qemu/hw/i386/pc.c

1864 lines
55 KiB
C
Raw Normal View History

/*
* QEMU PC System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/hw.h"
#include "hw/i386/pc.h"
#include "hw/char/serial.h"
#include "hw/i386/apic.h"
#include "hw/block/fdc.h"
#include "hw/ide.h"
#include "hw/pci/pci.h"
#include "monitor/monitor.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/timer/hpet.h"
#include "hw/i386/smbios.h"
#include "hw/loader.h"
#include "elf.h"
#include "multiboot.h"
#include "hw/timer/mc146818rtc.h"
#include "hw/timer/i8254.h"
#include "hw/audio/pcspk.h"
#include "hw/pci/msi.h"
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_i386.h"
#include "hw/xen/xen.h"
#include "sysemu/block-backend.h"
#include "hw/block/block.h"
#include "ui/qemu-spice.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "sysemu/arch_init.h"
#include "qemu/bitmap.h"
#include "qemu/config-file.h"
#include "hw/acpi/acpi.h"
#include "hw/acpi/cpu_hotplug.h"
#include "hw/cpu/icc_bus.h"
#include "hw/boards.h"
#include "hw/pci/pci_host.h"
i386: ACPI table generation code from seabios This adds C code for generating ACPI tables at runtime, imported from seabios git tree commit 51684b7ced75fb76776e8ee84833fcfb6ecf12dd Although ACPI tables come from a system BIOS on real hw, it makes sense that the ACPI tables are coupled with the virtual machine, since they have to abstract the x86 machine to the OS's. This is widely desired as a way to avoid the churn and proliferation of QEMU-specific interfaces associated with ACPI tables in bios code. Notes: As BIOS can reprogram devices prior to loading ACPI tables, we pre-format ACPI tables but defer loading hardware configuration there until tables are loaded. The code structure was intentionally kept as close to the seabios original as possible, to simplify comparison and making sure we didn't lose anything in translation. Minor code duplication results, to help ensure there are no functional regressions, I think it's better to merge it like this and do more code changes in follow-up patches. Cross-version compatibility concerns have been addressed: ACPI tables are exposed to guest as FW_CFG entries. When running with -M 1.5 and older, this patch disables ACPI table generation, and doesn't expose ACPI tables to guest. As table content is likely to change over time, the following measures are taken to simplify cross-version migration: - All tables besides the RSDP are packed in a single FW CFG entry. This entry size is currently 23K. We round it up to 64K to avoid too much churn there. - Tables are placed in special ROM blob (not mapped into guest memory) which is automatically migrated together with the guest, same as BIOS code. - Offsets where hardware configuration is loaded in ACPI tables are also migrated, this is in case future ACPI changes make us rearrange the tables in memory. This patch reuses some code from SeaBIOS, which was originally under LGPLv2 and then relicensed to GPLv3 or LGPLv3, in QEMU under GPLv2+. This relicensing has been acked by all contributors that had contributed to the code since the v2->v3 relicense. ACKs approving the v2+ relicensing are listed below. The list might include ACKs from people not holding copyright on any parts of the reused code, but it's better to err on the side of caution and include them. Affected SeaBIOS files (GPLv2+ license headers added) <http://thread.gmane.org/gmane.comp.bios.coreboot.seabios/5949>: src/acpi-dsdt-cpu-hotplug.dsl src/acpi-dsdt-dbug.dsl src/acpi-dsdt-hpet.dsl src/acpi-dsdt-isa.dsl src/acpi-dsdt-pci-crs.dsl src/acpi.c src/acpi.h src/ssdt-misc.dsl src/ssdt-pcihp.dsl src/ssdt-proc.dsl tools/acpi_extract.py tools/acpi_extract_preprocess.py Each one of the listed people agreed to the following: > If you allow the use of your contribution in QEMU under the > terms of GPLv2 or later as proposed by this patch, > please respond to this mail including the line: > > Acked-by: Name <email address> Acked-by: Gerd Hoffmann <kraxel@redhat.com> Acked-by: Jan Kiszka <jan.kiszka@siemens.com> Acked-by: Jason Baron <jbaron@akamai.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Acked-by: Gleb Natapov <gleb@redhat.com> Acked-by: Marcelo Tosatti <mtosatti@redhat.com> Acked-by: Dave Frodin <dave.frodin@se-eng.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Kevin O'Connor <kevin@koconnor.net> Acked-by: Laszlo Ersek <lersek@redhat.com> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Acked-by: Isaku Yamahata <yamahata@valinux.co.jp> Acked-by: Magnus Christensson <magnus.christensson@intel.com> Acked-by: Hu Tao <hutao@cn.fujitsu.com> Acked-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> Tested-by: Gerd Hoffmann <kraxel@redhat.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Tested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-07-24 19:56:14 +04:00
#include "acpi-build.h"
#include "hw/mem/pc-dimm.h"
#include "trace.h"
#include "qapi/visitor.h"
#include "qapi-visit.h"
/* debug PC/ISA interrupts */
//#define DEBUG_IRQ
#ifdef DEBUG_IRQ
#define DPRINTF(fmt, ...) \
do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...)
