=kvm -m 1G,slots=4,maxmem=8G \ -object memory-backend-file,id=mem1,share=on,mem-path=nvdimm.dat,size=1G (qemu) device_add nvdimm,memdev=mem1 nvdimm is not enabled: missing 'nvdimm' in '-M' (qemu) device_add nvdimm,memdev=mem1 Core dumped The backtrace is: #0 0x00007fffdb5b191f in raise () at /lib64/libc.so.6 #1 0x00007fffdb5b351a in abort () at /lib64/libc.so.6 #2 0x00007fffdb5a9da7 in __assert_fail_base () at /lib64/libc.so.6 #3 0x00007fffdb5a9e52 in () at /lib64/libc.so.6 #4 0x000055555577a5fa in qemu_ram_set_idstr (new_block=0x555556747a00, name=<optimized out>, dev=dev@entry=0x555556705590) at qemu/exec.c:1709 #5 0x0000555555a0fe86 in vmstate_register_ram (mr=mr@entry=0x55555673a0e0, dev=dev@entry=0x555556705590) at migration/savevm.c:2293 #6 0x0000555555965088 in pc_dimm_memory_plug (dev=dev@entry=0x555556705590, hpms=hpms@entry=0x5555566bb0e0, mr=mr@entry=0x555556705630, align=<optimized out>, errp=errp@entry=0x7fffffffc660) at hw/mem/pc-dimm.c:110 #7 0x000055555581d89b in pc_dimm_plug (errp=0x7fffffffc6c0, dev=0x555556705590, hotplug_dev=<optimized out>) at qemu/hw/i386/pc.c:1713 #8 0x000055555581d89b in pc_machine_device_plug_cb (hotplug_dev=<optimized out>, dev=0x555556705590, errp=0x7fffffffc6c0) at qemu/hw/i386/pc.c:2004 #9 0x0000555555914da6 in device_set_realized (obj=<optimized out>, value=<optimized out>, errp=0x7fffffffc7e8) at hw/core/qdev.c:926 Cc: Haozhong Zhang <haozhong.zhang@intel.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Haozhong Zhang <haozhong.zhang@intel.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2017-06-09 18:16:15 +03:00
bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
if (local_err) {
goto out;
}
hw/i386: fix nvdimm check error path Commit e987c37aee1752177906847630d32477da57e705 ("hw/i386: check if nvdimm is enabled before plugging") introduced a check to reject nvdimm hotplug if -machine pc,nvdimm=on was not given. This check executes after pc_dimm_memory_plug() has already completed and does not reverse the effect of this function in the case of failure. Perform the check before calling pc_dimm_memory_plug(). This fixes the following abort: $ qemu -M accel=kvm -m 1G,slots=4,maxmem=8G \ -object memory-backend-file,id=mem1,share=on,mem-path=nvdimm.dat,size=1G (qemu) device_add nvdimm,memdev=mem1 nvdimm is not enabled: missing 'nvdimm' in '-M' (qemu) device_add nvdimm,memdev=mem1 Core dumped The backtrace is: #0 0x00007fffdb5b191f in raise () at /lib64/libc.so.6 #1 0x00007fffdb5b351a in abort () at /lib64/libc.so.6 #2 0x00007fffdb5a9da7 in __assert_fail_base () at /lib64/libc.so.6 #3 0x00007fffdb5a9e52 in () at /lib64/libc.so.6 #4 0x000055555577a5fa in qemu_ram_set_idstr (new_block=0x555556747a00, name=<optimized out>, dev=dev@entry=0x555556705590) at qemu/exec.c:1709 #5 0x0000555555a0fe86 in vmstate_register_ram (mr=mr@entry=0x55555673a0e0, dev=dev@entry=0x555556705590) at migration/savevm.c:2293 #6 0x0000555555965088 in pc_dimm_memory_plug (dev=dev@entry=0x555556705590, hpms=hpms@entry=0x5555566bb0e0, mr=mr@entry=0x555556705630, align=<optimized out>, errp=errp@entry=0x7fffffffc660) at hw/mem/pc-dimm.c:110 #7 0x000055555581d89b in pc_dimm_plug (errp=0x7fffffffc6c0, dev=0x555556705590, hotplug_dev=<optimized out>) at qemu/hw/i386/pc.c:1713 #8 0x000055555581d89b in pc_machine_device_plug_cb (hotplug_dev=<optimized out>, dev=0x555556705590, errp=0x7fffffffc6c0) at qemu/hw/i386/pc.c:2004 #9 0x0000555555914da6 in device_set_realized (obj=<optimized out>, value=<optimized out>, errp=0x7fffffffc7e8) at hw/core/qdev.c:926 Cc: Haozhong Zhang <haozhong.zhang@intel.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Haozhong Zhang <haozhong.zhang@intel.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2017-06-09 18:16:15 +03:00
if (is_nvdimm) {
nvdimm_plug(ms->nvdimms_state);
}
hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
out:
error_propagate(errp, local_err);
}
static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
Error *local_err = NULL;
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
/*
* When -no-acpi is used with Q35 machine type, no ACPI is built,
* but pcms->acpi_dev is still created. Check !acpi_enabled in
* addition to cover this case.
*/
if (!pcms->acpi_dev || !acpi_enabled) {
error_setg(&local_err,
"memory hotplug is not enabled: missing acpi device or acpi disabled");
goto out;
}
if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
error_setg(&local_err,
"nvdimm device hot unplug is not supported yet.");
goto out;
}
hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
&local_err);
out:
error_propagate(errp, local_err);
}
static void pc_memory_unplug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
Error *local_err = NULL;
hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
if (local_err) {
goto out;
}
pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
qdev: Let the hotplug_handler_unplug() caller delete the device When unplugging a device, at one point the device will be destroyed via object_unparent(). This will, one the one hand, unrealize the removed device hierarchy, and on the other hand, destroy/free the device hierarchy. When chaining hotplug handlers, we want to overwrite a bus hotplug handler by the machine hotplug handler, to be able to perform some part of the plug/unplug and to forward the calls to the bus hotplug handler. For now, the bus hotplug handler would trigger an object_unparent(), not allowing us to perform some unplug action on a device after we forwarded the call to the bus hotplug handler. The device would be gone at that point. machine_unplug_handler(dev) /* eventually do unplug stuff */ bus_unplug_handler(dev) /* dev is gone, we can't do more unplug stuff */ So move the object_unparent() to the original caller of the unplug. For now, keep the unrealize() at the original places of the object_unparent(). For implicitly chained hotplug handlers (e.g. pc code calling acpi hotplug handlers), the object_unparent() has to be done by the outermost caller. So when calling hotplug_handler_unplug() from inside an unplug handler, nothing is to be done. hotplug_handler_unplug(dev) -> calls machine_unplug_handler() machine_unplug_handler(dev) { /* eventually do unplug stuff */ bus_unplug_handler(dev) -> calls unrealize(dev) /* we can do more unplug stuff but device already unrealized */ } object_unparent(dev) In the long run, every unplug action should be factored out of the unrealize() function into the unplug handler (especially for PCI). Then we can get rid of the additonal unrealize() calls and object_unparent() will properly unrealize the device hierarchy after the device has been unplugged. hotplug_handler_unplug(dev) -> calls machine_unplug_handler() machine_unplug_handler(dev) { /* eventually do unplug stuff */ bus_unplug_handler(dev) -> only unplugs, does not unrealize /* we can do more unplug stuff */ } object_unparent(dev) -> will unrealize The original approach was suggested by Igor Mammedov for the PCI part, but I extended it to all hotplug handlers. I consider this one step into the right direction. To summarize: - object_unparent() on synchronous unplugs is done by common code -- "Caller of hotplug_handler_unplug" - object_unparent() on asynchronous unplugs ("unplug requests") has to be done manually -- "Caller of hotplug_handler_unplug" Reviewed-by: Igor Mammedov <imammedo@redhat.com> Acked-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20190228122849.4296-2-david@redhat.com> Reviewed-by: Greg Kurz <groug@kaod.org> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2019-02-28 15:28:47 +03:00
object_property_set_bool(OBJECT(dev), false, "realized", NULL);
out:
error_propagate(errp, local_err);
}
static int pc_apic_cmp(const void *a, const void *b)
{
CPUArchId *apic_a = (CPUArchId *)a;
CPUArchId *apic_b = (CPUArchId *)b;
return apic_a->arch_id - apic_b->arch_id;
}
/* returns pointer to CPUArchId descriptor that matches CPU's apic_id
* in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
* entry corresponding to CPU's apic_id returns NULL.
*/
static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
{
CPUArchId apic_id, *found_cpu;
apic_id.arch_id = id;
found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
pc_apic_cmp);
if (found_cpu && idx) {
*idx = found_cpu - ms->possible_cpus->cpus;
}
return found_cpu;
}
static void pc_cpu_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
CPUArchId *found_cpu;
Error *local_err = NULL;
X86CPU *cpu = X86_CPU(dev);
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
if (pcms->acpi_dev) {
hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
if (local_err) {
goto out;
}
}
/* increment the number of CPUs */
pcms->boot_cpus++;
if (pcms->rtc) {
rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
}
if (pcms->fw_cfg) {
fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
}
found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
found_cpu->cpu = OBJECT(dev);
out:
error_propagate(errp, local_err);
}
static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
int idx = -1;
Error *local_err = NULL;
X86CPU *cpu = X86_CPU(dev);
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
if (!pcms->acpi_dev) {
error_setg(&local_err, "CPU hot unplug not supported without ACPI");
goto out;
}
pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
assert(idx != -1);
if (idx == 0) {
error_setg(&local_err, "Boot CPU is unpluggable");
goto out;
}
hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
&local_err);
if (local_err) {
goto out;
}
out:
error_propagate(errp, local_err);
}
static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
CPUArchId *found_cpu;
Error *local_err = NULL;
X86CPU *cpu = X86_CPU(dev);
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
if (local_err) {
goto out;
}
found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
found_cpu->cpu = NULL;
qdev: Let the hotplug_handler_unplug() caller delete the device When unplugging a device, at one point the device will be destroyed via object_unparent(). This will, one the one hand, unrealize the removed device hierarchy, and on the other hand, destroy/free the device hierarchy. When chaining hotplug handlers, we want to overwrite a bus hotplug handler by the machine hotplug handler, to be able to perform some part of the plug/unplug and to forward the calls to the bus hotplug handler. For now, the bus hotplug handler would trigger an object_unparent(), not allowing us to perform some unplug action on a device after we forwarded the call to the bus hotplug handler. The device would be gone at that point. machine_unplug_handler(dev) /* eventually do unplug stuff */ bus_unplug_handler(dev) /* dev is gone, we can't do more unplug stuff */ So move the object_unparent() to the original caller of the unplug. For now, keep the unrealize() at the original places of the object_unparent(). For implicitly chained hotplug handlers (e.g. pc code calling acpi hotplug handlers), the object_unparent() has to be done by the outermost caller. So when calling hotplug_handler_unplug() from inside an unplug handler, nothing is to be done. hotplug_handler_unplug(dev) -> calls machine_unplug_handler() machine_unplug_handler(dev) { /* eventually do unplug stuff */ bus_unplug_handler(dev) -> calls unrealize(dev) /* we can do more unplug stuff but device already unrealized */ } object_unparent(dev) In the long run, every unplug action should be factored out of the unrealize() function into the unplug handler (especially for PCI). Then we can get rid of the additonal unrealize() calls and object_unparent() will properly unrealize the device hierarchy after the device has been unplugged. hotplug_handler_unplug(dev) -> calls machine_unplug_handler() machine_unplug_handler(dev) { /* eventually do unplug stuff */ bus_unplug_handler(dev) -> only unplugs, does not unrealize /* we can do more unplug stuff */ } object_unparent(dev) -> will unrealize The original approach was suggested by Igor Mammedov for the PCI part, but I extended it to all hotplug handlers. I consider this one step into the right direction. To summarize: - object_unparent() on synchronous unplugs is done by common code -- "Caller of hotplug_handler_unplug" - object_unparent() on asynchronous unplugs ("unplug requests") has to be done manually -- "Caller of hotplug_handler_unplug" Reviewed-by: Igor Mammedov <imammedo@redhat.com> Acked-by: Cornelia Huck <cohuck@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20190228122849.4296-2-david@redhat.com> Reviewed-by: Greg Kurz <groug@kaod.org> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2019-02-28 15:28:47 +03:00
object_property_set_bool(OBJECT(dev), false, "realized", NULL);
/* decrement the number of CPUs */
pcms->boot_cpus--;
/* Update the number of CPUs in CMOS */
rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
out:
error_propagate(errp, local_err);
}
static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
int idx;
CPUState *cs;
CPUArchId *cpu_slot;
X86CPUTopoInfo topo;
X86CPU *cpu = X86_CPU(dev);
CPUX86State *env = &cpu->env;
MachineState *ms = MACHINE(hotplug_dev);
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
unsigned int smp_cores = ms->smp.cores;
unsigned int smp_threads = ms->smp.threads;
if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
ms->cpu_type);
return;
}
env->nr_dies = pcms->smp_dies;
/*
* If APIC ID is not set,
* set it based on socket/die/core/thread properties.