#endif
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
* (128K) and other BIOS datastructures (less than 4K reported to be used at
* the moment, 32K should be enough for a while). */
static unsigned acpi_data_size = 0x20000 + 0x8000;
void pc_set_legacy_acpi_data_size(void)
{
acpi_data_size = 0x10000;
}
#define BIOS_CFG_IOPORT 0x510
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
#define E820_NR_ENTRIES 16
struct e820_entry {
uint64_t address;
uint64_t length;
uint32_t type;
} QEMU_PACKED __attribute((__aligned__(4)));
struct e820_table {
uint32_t count;
struct e820_entry entry[E820_NR_ENTRIES];
} QEMU_PACKED __attribute((__aligned__(4)));
static struct e820_table e820_reserve;
static struct e820_entry *e820_table;
static unsigned e820_entries;
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
void gsi_handler(void *opaque, int n, int level)
{
GSIState *s = opaque;
DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
if (n < ISA_NUM_IRQS) {
qemu_set_irq(s->i8259_irq[n], level);
}
qemu_set_irq(s->ioapic_irq[n], level);
}
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
}
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* MSDOS compatibility mode FPU exception support */
static qemu_irq ferr_irq;
void pc_register_ferr_irq(qemu_irq irq)
{
ferr_irq = irq;
}
/* XXX: add IGNNE support */
void cpu_set_ferr(CPUX86State *s)
{
qemu_irq_raise(ferr_irq);
}
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
qemu_irq_lower(ferr_irq);
}
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffffffffffffULL;
}
/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_ticks();
}
/* SMM support */
static cpu_set_smm_t smm_set;
static void *smm_arg;
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
{
assert(smm_set == NULL);
assert(smm_arg == NULL);
smm_set = callback;
smm_arg = arg;
}
void cpu_smm_update(CPUX86State *env)
{
if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
}
}
/* IRQ handling */
int cpu_get_pic_interrupt(CPUX86State *env)
{
X86CPU *cpu = x86_env_get_cpu(env);
int intno;
intno = apic_get_interrupt(cpu->apic_state);
if (intno >= 0) {
return intno;
}
/* read the irq from the PIC */
if (!apic_accept_pic_intr(cpu->apic_state)) {
return -1;
}
intno = pic_read_irq(isa_pic);
return intno;
}
static void pic_irq_request(void *opaque, int irq, int level)
{
CPUState *cs = first_cpu;
X86CPU *cpu = X86_CPU(cs);
DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
if (cpu->apic_state) {
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
if (apic_accept_pic_intr(cpu->apic_state)) {
apic_deliver_pic_intr(cpu->apic_state, level);
}
}
} else {
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
}
/* PC cmos mappings */
#define REG_EQUIPMENT_BYTE 0x14
static int cmos_get_fd_drive_type(FDriveType fd0)
{
int val;
switch (fd0) {
case FDRIVE_DRV_144:
/* 1.44 Mb 3"5 drive */
val = 4;
break;
case FDRIVE_DRV_288:
/* 2.88 Mb 3"5 drive */
val = 5;
break;
case FDRIVE_DRV_120:
/* 1.2 Mb 5"5 drive */
val = 2;
break;
case FDRIVE_DRV_NONE:
default:
val = 0;
break;
}
return val;
}
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
int16_t cylinders, int8_t heads, int8_t sectors)
{
rtc_set_memory(s, type_ofs, 47);
rtc_set_memory(s, info_ofs, cylinders);
rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
rtc_set_memory(s, info_ofs + 2, heads);
rtc_set_memory(s, info_ofs + 3, 0xff);
rtc_set_memory(s, info_ofs + 4, 0xff);
rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
rtc_set_memory(s, info_ofs + 6, cylinders);
rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
rtc_set_memory(s, info_ofs + 8, sectors);
}
/* convert boot_device letter to something recognizable by the bios */
static int boot_device2nibble(char boot_device)
{
switch(boot_device) {
case 'a':
case 'b':
return 0x01; /* floppy boot */
case 'c':
return 0x02; /* hard drive boot */
case 'd':
return 0x03; /* CD-ROM boot */
case 'n':
return 0x04; /* Network boot */
}
return 0;
}
static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
{
#define PC_MAX_BOOT_DEVICES 3
int nbds, bds[3] = { 0, };
int i;
nbds = strlen(boot_device);
if (nbds > PC_MAX_BOOT_DEVICES) {
error_setg(errp, "Too many boot devices for PC");
return;
}
for (i = 0; i < nbds; i++) {
bds[i] = boot_device2nibble(boot_device[i]);
if (bds[i] == 0) {
error_setg(errp, "Invalid boot device for PC: '%c'",
boot_device[i]);
return;
}
}
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
}
static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
{
set_boot_dev(opaque, boot_device, errp);
}
typedef struct pc_cmos_init_late_arg {
ISADevice *rtc_state;
BusState *idebus[2];
} pc_cmos_init_late_arg;
static void pc_cmos_init_late(void *opaque)
{
pc_cmos_init_late_arg *arg = opaque;
ISADevice *s = arg->rtc_state;
int16_t cylinders;
int8_t heads, sectors;
int val;
int i, trans;
val = 0;
if (ide_get_geometry(arg->idebus[0], 0,
&cylinders, &heads, &sectors) >= 0) {
cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
val |= 0xf0;
}
if (ide_get_geometry(arg->idebus[0], 1,
&cylinders, &heads, &sectors) >= 0) {
cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
val |= 0x0f;
}
rtc_set_memory(s, 0x12, val);
val = 0;
for (i = 0; i < 4; i++) {
/* NOTE: ide_get_geometry() returns the physical
geometry. It is always such that: 1 <= sects <= 63, 1
<= heads <= 16, 1 <= cylinders <= 16383. The BIOS
geometry can be different if a translation is done. */
if (ide_get_geometry(arg->idebus[i / 2], i % 2,
&cylinders, &heads, &sectors) >= 0) {
trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
assert((trans & ~3) == 0);
val |= trans << (i * 2);
}
}
rtc_set_memory(s, 0x39, val);
qemu_unregister_reset(pc_cmos_init_late, opaque);
}
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
const char *boot_device, MachineState *machine,
ISADevice *floppy, BusState *idebus0, BusState *idebus1,
ISADevice *s)
{
int val, nb, i;
FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
static pc_cmos_init_late_arg arg;