*/
if (cpu->apic_id == UNASSIGNED_APIC_ID) {
int max_socket = (ms->smp.max_cpus - 1) /
smp_threads / smp_cores / pcms->smp_dies;
if (cpu->socket_id < 0) {
error_setg(errp, "CPU socket-id is not set");
return;
} else if (cpu->socket_id > max_socket) {
error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
cpu->socket_id, max_socket);
return;
} else if (cpu->die_id > pcms->smp_dies - 1) {
error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
cpu->die_id, max_socket);
return;
}
if (cpu->core_id < 0) {
error_setg(errp, "CPU core-id is not set");
return;
} else if (cpu->core_id > (smp_cores - 1)) {
error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
cpu->core_id, smp_cores - 1);
return;
}
if (cpu->thread_id < 0) {
error_setg(errp, "CPU thread-id is not set");
return;
} else if (cpu->thread_id > (smp_threads - 1)) {
error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
cpu->thread_id, smp_threads - 1);
return;
}
topo.pkg_id = cpu->socket_id;
topo.die_id = cpu->die_id;
topo.core_id = cpu->core_id;
topo.smt_id = cpu->thread_id;
cpu->apic_id = apicid_from_topo_ids(pcms->smp_dies, smp_cores,
smp_threads, &topo);
}
cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
if (!cpu_slot) {
MachineState *ms = MACHINE(pcms);
x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
smp_cores, smp_threads, &topo);
error_setg(errp,
"Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
" APIC ID %" PRIu32 ", valid index range 0:%d",
topo.pkg_id, topo.die_id, topo.core_id, topo.smt_id,
cpu->apic_id, ms->possible_cpus->len - 1);
return;
}
if (cpu_slot->cpu) {
error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
idx, cpu->apic_id);
return;
}
/* if 'address' properties socket-id/core-id/thread-id are not set, set them
* so that machine_query_hotpluggable_cpus would show correct values
*/
/* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
* once -smp refactoring is complete and there will be CPU private
* CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
smp_cores, smp_threads, &topo);
if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
" 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
return;
}
cpu->socket_id = topo.pkg_id;
if (cpu->die_id != -1 && cpu->die_id != topo.die_id) {
error_setg(errp, "property die-id: %u doesn't match set apic-id:"
" 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo.die_id);
return;
}
cpu->die_id = topo.die_id;
if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
error_setg(errp, "property core-id: %u doesn't match set apic-id:"
" 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
return;
}
cpu->core_id = topo.core_id;
if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
" 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
return;
}
cpu->thread_id = topo.smt_id;
if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
!kvm_hv_vpindex_settable()) {
error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
return;
}
cs = CPU(cpu);
cs->cpu_index = idx;
numa_cpu_pre_plug(cpu_slot, dev, errp);
}
static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
Error *local_err = NULL;
if (!hotplug_dev2) {
/*
* Without a bus hotplug handler, we cannot control the plug/unplug
* order. This should never be the case on x86, however better add
* a safety net.
*/
error_setg(errp, "virtio-pmem-pci not supported on this bus.");
return;
}
/*
* First, see if we can plug this memory device at all. If that
* succeeds, branch of to the actual hotplug handler.
*/
memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
&local_err);
if (!local_err) {
hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
}
error_propagate(errp, local_err);
}
static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
Error *local_err = NULL;
/*
* Plug the memory device first and then branch off to the actual
* hotplug handler. If that one fails, we can easily undo the memory
* device bits.
*/
memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
hotplug_handler_plug(hotplug_dev2, dev, &local_err);
if (local_err) {
memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
}
error_propagate(errp, local_err);
}
static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
/* We don't support virtio pmem hot unplug */
error_setg(errp, "virtio pmem device unplug not supported.");
}
static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
/* We don't support virtio pmem hot unplug */
}
static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_memory_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
pc_cpu_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
}
}
static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_memory_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
pc_cpu_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
}
}
static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_memory_unplug_request(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
} else {
error_setg(errp, "acpi: device unplug request for not supported device"
" type: %s", object_get_typename(OBJECT(dev)));
}
}
static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_memory_unplug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
pc_cpu_unplug_cb(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
} else {
error_setg(errp, "acpi: device unplug for not supported device"
" type: %s", object_get_typename(OBJECT(dev)));
}
}
static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
DeviceState *dev)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
return HOTPLUG_HANDLER(machine);
}
return NULL;
}
static void
pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
MachineState *ms = MACHINE(obj);
int64_t value = 0;
if (ms->device_memory) {
value = memory_region_size(&ms->device_memory->mr);
}