PCMachineState *pc_machine = PC_MACHINE(machine);
Error *local_err = NULL;
/* various important CMOS locations needed by PC/Bochs bios */
/* memory size */
/* base memory (first MiB) */
val = MIN(ram_size / 1024, 640);
rtc_set_memory(s, 0x15, val);
rtc_set_memory(s, 0x16, val >> 8);
/* extended memory (next 64MiB) */
if (ram_size > 1024 * 1024) {
val = (ram_size - 1024 * 1024) / 1024;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x17, val);
rtc_set_memory(s, 0x18, val >> 8);
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
/* memory between 16MiB and 4GiB */
if (ram_size > 16 * 1024 * 1024) {
val = (ram_size - 16 * 1024 * 1024) / 65536;
} else {
val = 0;
}
if (val > 65535)
val = 65535;
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
/* memory above 4GiB */
val = above_4g_mem_size / 65536;
rtc_set_memory(s, 0x5b, val);
rtc_set_memory(s, 0x5c, val >> 8);
rtc_set_memory(s, 0x5d, val >> 16);
/* set the number of CPU */
rtc_set_memory(s, 0x5f, smp_cpus - 1);
object_property_add_link(OBJECT(machine), "rtc_state",
TYPE_ISA_DEVICE,
(Object **)&pc_machine->rtc,
object_property_allow_set_link,
OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
object_property_set_link(OBJECT(machine), OBJECT(s),
"rtc_state", &error_abort);
set_boot_dev(s, boot_device, &local_err);
if (local_err) {
error_report("%s", error_get_pretty(local_err));
exit(1);
}
/* floppy type */
if (floppy) {
for (i = 0; i < 2; i++) {
fd_type[i] = isa_fdc_get_drive_type(floppy, i);
}
}
val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
cmos_get_fd_drive_type(fd_type[1]);
rtc_set_memory(s, 0x10, val);
val = 0;
nb = 0;
if (fd_type[0] < FDRIVE_DRV_NONE) {
nb++;
}
if (fd_type[1] < FDRIVE_DRV_NONE) {
nb++;
}
switch (nb) {
case 0:
break;
case 1:
val |= 0x01; /* 1 drive, ready for boot */
break;
case 2:
val |= 0x41; /* 2 drives, ready for boot */
break;
}
val |= 0x02; /* FPU is there */
val |= 0x04; /* PS/2 mouse installed */
rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
/* hard drives */
arg.rtc_state = s;
arg.idebus[0] = idebus0;
arg.idebus[1] = idebus1;
qemu_register_reset(pc_cmos_init_late, &arg);
}
#define TYPE_PORT92 "port92"
#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
/* port 92 stuff: could be split off */
typedef struct Port92State {
ISADevice parent_obj;
MemoryRegion io;
uint8_t outport;
qemu_irq *a20_out;
} Port92State;
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
Port92State *s = opaque;
int oldval = s->outport;
Fix debug print warning Steps: 1.enable qemu debug print, using simply scprit as below: grep "//#define DEBUG" * -rl | xargs sed -i "s/\/\/#define DEBUG/#define DEBUG/g" 2. make -j 3. get some warning: hw/i2c/pm_smbus.c: In function 'smb_ioport_writeb': hw/i2c/pm_smbus.c:142: warning: format '%04x' expects type 'unsigned int', but argument 2 has type 'hwaddr' hw/i2c/pm_smbus.c:142: warning: format '%02x' expects type 'unsigned int', but argument 3 has type 'uint64_t' hw/i2c/pm_smbus.c: In function 'smb_ioport_readb': hw/i2c/pm_smbus.c:209: warning: format '%04x' expects type 'unsigned int', but argument 2 has type 'hwaddr' hw/intc/i8259.c: In function 'pic_ioport_read': hw/intc/i8259.c:373: warning: format '%02x' expects type 'unsigned int', but argument 2 has type 'hwaddr' hw/input/pckbd.c: In function 'kbd_write_command': hw/input/pckbd.c:232: warning: format '%02x' expects type 'unsigned int', but argument 2 has type 'uint64_t' hw/input/pckbd.c: In function 'kbd_write_data': hw/input/pckbd.c:333: warning: format '%02x' expects type 'unsigned int', but argument 2 has type 'uint64_t' hw/isa/apm.c: In function 'apm_ioport_writeb': hw/isa/apm.c:44: warning: format '%x' expects type 'unsigned int', but argument 2 has type 'hwaddr' hw/isa/apm.c:44: warning: format '%02x' expects type 'unsigned int', but argument 3 has type 'uint64_t' hw/isa/apm.c: In function 'apm_ioport_readb': hw/isa/apm.c:67: warning: format '%x' expects type 'unsigned int', but argument 2 has type 'hwaddr' hw/timer/mc146818rtc.c: In function 'cmos_ioport_write': hw/timer/mc146818rtc.c:394: warning: format '%02x' expects type 'unsigned int', but argument 3 has type 'uint64_t' hw/i386/pc.c: In function 'port92_write': hw/i386/pc.c:479: warning: format '%02x' expects type 'unsigned int', but argument 2 has type 'uint64_t' Fix them. Cc: qemu-trivial@nongnu.org Signed-off-by: Gonglei <arei.gonglei@huawei.com> Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
2014-08-25 06:01:27 +04:00
DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
s->outport = val;
qemu_set_irq(*s->a20_out, (val >> 1) & 1);
if ((val & 1) && !(oldval & 1)) {
qemu_system_reset_request();
}
}
static uint64_t port92_read(void *opaque, hwaddr addr,
unsigned size)
{
Port92State *s = opaque;
uint32_t ret;
ret = s->outport;
DPRINTF("port92: read 0x%02x\n", ret);
return ret;
}
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
{
Port92State *s = PORT92(dev);
s->a20_out = a20_out;
}
static const VMStateDescription vmstate_port92_isa = {
.name = "port92",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(outport, Port92State),
VMSTATE_END_OF_LIST()
}
};
static void port92_reset(DeviceState *d)
{
Port92State *s = PORT92(d);
s->outport &= ~1;
}
static const MemoryRegionOps port92_ops = {
.read = port92_read,
.write = port92_write,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void port92_initfn(Object *obj)
{
Port92State *s = PORT92(obj);
memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
s->outport = 0;
}
static void port92_realizefn(DeviceState *dev, Error **errp)
{
ISADevice *isadev = ISA_DEVICE(dev);
Port92State *s = PORT92(dev);
isa_register_ioport(isadev, &s->io, 0x92);
}
static void port92_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = port92_realizefn;
dc->reset = port92_reset;
dc->vmsd = &vmstate_port92_isa;
/*
* Reason: unlike ordinary ISA devices, this one needs additional
* wiring: its A20 output line needs to be wired up by
* port92_init().