qapi: Swap visit_* arguments for consistent 'name' placement JSON uses "name":value, but many of our visitor interfaces were called with visit_type_FOO(v, &value, name, errp). This can be a bit confusing to have to mentally swap the parameter order to match JSON order. It's particularly bad for visit_start_struct(), where the 'name' parameter is smack in the middle of the otherwise-related group of 'obj, kind, size' parameters! It's time to do a global swap of the parameter ordering, so that the 'name' parameter is always immediately after the Visitor argument. Additional reason in favor of the swap: the existing include/qjson.h prefers listing 'name' first in json_prop_*(), and I have plans to unify that file with the qapi visitors; listing 'name' first in qapi will minimize churn to the (admittedly few) qjson.h clients. Later patches will then fix docs, object.h, visitor-impl.h, and those clients to match. Done by first patching scripts/qapi*.py by hand to make generated files do what I want, then by running the following Coccinelle script to affect the rest of the code base: $ spatch --sp-file script `git grep -l '\bvisit_' -- '**/*.[ch]'` I then had to apply some touchups (Coccinelle insisted on TAB indentation in visitor.h, and botched the signature of visit_type_enum() by rewriting 'const char *const strings[]' to the syntactically invalid 'const char*const[] strings'). The movement of parameters is sufficient to provoke compiler errors if any callers were missed. // Part 1: Swap declaration order @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_start_struct -(TV v, TObj OBJ, T1 ARG1, const char *name, T2 ARG2, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type bool, TV, T1; identifier ARG1; @@ bool visit_optional -(TV v, T1 ARG1, const char *name) +(TV v, const char *name, T1 ARG1) { ... } @@ type TV, TErr, TObj, T1; identifier OBJ, ARG1; @@ void visit_get_next_type -(TV v, TObj OBJ, T1 ARG1, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, TErr errp) { ... } @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_type_enum -(TV v, TObj OBJ, T1 ARG1, T2 ARG2, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type TV, TErr, TObj; identifier OBJ; identifier VISIT_TYPE =~ "^visit_type_"; @@ void VISIT_TYPE -(TV v, TObj OBJ, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, TErr errp) { ... } // Part 2: swap caller order @@ expression V, NAME, OBJ, ARG1, ARG2, ERR; identifier VISIT_TYPE =~ "^visit_type_"; @@ ( -visit_start_struct(V, OBJ, ARG1, NAME, ARG2, ERR) +visit_start_struct(V, NAME, OBJ, ARG1, ARG2, ERR) | -visit_optional(V, ARG1, NAME) +visit_optional(V, NAME, ARG1) | -visit_get_next_type(V, OBJ, ARG1, NAME, ERR) +visit_get_next_type(V, NAME, OBJ, ARG1, ERR) | -visit_type_enum(V, OBJ, ARG1, ARG2, NAME, ERR) +visit_type_enum(V, NAME, OBJ, ARG1, ARG2, ERR) | -VISIT_TYPE(V, OBJ, NAME, ERR) +VISIT_TYPE(V, NAME, OBJ, ERR) ) Signed-off-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com> Message-Id: <1454075341-13658-19-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-01-29 16:48:54 +03:00
visit_type_int(v, name, &value, errp);
}
static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
uint64_t value = pcms->max_ram_below_4g;
qapi: Swap visit_* arguments for consistent 'name' placement JSON uses "name":value, but many of our visitor interfaces were called with visit_type_FOO(v, &value, name, errp). This can be a bit confusing to have to mentally swap the parameter order to match JSON order. It's particularly bad for visit_start_struct(), where the 'name' parameter is smack in the middle of the otherwise-related group of 'obj, kind, size' parameters! It's time to do a global swap of the parameter ordering, so that the 'name' parameter is always immediately after the Visitor argument. Additional reason in favor of the swap: the existing include/qjson.h prefers listing 'name' first in json_prop_*(), and I have plans to unify that file with the qapi visitors; listing 'name' first in qapi will minimize churn to the (admittedly few) qjson.h clients. Later patches will then fix docs, object.h, visitor-impl.h, and those clients to match. Done by first patching scripts/qapi*.py by hand to make generated files do what I want, then by running the following Coccinelle script to affect the rest of the code base: $ spatch --sp-file script `git grep -l '\bvisit_' -- '**/*.[ch]'` I then had to apply some touchups (Coccinelle insisted on TAB indentation in visitor.h, and botched the signature of visit_type_enum() by rewriting 'const char *const strings[]' to the syntactically invalid 'const char*const[] strings'). The movement of parameters is sufficient to provoke compiler errors if any callers were missed. // Part 1: Swap declaration order @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_start_struct -(TV v, TObj OBJ, T1 ARG1, const char *name, T2 ARG2, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type bool, TV, T1; identifier ARG1; @@ bool visit_optional -(TV v, T1 ARG1, const char *name) +(TV v, const char *name, T1 ARG1) { ... } @@ type TV, TErr, TObj, T1; identifier OBJ, ARG1; @@ void visit_get_next_type -(TV v, TObj OBJ, T1 ARG1, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, TErr errp) { ... } @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_type_enum -(TV v, TObj OBJ, T1 ARG1, T2 ARG2, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type TV, TErr, TObj; identifier OBJ; identifier VISIT_TYPE =~ "^visit_type_"; @@ void VISIT_TYPE -(TV v, TObj OBJ, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, TErr errp) { ... } // Part 2: swap caller order @@ expression V, NAME, OBJ, ARG1, ARG2, ERR; identifier VISIT_TYPE =~ "^visit_type_"; @@ ( -visit_start_struct(V, OBJ, ARG1, NAME, ARG2, ERR) +visit_start_struct(V, NAME, OBJ, ARG1, ARG2, ERR) | -visit_optional(V, ARG1, NAME) +visit_optional(V, NAME, ARG1) | -visit_get_next_type(V, OBJ, ARG1, NAME, ERR) +visit_get_next_type(V, NAME, OBJ, ARG1, ERR) | -visit_type_enum(V, OBJ, ARG1, ARG2, NAME, ERR) +visit_type_enum(V, NAME, OBJ, ARG1, ARG2, ERR) | -VISIT_TYPE(V, OBJ, NAME, ERR) +VISIT_TYPE(V, NAME, OBJ, ERR) ) Signed-off-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com> Message-Id: <1454075341-13658-19-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-01-29 16:48:54 +03:00
visit_type_size(v, name, &value, errp);
}
static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
Error *error = NULL;
uint64_t value;
qapi: Swap visit_* arguments for consistent 'name' placement JSON uses "name":value, but many of our visitor interfaces were called with visit_type_FOO(v, &value, name, errp). This can be a bit confusing to have to mentally swap the parameter order to match JSON order. It's particularly bad for visit_start_struct(), where the 'name' parameter is smack in the middle of the otherwise-related group of 'obj, kind, size' parameters! It's time to do a global swap of the parameter ordering, so that the 'name' parameter is always immediately after the Visitor argument. Additional reason in favor of the swap: the existing include/qjson.h prefers listing 'name' first in json_prop_*(), and I have plans to unify that file with the qapi visitors; listing 'name' first in qapi will minimize churn to the (admittedly few) qjson.h clients. Later patches will then fix docs, object.h, visitor-impl.h, and those clients to match. Done by first patching scripts/qapi*.py by hand to make generated files do what I want, then by running the following Coccinelle script to affect the rest of the code base: $ spatch --sp-file script `git grep -l '\bvisit_' -- '**/*.