*/
dc->cannot_instantiate_with_device_add_yet = true;
}
static const TypeInfo port92_info = {
.name = TYPE_PORT92,
.parent = TYPE_ISA_DEVICE,
.instance_size = sizeof(Port92State),
.instance_init = port92_initfn,
.class_init = port92_class_initfn,
};
static void port92_register_types(void)
{
type_register_static(&port92_info);
}
type_init(port92_register_types)
static void handle_a20_line_change(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
/* XXX: send to all CPUs ? */
/* XXX: add logic to handle multiple A20 line sources */
x86_cpu_set_a20(cpu, level);
}
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
{
int index = le32_to_cpu(e820_reserve.count);
struct e820_entry *entry;
if (type != E820_RAM) {
/* old FW_CFG_E820_TABLE entry -- reservations only */
if (index >= E820_NR_ENTRIES) {
return -EBUSY;
}
entry = &e820_reserve.entry[index++];
entry->address = cpu_to_le64(address);
entry->length = cpu_to_le64(length);
entry->type = cpu_to_le32(type);
e820_reserve.count = cpu_to_le32(index);
}
/* new "etc/e820" file -- include ram too */
e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
e820_table[e820_entries].address = cpu_to_le64(address);
e820_table[e820_entries].length = cpu_to_le64(length);
e820_table[e820_entries].type = cpu_to_le32(type);
e820_entries++;
return e820_entries;
}
int e820_get_num_entries(void)
{
return e820_entries;
}
bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
{
if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
*address = le64_to_cpu(e820_table[idx].address);
*length = le64_to_cpu(e820_table[idx].length);
return true;
}
return false;
}
/* Calculates the limit to CPU APIC ID values
*
* This function returns the limit for the APIC ID value, so that all
* CPU APIC IDs are < pc_apic_id_limit().
*
* This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
*/
static unsigned int pc_apic_id_limit(unsigned int max_cpus)
{
return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
}
static FWCfgState *bochs_bios_init(void)
{
FWCfgState *fw_cfg;
uint8_t *smbios_tables, *smbios_anchor;
size_t smbios_tables_len, smbios_anchor_len;
uint64_t *numa_fw_cfg;
int i, j;
unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
/* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
*
* SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
* QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
* ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
* "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
* may see".
*
* So, this means we must not use max_cpus, here, but the maximum possible
* APIC ID value, plus one.
*
* [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
* the APIC ID, not the "CPU index"
*/
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
acpi_tables, acpi_tables_len);
fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
if (smbios_tables) {
fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
smbios_tables, smbios_tables_len);
}
smbios_get_tables(&smbios_tables, &smbios_tables_len,
&smbios_anchor, &smbios_anchor_len);
if (smbios_anchor) {
fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
smbios_tables, smbios_tables_len);
fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
smbios_anchor, smbios_anchor_len);
}
fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
&e820_reserve, sizeof(e820_reserve));
fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
sizeof(struct e820_entry) * e820_entries);
fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
/* allocate memory for the NUMA channel: one (64bit) word for the number
* of nodes, one word for each VCPU->node and one word for each node to
* hold the amount of memory.
*/
numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
for (i = 0; i < max_cpus; i++) {
unsigned int apic_id = x86_cpu_apic_id_from_index(i);
assert(apic_id < apic_id_limit);
for (j = 0; j < nb_numa_nodes; j++) {
if (test_bit(i, numa_info[j].node_cpu)) {
numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
break;
}
}
}
for (i = 0; i < nb_numa_nodes; i++) {
numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
}
fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
(1 + apic_id_limit + nb_numa_nodes) *
sizeof(*numa_fw_cfg));
return fw_cfg;
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
static void load_linux(FWCfgState *fw_cfg,
const char *kernel_filename,
const char *initrd_filename,
const char *kernel_cmdline,
hwaddr max_ram_size)
{
uint16_t protocol;
int setup_size, kernel_size, initrd_size = 0, cmdline_size;
uint32_t initrd_max;
uint8_t header[8192], *setup, *kernel, *initrd_data;
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f;
char *vmode;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
#if 0
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
#endif
if (ldl_p(header+0x202) == 0x53726448) {
protocol = lduw_p(header+0x206);
} else {
/* This looks like a multiboot kernel. If it is, let's stop
treating it like a Linux kernel. */
if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
kernel_cmdline, kernel_size, header)) {
return;
}
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
real_addr,
cmdline_addr,
prot_addr);
#endif
/* highest address for loading the initrd */
if (protocol >= 0x203) {
initrd_max = ldl_p(header+0x22c);
} else {
initrd_max = 0x37ffffff;
}
if (initrd_max >= max_ram_size - acpi_data_size) {
initrd_max = max_ram_size - acpi_data_size - 1;
}
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
video_mode = strtol(vmode, NULL, 0);
}
stw_p(header+0x1fa, video_mode);
}
/* loader type */
/* High nybble = B reserved for QEMU; low nybble is revision number.
If this code is substantially changed, you may want to consider
incrementing the revision. */
if (protocol >= 0x200) {
header[0x210] = 0xB0;
}
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
}
/* load initrd */
if (initrd_filename) {
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
initrd_size = get_image_size(initrd_filename);
if (initrd_size < 0) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, strerror(errno));
exit(1);
}
initrd_addr = (initrd_max-initrd_size) & ~4095;
initrd_data = g_malloc(initrd_size);
load_image(initrd_filename, initrd_data);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* load kernel and setup */
setup_size = header[0x1f1];
if (setup_size == 0) {
setup_size = 4;
}
setup_size = (setup_size+1)*512;
kernel_size -= setup_size;
setup = g_malloc(setup_size);
kernel = g_malloc(kernel_size);
fseek(f, 0, SEEK_SET);
if (fread(setup, 1, setup_size, f) != setup_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
fclose(f);
memcpy(setup, header, MIN(sizeof(header), setup_size));
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
option_rom[nb_option_roms].name = "linuxboot.bin";
option_rom[nb_option_roms].bootindex = 0;
nb_option_roms++;
}
#define NE2000_NB_MAX 6
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
0x280, 0x380 };
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
{
static int nb_ne2k = 0;
if (nb_ne2k == NE2000_NB_MAX)
return;
isa_ne2000_init(bus, ne2000_io[nb_ne2k],
ne2000_irq[nb_ne2k], nd);
nb_ne2k++;
}
DeviceState *cpu_get_current_apic(void)
{
if (current_cpu) {
X86CPU *cpu = X86_CPU(current_cpu);
return cpu->apic_state;
} else {
return NULL;
}
}
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
{
X86CPU *cpu = opaque;
if (level) {
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
}
}
static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
DeviceState *icc_bridge, Error **errp)
{
X86CPU *cpu;
Error *local_err = NULL;
cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return NULL;
}
object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
if (local_err) {
error_propagate(errp, local_err);
object_unref(OBJECT(cpu));
cpu = NULL;
}
return cpu;
}
static const char *current_cpu_model;
void pc_hot_add_cpu(const int64_t id, Error **errp)
{
DeviceState *icc_bridge;
int64_t apic_id = x86_cpu_apic_id_from_index(id);
if (id < 0) {
error_setg(errp, "Invalid CPU id: %" PRIi64, id);
return;
}
if (cpu_exists(apic_id)) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", it already exists", id);
return;
}
if (id >= max_cpus) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", max allowed: %d", id, max_cpus - 1);
return;
}
if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
error_setg(errp, "Unable to add CPU: %" PRIi64
", resulting APIC ID (%" PRIi64 ") is too large",
id, apic_id);
return;
}
icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
TYPE_ICC_BRIDGE, NULL));
pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
}
void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
{
int i;
X86CPU *cpu = NULL;
Error *error = NULL;
unsigned long apic_id_limit;
/* init CPUs */
if (cpu_model == NULL) {
#ifdef TARGET_X86_64
cpu_model = "qemu64";
#else
cpu_model = "qemu32";
#endif
}
current_cpu_model = cpu_model;
apic_id_limit = pc_apic_id_limit(max_cpus);
if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
error_report("max_cpus is too large. APIC ID of last CPU is %lu",
apic_id_limit - 1);
exit(1);
}
for (i = 0; i < smp_cpus; i++) {
cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
icc_bridge, &error);
if (error) {
error_report("%s", error_get_pretty(error));
error_free(error);
exit(1);
}
}
/* map APIC MMIO area if CPU has APIC */
if (cpu && cpu->apic_state) {
/* XXX: what if the base changes? */
sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
APIC_DEFAULT_ADDRESS, 0x1000);
}
/* tell smbios about cpuid version and features */
smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
}
/* pci-info ROM file. Little endian format */
typedef struct PcRomPciInfo {
uint64_t w32_min;
uint64_t w32_max;
uint64_t w64_min;
uint64_t w64_max;
} PcRomPciInfo;
typedef struct PcGuestInfoState {
PcGuestInfo info;
Notifier machine_done;
} PcGuestInfoState;
static
void pc_guest_info_machine_done(Notifier *notifier, void *data)
{
PcGuestInfoState *guest_info_state = container_of(notifier,
PcGuestInfoState,
machine_done);
i386: ACPI table generation code from seabios This adds C code for generating ACPI tables at runtime, imported from seabios git tree commit 51684b7ced75fb76776e8ee84833fcfb6ecf12dd Although ACPI tables come from a system BIOS on real hw, it makes sense that the ACPI tables are coupled with the virtual machine, since they have to abstract the x86 machine to the OS's. This is widely desired as a way to avoid the churn and proliferation of QEMU-specific interfaces associated with ACPI tables in bios code. Notes: As BIOS can reprogram devices prior to loading ACPI tables, we pre-format ACPI tables but defer loading hardware configuration there until tables are loaded. The code structure was intentionally kept as close to the seabios original as possible, to simplify comparison and making sure we didn't lose anything in translation. Minor code duplication results, to help ensure there are no functional regressions, I think it's better to merge it like this and do more code changes in follow-up patches. Cross-version compatibility concerns have been addressed: ACPI tables are exposed to guest as FW_CFG entries. When running with -M 1.5 and older, this patch disables ACPI table generation, and doesn't expose ACPI tables to guest. As table content is likely to change over time, the following measures are taken to simplify cross-version migration: - All tables besides the RSDP are packed