[ch]'` I then had to apply some touchups (Coccinelle insisted on TAB indentation in visitor.h, and botched the signature of visit_type_enum() by rewriting 'const char *const strings[]' to the syntactically invalid 'const char*const[] strings'). The movement of parameters is sufficient to provoke compiler errors if any callers were missed. // Part 1: Swap declaration order @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_start_struct -(TV v, TObj OBJ, T1 ARG1, const char *name, T2 ARG2, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type bool, TV, T1; identifier ARG1; @@ bool visit_optional -(TV v, T1 ARG1, const char *name) +(TV v, const char *name, T1 ARG1) { ... } @@ type TV, TErr, TObj, T1; identifier OBJ, ARG1; @@ void visit_get_next_type -(TV v, TObj OBJ, T1 ARG1, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, TErr errp) { ... } @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_type_enum -(TV v, TObj OBJ, T1 ARG1, T2 ARG2, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type TV, TErr, TObj; identifier OBJ; identifier VISIT_TYPE =~ "^visit_type_"; @@ void VISIT_TYPE -(TV v, TObj OBJ, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, TErr errp) { ... } // Part 2: swap caller order @@ expression V, NAME, OBJ, ARG1, ARG2, ERR; identifier VISIT_TYPE =~ "^visit_type_"; @@ ( -visit_start_struct(V, OBJ, ARG1, NAME, ARG2, ERR) +visit_start_struct(V, NAME, OBJ, ARG1, ARG2, ERR) | -visit_optional(V, ARG1, NAME) +visit_optional(V, NAME, ARG1) | -visit_get_next_type(V, OBJ, ARG1, NAME, ERR) +visit_get_next_type(V, NAME, OBJ, ARG1, ERR) | -visit_type_enum(V, OBJ, ARG1, ARG2, NAME, ERR) +visit_type_enum(V, NAME, OBJ, ARG1, ARG2, ERR) | -VISIT_TYPE(V, OBJ, NAME, ERR) +VISIT_TYPE(V, NAME, OBJ, ERR) ) Signed-off-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com> Message-Id: <1454075341-13658-19-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-01-29 16:48:54 +03:00
visit_type_size(v, name, &value, &error);
if (error) {
error_propagate(errp, error);
return;
}
if (value > 4 * GiB) {
error_setg(&error,
"Machine option 'max-ram-below-4g=%"PRIu64
"' expects size less than or equal to 4G", value);
error_propagate(errp, error);
return;
}
if (value < 1 * MiB) {
warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
"BIOS may not work with less than 1MiB", value);
}
pcms->max_ram_below_4g = value;
}
static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
OnOffAuto vmport = pcms->vmport;
qapi: Swap visit_* arguments for consistent 'name' placement JSON uses "name":value, but many of our visitor interfaces were called with visit_type_FOO(v, &value, name, errp). This can be a bit confusing to have to mentally swap the parameter order to match JSON order. It's particularly bad for visit_start_struct(), where the 'name' parameter is smack in the middle of the otherwise-related group of 'obj, kind, size' parameters! It's time to do a global swap of the parameter ordering, so that the 'name' parameter is always immediately after the Visitor argument. Additional reason in favor of the swap: the existing include/qjson.h prefers listing 'name' first in json_prop_*(), and I have plans to unify that file with the qapi visitors; listing 'name' first in qapi will minimize churn to the (admittedly few) qjson.h clients. Later patches will then fix docs, object.h, visitor-impl.h, and those clients to match. Done by first patching scripts/qapi*.py by hand to make generated files do what I want, then by running the following Coccinelle script to affect the rest of the code base: $ spatch --sp-file script `git grep -l '\bvisit_' -- '**/*.[ch]'` I then had to apply some touchups (Coccinelle insisted on TAB indentation in visitor.h, and botched the signature of visit_type_enum() by rewriting 'const char *const strings[]' to the syntactically invalid 'const char*const[] strings'). The movement of parameters is sufficient to provoke compiler errors if any callers were missed. // Part 1: Swap declaration order @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_start_struct -(TV v, TObj OBJ, T1 ARG1, const char *name, T2 ARG2, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type bool, TV, T1; identifier ARG1; @@ bool visit_optional -(TV v, T1 ARG1, const char *name) +(TV v, const char *name, T1 ARG1) { ... } @@ type TV, TErr, TObj, T1; identifier OBJ, ARG1; @@ void visit_get_next_type -(TV v, TObj OBJ, T1 ARG1, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, TErr errp) { ... } @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_type_enum -(TV v, TObj OBJ, T1 ARG1, T2 ARG2, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type TV, TErr, TObj; identifier OBJ; identifier VISIT_TYPE =~ "^visit_type_"; @@ void VISIT_TYPE -(TV v, TObj OBJ, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, TErr errp) { ... } // Part 2: swap caller order @@ expression V, NAME, OBJ, ARG1, ARG2, ERR; identifier VISIT_TYPE =~ "^visit_type_"; @@ ( -visit_start_struct(V, OBJ, ARG1, NAME, ARG2, ERR) +visit_start_struct(V, NAME, OBJ, ARG1, ARG2, ERR) | -visit_optional(V, ARG1, NAME) +visit_optional(V, NAME, ARG1) | -visit_get_next_type(V, OBJ, ARG1, NAME, ERR) +visit_get_next_type(V, NAME, OBJ, ARG1, ERR) | -visit_type_enum(V, OBJ, ARG1, ARG2, NAME, ERR) +visit_type_enum(V, NAME, OBJ, ARG1, ARG2, ERR) | -VISIT_TYPE(V, OBJ, NAME, ERR) +VISIT_TYPE(V, NAME, OBJ, ERR) ) Signed-off-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com> Message-Id: <1454075341-13658-19-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-01-29 16:48:54 +03:00
visit_type_OnOffAuto(v, name, &vmport, errp);
}
static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
qapi: Swap visit_* arguments for consistent 'name' placement JSON uses "name":value, but many of our visitor interfaces were called with visit_type_FOO(v, &value, name, errp). This can be a bit confusing to have to mentally swap the parameter order to match JSON order. It's particularly bad for visit_start_struct(), where the 'name' parameter is smack in the middle of the otherwise-related group of 'obj, kind, size' parameters! It's time to do a global swap of the parameter ordering, so that the 'name' parameter is always immediately after the Visitor argument. Additional reason in favor of the swap: the existing include/qjson.h prefers listing 'name' first in json_prop_*(), and I have plans to unify that file with the qapi visitors; listing 'name' first in qapi will minimize churn to the (admittedly few) qjson.h clients. Later patches will then fix docs, object.h, visitor-impl.h, and those clients to match. Done by first patching scripts/qapi*.py by hand to make generated files do what I want, then by running the following Coccinelle script to affect the rest of the code base: $ spatch --sp-file script `git grep -l '\bvisit_' -- '**/*.[ch]'` I then had to apply some touchups (Coccinelle insisted on TAB indentation in visitor.h, and botched the signature of visit_type_enum() by rewriting 'const char *const strings[]' to the syntactically invalid 'const char*const[] strings'). The movement of parameters is sufficient to provoke compiler errors if any callers were missed. // Part 1: Swap declaration order @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_start_struct -(TV v, TObj OBJ, T1 ARG1, const char *name, T2 ARG2, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type bool, TV, T1; identifier ARG1; @@ bool visit_optional -(TV v, T1 ARG1, const char *name) +(TV v, const char *name, T1 ARG1) { ... } @@ type TV, TErr, TObj, T1; identifier OBJ, ARG1; @@ void visit_get_next_type -(TV v, TObj OBJ, T1 ARG1, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, TErr errp) { ... } @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_type_enum -(TV v, TObj OBJ, T1 ARG1, T2 ARG2, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type TV, TErr, TObj; identifier OBJ; identifier VISIT_TYPE =~ "^visit_type_"; @@ void VISIT_TYPE -(TV v, TObj OBJ, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, TErr errp) { ... } // Part 2: swap caller order @@ expression V, NAME, OBJ, ARG1, ARG2, ERR; identifier VISIT_TYPE =~ "^visit_type_"; @@ ( -visit_start_struct(V, OBJ, ARG1, NAME, ARG2, ERR) +visit_start_struct(V, NAME, OBJ, ARG1, ARG2, ERR) | -visit_optional(V, ARG1, NAME) +visit_optional(V, NAME, ARG1) | -visit_get_next_type(V, OBJ, ARG1, NAME, ERR) +visit_get_next_type(V, NAME, OBJ, ARG1, ERR) | -visit_type_enum(V, OBJ, ARG1, ARG2, NAME, ERR) +visit_type_enum(V, NAME, OBJ, ARG1, ARG2, ERR) | -VISIT_TYPE(V, OBJ, NAME, ERR) +VISIT_TYPE(V, NAME, OBJ, ERR) ) Signed-off-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com> Message-Id: <1454075341-13658-19-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-01-29 16:48:54 +03:00
visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
}
bool pc_machine_is_smm_enabled(PCMachineState *pcms)
{
bool smm_available = false;
if (pcms->smm == ON_OFF_AUTO_OFF) {
return false;
}
if (tcg_enabled() || qtest_enabled()) {
smm_available = true;
} else if (kvm_enabled()) {
smm_available = kvm_has_smm();
}
if (smm_available) {
return true;
}
if (pcms->smm == ON_OFF_AUTO_ON) {
error_report("System Management Mode not supported by this hypervisor.");
exit(1);
}
return false;
}
static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
OnOffAuto smm = pcms->smm;
qapi: Swap visit_* arguments for consistent 'name' placement JSON uses "name":value, but many of our visitor interfaces were called with visit_type_FOO(v, &value, name, errp). This can be a bit confusing to have to mentally swap the parameter order to match JSON order. It's particularly bad for visit_start_struct(), where the 'name' parameter is smack in the middle of the otherwise-related group of 'obj, kind, size' parameters! It's time to do a global swap of the parameter ordering, so that the 'name' parameter is always immediately after the Visitor argument. Additional reason in favor of the swap: the existing include/qjson.h prefers listing 'name' first in json_prop_*(), and I have plans to unify that file with the qapi visitors; listing 'name' first in qapi will minimize churn to the (admittedly few) qjson.h clients. Later patches will then fix docs, object.h, visitor-impl.h, and those clients to match. Done by first patching scripts/qapi*.py by hand to make generated files do what I want, then by running the following Coccinelle script to affect the rest of the code base: $ spatch --sp-file script `git grep -l '\bvisit_' -- '**/*.[ch]'` I then had to apply some touchups (Coccinelle insisted on TAB indentation in visitor.h, and botched the signature of visit_type_enum() by rewriting 'const char *const strings[]' to the syntactically invalid 'const char*const[] strings'). The movement of parameters is sufficient to provoke compiler errors if any callers were missed. // Part 1: Swap declaration order @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_start_struct -(TV v, TObj OBJ, T1 ARG1, const char *name, T2 ARG2, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type bool, TV, T1; identifier ARG1; @@ bool visit_optional -(TV v, T1 ARG1, const char *name) +(TV v, const char *name, T1 ARG1) { ... } @@ type TV, TErr, TObj, T1; identifier OBJ, ARG1; @@ void visit_get_next_type -(TV v, TObj OBJ, T1 ARG1, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, TErr errp) { ... } @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_type_enum -(TV v, TObj OBJ, T1 ARG1, T2 ARG2, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type TV, TErr, TObj; identifier OBJ; identifier VISIT_TYPE =~ "^visit_type_"; @@ void VISIT_TYPE -(TV v, TObj OBJ, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, TErr errp) { ... } // Part 2: swap caller order @@ expression V, NAME, OBJ, ARG1, ARG2, ERR; identifier VISIT_TYPE =~ "^visit_type_"; @@ ( -visit_start_struct(V, OBJ, ARG1, NAME, ARG2, ERR) +visit_start_struct(V, NAME, OBJ, ARG1, ARG2, ERR) | -visit_optional(V, ARG1, NAME) +visit_optional(V, NAME, ARG1) | -visit_get_next_type(V, OBJ, ARG1, NAME, ERR) +visit_get_next_type(V, NAME, OBJ, ARG1, ERR) | -visit_type_enum(V, OBJ, ARG1, ARG2, NAME, ERR) +visit_type_enum(V, NAME, OBJ, ARG1, ARG2, ERR) | -VISIT_TYPE(V, OBJ, NAME, ERR) +VISIT_TYPE(V, NAME, OBJ, ERR) ) Signed-off-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com> Message-Id: <1454075341-13658-19-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-01-29 16:48:54 +03:00
visit_type_OnOffAuto(v, name, &smm, errp);
}
static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
qapi: Swap visit_* arguments for consistent 'name' placement JSON uses "name":value, but many of our visitor interfaces were called with visit_type_FOO(v, &value, name, errp). This can be a bit confusing to have to mentally swap the parameter order to match JSON order. It's particularly bad for visit_start_struct(), where the 'name' parameter is smack in the middle of the otherwise-related group of 'obj, kind, size' parameters! It's time to do a global swap of the parameter ordering, so that the 'name' parameter is always immediately after the Visitor argument. Additional reason in favor of the swap: the existing include/qjson.h prefers listing 'name' first in json_prop_*(), and I have plans to unify that file with the qapi visitors; listing 'name' first in qapi will minimize churn to the (admittedly few) qjson.h clients. Later patches will then fix docs, object.h, visitor-impl.h, and those clients to match. Done by first patching scripts/qapi*.py by hand to make generated files do what I want, then by running the following Coccinelle script to affect the rest of the code base: $ spatch --sp-file script `git grep -l '\bvisit_' -- '**/*.