in a single FW CFG entry. This entry size is currently 23K. We round it up to 64K to avoid too much churn there. - Tables are placed in special ROM blob (not mapped into guest memory) which is automatically migrated together with the guest, same as BIOS code. - Offsets where hardware configuration is loaded in ACPI tables are also migrated, this is in case future ACPI changes make us rearrange the tables in memory. This patch reuses some code from SeaBIOS, which was originally under LGPLv2 and then relicensed to GPLv3 or LGPLv3, in QEMU under GPLv2+. This relicensing has been acked by all contributors that had contributed to the code since the v2->v3 relicense. ACKs approving the v2+ relicensing are listed below. The list might include ACKs from people not holding copyright on any parts of the reused code, but it's better to err on the side of caution and include them. Affected SeaBIOS files (GPLv2+ license headers added) <http://thread.gmane.org/gmane.comp.bios.coreboot.seabios/5949>: src/acpi-dsdt-cpu-hotplug.dsl src/acpi-dsdt-dbug.dsl src/acpi-dsdt-hpet.dsl src/acpi-dsdt-isa.dsl src/acpi-dsdt-pci-crs.dsl src/acpi.c src/acpi.h src/ssdt-misc.dsl src/ssdt-pcihp.dsl src/ssdt-proc.dsl tools/acpi_extract.py tools/acpi_extract_preprocess.py Each one of the listed people agreed to the following: > If you allow the use of your contribution in QEMU under the > terms of GPLv2 or later as proposed by this patch, > please respond to this mail including the line: > > Acked-by: Name <email address> Acked-by: Gerd Hoffmann <kraxel@redhat.com> Acked-by: Jan Kiszka <jan.kiszka@siemens.com> Acked-by: Jason Baron <jbaron@akamai.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Acked-by: Gleb Natapov <gleb@redhat.com> Acked-by: Marcelo Tosatti <mtosatti@redhat.com> Acked-by: Dave Frodin <dave.frodin@se-eng.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Kevin O'Connor <kevin@koconnor.net> Acked-by: Laszlo Ersek <lersek@redhat.com> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Acked-by: Isaku Yamahata <yamahata@valinux.co.jp> Acked-by: Magnus Christensson <magnus.christensson@intel.com> Acked-by: Hu Tao <hutao@cn.fujitsu.com> Acked-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> Tested-by: Gerd Hoffmann <kraxel@redhat.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Tested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-07-24 19:56:14 +04:00
acpi_setup(&guest_info_state->info);
}
PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
ram_addr_t above_4g_mem_size)
{
PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
PcGuestInfo *guest_info = &guest_info_state->info;
int i, j;
guest_info->ram_size_below_4g = below_4g_mem_size;
guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
guest_info->apic_xrupt_override = kvm_allows_irq0_override();
guest_info->numa_nodes = nb_numa_nodes;
guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
sizeof *guest_info->node_mem);
for (i = 0; i < nb_numa_nodes; i++) {
guest_info->node_mem[i] = numa_info[i].node_mem;
}
guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
sizeof *guest_info->node_cpu);
for (i = 0; i < max_cpus; i++) {
unsigned int apic_id = x86_cpu_apic_id_from_index(i);
assert(apic_id < guest_info->apic_id_limit);
for (j = 0; j < nb_numa_nodes; j++) {
if (test_bit(i, numa_info[j].node_cpu)) {
guest_info->node_cpu[apic_id] = j;
break;
}
}
}
guest_info_state->machine_done.notify = pc_guest_info_machine_done;
qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
return guest_info;
}
/* setup pci memory address space mapping into system address space */
void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
MemoryRegion *pci_address_space)
{
/* Set to lower priority than RAM */
memory_region_add_subregion_overlap(system_memory, 0x0,
pci_address_space, -1);
}
void pc_acpi_init(const char *default_dsdt)
{
char *filename;
if (acpi_tables != NULL) {
/* manually set via -acpitable, leave it alone */
return;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
if (filename == NULL) {
fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
} else {
char *arg;
QemuOpts *opts;
Error *err = NULL;
arg = g_strdup_printf("file=%s", filename);
/* creates a deep copy of "arg" */
opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
g_assert(opts != NULL);
acpi_table_add_builtin(opts, &err);
if (err) {
error_report("WARNING: failed to load %s: %s", filename,
error_get_pretty(err));
error_free(err);
}
g_free(arg);
g_free(filename);
}
}
FWCfgState *xen_load_linux(const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
ram_addr_t below_4g_mem_size,
PcGuestInfo *guest_info)
{
int i;
FWCfgState *fw_cfg;
assert(kernel_filename != NULL);
fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
rom_set_fw(fw_cfg);
load_linux(fw_cfg, kernel_filename, initrd_filename,
kernel_cmdline, below_4g_mem_size);
for (i = 0; i < nb_option_roms; i++) {
assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
!strcmp(option_rom[i].name, "multiboot.bin"));
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
guest_info->fw_cfg = fw_cfg;
return fw_cfg;
}
FWCfgState *pc_memory_init(MachineState *machine,
MemoryRegion *system_memory,
ram_addr_t below_4g_mem_size,
ram_addr_t above_4g_mem_size,
MemoryRegion *rom_memory,
MemoryRegion **ram_memory,
PcGuestInfo *guest_info)
{
int linux_boot, i;
MemoryRegion *ram, *option_rom_mr;
MemoryRegion *ram_below_4g, *ram_above_4g;
FWCfgState *fw_cfg;
PCMachineState *pcms = PC_MACHINE(machine);
assert(machine->ram_size == below_4g_mem_size + above_4g_mem_size);
linux_boot = (machine->kernel_filename != NULL);
/* Allocate RAM. We allocate it as a single memory region and use
* aliases to address portions of it, mostly for backwards compatibility
* with older qemus that used qemu_ram_alloc().