[ch]'` I then had to apply some touchups (Coccinelle insisted on TAB indentation in visitor.h, and botched the signature of visit_type_enum() by rewriting 'const char *const strings[]' to the syntactically invalid 'const char*const[] strings'). The movement of parameters is sufficient to provoke compiler errors if any callers were missed. // Part 1: Swap declaration order @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_start_struct -(TV v, TObj OBJ, T1 ARG1, const char *name, T2 ARG2, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type bool, TV, T1; identifier ARG1; @@ bool visit_optional -(TV v, T1 ARG1, const char *name) +(TV v, const char *name, T1 ARG1) { ... } @@ type TV, TErr, TObj, T1; identifier OBJ, ARG1; @@ void visit_get_next_type -(TV v, TObj OBJ, T1 ARG1, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, TErr errp) { ... } @@ type TV, TErr, TObj, T1, T2; identifier OBJ, ARG1, ARG2; @@ void visit_type_enum -(TV v, TObj OBJ, T1 ARG1, T2 ARG2, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, T1 ARG1, T2 ARG2, TErr errp) { ... } @@ type TV, TErr, TObj; identifier OBJ; identifier VISIT_TYPE =~ "^visit_type_"; @@ void VISIT_TYPE -(TV v, TObj OBJ, const char *name, TErr errp) +(TV v, const char *name, TObj OBJ, TErr errp) { ... } // Part 2: swap caller order @@ expression V, NAME, OBJ, ARG1, ARG2, ERR; identifier VISIT_TYPE =~ "^visit_type_"; @@ ( -visit_start_struct(V, OBJ, ARG1, NAME, ARG2, ERR) +visit_start_struct(V, NAME, OBJ, ARG1, ARG2, ERR) | -visit_optional(V, ARG1, NAME) +visit_optional(V, NAME, ARG1) | -visit_get_next_type(V, OBJ, ARG1, NAME, ERR) +visit_get_next_type(V, NAME, OBJ, ARG1, ERR) | -visit_type_enum(V, OBJ, ARG1, ARG2, NAME, ERR) +visit_type_enum(V, NAME, OBJ, ARG1, ARG2, ERR) | -VISIT_TYPE(V, OBJ, NAME, ERR) +VISIT_TYPE(V, NAME, OBJ, ERR) ) Signed-off-by: Eric Blake <eblake@redhat.com> Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com> Message-Id: <1454075341-13658-19-git-send-email-eblake@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-01-29 16:48:54 +03:00
visit_type_OnOffAuto(v, name, &pcms->smm, errp);
}
static bool pc_machine_get_smbus(Object *obj, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
return pcms->smbus_enabled;
}
static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
pcms->smbus_enabled = value;
}
static bool pc_machine_get_sata(Object *obj, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
return pcms->sata_enabled;
}
static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
pcms->sata_enabled = value;
}
static bool pc_machine_get_pit(Object *obj, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
return pcms->pit_enabled;
}
static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
pcms->pit_enabled = value;
}
static void pc_machine_initfn(Object *obj)
{
PCMachineState *pcms = PC_MACHINE(obj);
pcms->max_ram_below_4g = 0; /* use default */
pcms->smm = ON_OFF_AUTO_AUTO;
#ifdef CONFIG_VMPORT
pcms->vmport = ON_OFF_AUTO_AUTO;
#else
pcms->vmport = ON_OFF_AUTO_OFF;
#endif /* CONFIG_VMPORT */
/* acpi build is enabled by default if machine supports it */
pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
pcms->smbus_enabled = true;
pcms->sata_enabled = true;
pcms->pit_enabled = true;
pcms->smp_dies = 1;
pc: Support firmware configuration with -blockdev The PC machines put firmware in ROM by default. To get it put into flash memory (required by OVMF), you have to use -drive if=pflash,unit=0,... and optionally -drive if=pflash,unit=1,... Why two -drive? This permits setting up one part of the flash memory read-only, and the other part read/write. It also makes upgrading firmware on the host easier. Below the hood, it creates two separate flash devices, because we were too lazy to improve our flash device models to support sector protection. The problem at hand is to do the same with -blockdev somehow, as one more step towards deprecating -drive. Mapping -drive if=none,... to -blockdev is a solved problem. With if=T other than if=none, -drive additionally configures a block device frontend. For non-onboard devices, that part maps to -device. Also a solved problem. For onboard devices such as PC flash memory, we have an unsolved problem. This is actually an instance of a wider problem: our general device configuration interface doesn't cover onboard devices. Instead, we have a zoo of ad hoc interfaces that are much more limited. One of them is -drive, which we'd rather deprecate, but can't until we have suitable replacements for all its uses. Sadly, I can't attack the wider problem today. So back to the narrow problem. My first idea was to reduce it to its solved buddy by using pluggable instead of onboard devices for the flash memory. Workable, but it requires some extra smarts in firmware descriptors and libvirt. Paolo had an idea that is simpler for libvirt: keep the devices onboard, and add machine properties for their block backends. The implementation is less than straightforward, I'm afraid. First, block backend properties are *qdev* properties. Machines can't have those, as they're not devices. I could duplicate these qdev properties as QOM properties, but I hate that. More seriously, the properties do not belong to the machine, they belong to the onboard flash devices. Adding them to the machine would then require bad magic to somehow transfer them to the flash devices. Fortunately, QOM provides the means to handle exactly this case: add alias properties to the machine that forward to the onboard devices' properties. Properties need to be created in .instance_init() methods. For PC machines, that's pc_machine_initfn(). To make alias properties work, we need to create the onboard flash devices there, too. Requires several bug fixes, in the previous commits. We also have to realize the devices. More on that below. If the user sets pflash0, firmware resides in flash memory. pc_system_firmware_init() maps and realizes the flash devices. Else, firmware resides in ROM. The onboard flash devices aren't used then. pc_system_firmware_init() destroys them unrealized, along with the alias properties. The existing code to pick up drives defined with -drive if=pflash is replaced by code to desugar into the machine properties. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Acked-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Message-Id: <87ftrtux81.fsf@dusky.pond.sub.org>
2019-03-11 20:39:26 +03:00
pc_system_flash_create(pcms);
}
static void pc_machine_reset(MachineState *machine)
{
CPUState *cs;
X86CPU *cpu;
qemu_devices_reset();
/* Reset APIC after devices have been reset to cancel
* any changes that qemu_devices_reset() might have done.