*/
ram = g_malloc(sizeof(*ram));
memory_region_allocate_system_memory(ram, NULL, "pc.ram",
machine->ram_size);
*ram_memory = ram;
ram_below_4g = g_malloc(sizeof(*ram_below_4g));
memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
0, below_4g_mem_size);
memory_region_add_subregion(system_memory, 0, ram_below_4g);
e820_add_entry(0, below_4g_mem_size, E820_RAM);
if (above_4g_mem_size > 0) {
ram_above_4g = g_malloc(sizeof(*ram_above_4g));
memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
below_4g_mem_size, above_4g_mem_size);
memory_region_add_subregion(system_memory, 0x100000000ULL,
ram_above_4g);
e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
}
if (!guest_info->has_reserved_memory &&
(machine->ram_slots ||
(machine->maxram_size > machine->ram_size))) {
MachineClass *mc = MACHINE_GET_CLASS(machine);
error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
mc->name);
exit(EXIT_FAILURE);
}
/* initialize hotplug memory address space */
if (guest_info->has_reserved_memory &&
(machine->ram_size < machine->maxram_size)) {
ram_addr_t hotplug_mem_size =
machine->maxram_size - machine->ram_size;
if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
error_report("unsupported amount of memory slots: %"PRIu64,
machine->ram_slots);
exit(EXIT_FAILURE);
}
pcms->hotplug_memory_base =
ROUND_UP(0x100000000ULL + above_4g_mem_size, 1ULL << 30);
if (pcms->enforce_aligned_dimm) {
/* size hotplug region assuming 1G page max alignment per slot */
hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
}
if ((pcms->hotplug_memory_base + hotplug_mem_size) <
hotplug_mem_size) {
error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
machine->maxram_size);
exit(EXIT_FAILURE);
}
memory_region_init(&pcms->hotplug_memory, OBJECT(pcms),
"hotplug-memory", hotplug_mem_size);
memory_region_add_subregion(system_memory, pcms->hotplug_memory_base,
&pcms->hotplug_memory);
}
/* Initialize PC system firmware */
pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
option_rom_mr = g_malloc(sizeof(*option_rom_mr));
memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
&error_abort);
vmstate_register_ram_global(option_rom_mr);
memory_region_add_subregion_overlap(rom_memory,
PC_ROM_MIN_VGA,
option_rom_mr,
1);
fw_cfg = bochs_bios_init();
rom_set_fw(fw_cfg);
if (guest_info->has_reserved_memory && pcms->hotplug_memory_base) {
uint64_t *val = g_malloc(sizeof(*val));
*val = cpu_to_le64(ROUND_UP(pcms->hotplug_memory_base, 0x1ULL << 30));
fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
}
if (linux_boot) {
load_linux(fw_cfg, machine->kernel_filename, machine->initrd_filename,
machine->kernel_cmdline, below_4g_mem_size);
}
for (i = 0; i < nb_option_roms; i++) {
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
guest_info->fw_cfg = fw_cfg;
return fw_cfg;
}
qemu_irq *pc_allocate_cpu_irq(void)
{
return qemu_allocate_irqs(pic_irq_request, NULL, 1);
}
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
{
DeviceState *dev = NULL;
if (pci_bus) {
PCIDevice *pcidev = pci_vga_init(pci_bus);
dev = pcidev ? &pcidev->qdev : NULL;
} else if (isa_bus) {
ISADevice *isadev = isa_vga_init(isa_bus);
dev = isadev ? DEVICE(isadev) : NULL;
}
return dev;
}
static void cpu_request_exit(void *opaque, int irq, int level)
{
CPUState *cpu = current_cpu;
if (cpu && level) {
cpu_exit(cpu);
}
}
static const MemoryRegionOps ioport80_io_ops = {
.write = ioport80_write,
.read = ioport80_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
static const MemoryRegionOps ioportF0_io_ops = {
.write = ioportF0_write,
.read = ioportF0_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
};
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
ISADevice **rtc_state,
ISADevice **floppy,
bool no_vmport,
uint32 hpet_irqs)
{
int i;
DriveInfo *fd[MAX_FD];
DeviceState *hpet = NULL;
int pit_isa_irq = 0;
qemu_irq pit_alt_irq = NULL;
qemu_irq rtc_irq = NULL;
qemu_irq *a20_line;
ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
qemu_irq *cpu_exit_irq;
MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
/*
* Check if an HPET shall be created.
*
* Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
* when the HPET wants to take over. Thus we have to disable the latter.
*/
if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
/* In order to set property, here not using sysbus_try_create_simple */
hpet = qdev_try_create(NULL, TYPE_HPET);
if (hpet) {
/* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
* and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
* IRQ8 and IRQ2.