*/
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
if (cpu->apic_state) {
device_reset(cpu->apic_state);
}
}
}
static CpuInstanceProperties
pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
{
X86CPUTopoInfo topo;
PCMachineState *pcms = PC_MACHINE(ms);
assert(idx < ms->possible_cpus->len);
x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
pcms->smp_dies, ms->smp.cores,
ms->smp.threads, &topo);
return topo.pkg_id % nb_numa_nodes;
}
static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
{
PCMachineState *pcms = PC_MACHINE(ms);
int i;
unsigned int max_cpus = ms->smp.max_cpus;
if (ms->possible_cpus) {
/*
* make sure that max_cpus hasn't changed since the first use, i.e.
* -smp hasn't been parsed after it
*/
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (i = 0; i < ms->possible_cpus->len; i++) {
X86CPUTopoInfo topo;
ms->possible_cpus->cpus[i].type = ms->cpu_type;
ms->possible_cpus->cpus[i].vcpus_count = 1;
ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
pcms->smp_dies, ms->smp.cores,
ms->smp.threads, &topo);
ms->possible_cpus->cpus[i].props.has_socket_id = true;
ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
ms->possible_cpus->cpus[i].props.has_die_id = true;
ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
ms->possible_cpus->cpus[i].props.has_core_id = true;
ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
ms->possible_cpus->cpus[i].props.has_thread_id = true;
ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
}
return ms->possible_cpus;
}
static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
{
/* cpu index isn't used */
CPUState *cs;
CPU_FOREACH(cs) {
X86CPU *cpu = X86_CPU(cs);
if (!cpu->apic_state) {
cpu_interrupt(cs, CPU_INTERRUPT_NMI);
} else {
apic_deliver_nmi(cpu->apic_state);
}
}
}
static void pc_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
NMIClass *nc = NMI_CLASS(oc);
pcmc->pci_enabled = true;
pcmc->has_acpi_build = true;
pcmc->rsdp_in_ram = true;
pcmc->smbios_defaults = true;
pcmc->smbios_uuid_encoded = true;
pcmc->gigabyte_align = true;
pcmc->has_reserved_memory = true;
pcmc->kvmclock_enabled = true;
pcmc->enforce_aligned_dimm = true;
/* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
* to be used at the moment, 32K should be enough for a while. */
pcmc->acpi_data_size = 0x20000 + 0x8000;
pcmc->save_tsc_khz = true;
pcmc->linuxboot_dma_enabled = true;
pcmc->pvh_enabled = true;
assert(!mc->get_hotplug_handler);
mc->get_hotplug_handler = pc_get_hotplug_handler;
mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
NUMA: Enable adding NUMA node implicitly Linux and Windows need ACPI SRAT table to make memory hotplug work properly, however currently QEMU doesn't create SRAT table if numa options aren't present on CLI. Which breaks both linux and windows guests in certain conditions: * Windows: won't enable memory hotplug without SRAT table at all * Linux: if QEMU is started with initial memory all below 4Gb and no SRAT table present, guest kernel will use nommu DMA ops, which breaks 32bit hw drivers when memory is hotplugged and guest tries to use it with that drivers. Fix above issues by automatically creating a numa node when QEMU is started with memory hotplug enabled but without '-numa' options on CLI. (PS: auto-create numa node only for new machine types so not to break migration). Which would provide SRAT table to guests without explicit -numa options on CLI and would allow: * Windows: to enable memory hotplug * Linux: switch to SWIOTLB DMA ops, to bounce DMA transfers to 32bit allocated buffers that legacy drivers/hw can handle. [Rewritten by Igor] Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Suggested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Eduardo Habkost <ehabkost@redhat.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Marcel Apfelbaum <marcel@redhat.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Thomas Huth <thuth@redhat.com> Cc: Alistair Francis <alistair23@gmail.com> Cc: Takao Indoh <indou.takao@jp.fujitsu.com> Cc: Izumi Taku <izumi.taku@jp.fujitsu.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2017-11-14 05:34:01 +03:00
mc->auto_enable_numa_with_memhp = true;
mc->has_hotpluggable_cpus = true;
mc->default_boot_order = "cad";
mc->hot_add_cpu = pc_hot_add_cpu;
mc->smp_parse = pc_smp_parse;
mc->block_default_type = IF_IDE;
mc->max_cpus = 255;
mc->reset = pc_machine_reset;
hc->pre_plug = pc_machine_device_pre_plug_cb;
hc->plug = pc_machine_device_plug_cb;
hc->unplug_request = pc_machine_device_unplug_request_cb;
hc->unplug = pc_machine_device_unplug_cb;
nc->nmi_monitor_handler = x86_nmi;
mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
mc->nvdimm_supported = true;
mc->numa_mem_supported = true;
object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
pc_machine_get_device_memory_region_size, NULL,
NULL, NULL, &error_abort);
object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
NULL, NULL, &error_abort);
object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
"Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
pc_machine_get_smm, pc_machine_set_smm,
NULL, NULL, &error_abort);
object_class_property_set_description(oc, PC_MACHINE_SMM,
"Enable SMM (pc & q35)", &error_abort);
object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
pc_machine_get_vmport, pc_machine_set_vmport,
NULL, NULL, &error_abort);
object_class_property_set_description(oc, PC_MACHINE_VMPORT,
"Enable vmport (pc & q35)", &error_abort);
object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
object_class_property_add_bool(oc, PC_MACHINE_SATA,
pc_machine_get_sata, pc_machine_set_sata, &error_abort);
object_class_property_add_bool(oc, PC_MACHINE_PIT,
pc_machine_get_pit, pc_machine_set_pit, &error_abort);
}
static const TypeInfo pc_machine_info = {
.name = TYPE_PC_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(PCMachineState),
.instance_init = pc_machine_initfn,
.class_size = sizeof(PCMachineClass),
.class_init = pc_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ TYPE_NMI },
{ }
},
};
static void pc_machine_register_types(void)
{
type_register_static(&pc_machine_info);
}
type_init(pc_machine_register_types)