*/
uint8_t compat = object_property_get_int(OBJECT(hpet),
HPET_INTCAP, NULL);
if (!compat) {
qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
}
qdev_init_nofail(hpet);
sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
for (i = 0; i < GSI_NUM_PINS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
}
pit_isa_irq = -1;
pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
}
}
*rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
qemu_register_boot_set(pc_boot_set, *rtc_state);
if (!xen_enabled()) {
if (kvm_irqchip_in_kernel()) {
pit = kvm_pit_init(isa_bus, 0x40);
} else {
pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
}
if (hpet) {
/* connect PIT to output control line of the HPET */
qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
}
pcspk_init(isa_bus, pit);
}
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
serial_isa_init(isa_bus, i, serial_hds[i]);
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
if (parallel_hds[i]) {
parallel_init(isa_bus, i, parallel_hds[i]);
}
}
a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
i8042 = isa_create_simple(isa_bus, "i8042");
i8042_setup_a20_line(i8042, &a20_line[0]);
if (!no_vmport) {
vmport_init(isa_bus);
vmmouse = isa_try_create(isa_bus, "vmmouse");
} else {
vmmouse = NULL;
}
if (vmmouse) {
DeviceState *dev = DEVICE(vmmouse);
qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
qdev_init_nofail(dev);
}
port92 = isa_create_simple(isa_bus, "port92");
port92_init(port92, &a20_line[1]);
cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
DMA_init(0, cpu_exit_irq);
for(i = 0; i < MAX_FD; i++) {
fd[i] = drive_get(IF_FLOPPY, 0, i);
}
*floppy = fdctrl_init_isa(isa_bus, fd);
}
void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
{
int i;
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
pc_init_ne2k_isa(isa_bus, nd);
} else {
pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
}
}
}
void pc_pci_device_init(PCIBus *pci_bus)
{
int max_bus;
int bus;
max_bus = drive_get_max_bus(IF_SCSI);
for (bus = 0; bus <= max_bus; bus++) {
pci_create_simple(pci_bus, -1, "lsi53c895a");
}
}
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
{
DeviceState *dev;
SysBusDevice *d;
unsigned int i;
if (kvm_irqchip_in_kernel()) {
dev = qdev_create(NULL, "kvm-ioapic");
} else {
dev = qdev_create(NULL, "ioapic");
}
if (parent_name) {
object_property_add_child(object_resolve_path(parent_name, NULL),
"ioapic", OBJECT(dev), NULL);
}
qdev_init_nofail(dev);
d = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
for (i = 0; i < IOAPIC_NUM_PINS; i++) {
gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
}
}
static void pc_generic_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
QEMUMachine *qm = data;
well-defined listing order for machine types Commit 261747f1 ("vl: Use MachineClass instead of global QEMUMachine list") broke the ordering of the machine types in the user-visible output of qemu-system-XXXX -M \? This occurred because registration was rebased from a manually maintained linked list to GLib hash tables: qemu_register_machine() type_register() type_register_internal() type_table_add() g_hash_table_insert() and because the listing was rebased accordingly, from the traversal of the list to the traversal of the hash table (rendered as an ad-hoc list): machine_parse() object_class_get_list(TYPE_MACHINE) object_class_foreach() g_hash_table_foreach() The current order is a "random" one, for practical purposes, which is annoying for users. Introduce new members QEMUMachine.family and MachineClass.family, allowing machine types to be "clustered". Introduce a comparator function that establishes a total ordering between machine types, ordering machine types in the same family next to each other. In machine_parse(), list the supported machine types sorted with the comparator function. The comparator function: - sorts whole families before standalone machine types, - sorts whole families between each other in alphabetically increasing order, - sorts machine types inside the same family in alphabetically decreasing order, - sorts standalone machine types between each other in alphabetically increasing order. After this patch, all machine types are considered standalone, and accordingly, the output is alphabetically ascending. This will be refined in the following patches. Effects on the x86_64 output: Before: > Supported machines are: > pc-0.13 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-2.0 Standard PC (i440FX + PIIX, 1996) > pc-1.0 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-2.1 Standard PC (i440FX + PIIX, 1996) > pc-q35-1.7 Standard PC (Q35 + ICH9, 2009) > pc-1.1 Standard PC (i440FX + PIIX, 1996) > pc-0.14 Standard PC (i440FX + PIIX, 1996) > pc-q35-2.0 Standard PC (Q35 + ICH9, 2009) > pc-i440fx-1.4 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-1.5 Standard PC (i440FX + PIIX, 1996) > pc-0.15 Standard PC (i440FX + PIIX, 1996) > pc-q35-1.4 Standard PC (Q35 + ICH9, 2009) > isapc ISA-only PC > pc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-2.2) > pc-i440fx-2.2 Standard PC (i440FX + PIIX, 1996) (default) > pc-1.2 Standard PC (i440FX + PIIX, 1996) > pc-0.10 Standard PC (i440FX + PIIX, 1996) > pc-0.11 Standard PC (i440FX + PIIX, 1996) > pc-q35-2.1 Standard PC (Q35 + ICH9, 2009) > q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-2.2) > pc-q35-2.2 Standard PC (Q35 + ICH9, 2009) > pc-i440fx-1.6 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-1.7 Standard PC (i440FX + PIIX, 1996) > none empty machine > pc-q35-1.5 Standard PC (Q35 + ICH9, 2009) > pc-q35-1.6 Standard PC (Q35 + ICH9, 2009) > pc-0.12 Standard PC (i440FX + PIIX, 1996) > pc-1.3 Standard PC (i440FX + PIIX, 1996) After: > Supported machines are: > isapc ISA-only PC > none empty machine > pc-0.10 Standard PC (i440FX + PIIX, 1996) > pc-0.11 Standard PC (i440FX + PIIX, 1996) > pc-0.12 Standard PC (i440FX + PIIX, 1996) > pc-0.13 Standard PC (i440FX + PIIX, 1996) > pc-0.14 Standard PC (i440FX + PIIX, 1996) > pc-0.15 Standard PC (i440FX + PIIX, 1996) > pc-1.0 Standard PC (i440FX + PIIX, 1996) > pc-1.1 Standard PC (i440FX + PIIX, 1996) > pc-1.2 Standard PC (i440FX + PIIX, 1996) > pc-1.3 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-1.4 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-1.5 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-1.6 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-1.7 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-2.0 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-2.1 Standard PC (i440FX + PIIX, 1996) > pc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-2.2) > pc-i440fx-2.2 Standard PC (i440FX + PIIX, 1996) (default) > pc-q35-1.4 Standard PC (Q35 + ICH9, 2009) > pc-q35-1.5 Standard PC (Q35 + ICH9, 2009) > pc-q35-1.6 Standard PC (Q35 + ICH9, 2009) > pc-q35-1.7 Standard PC (Q35 + ICH9, 2009) > pc-q35-2.0 Standard PC (Q35 + ICH9, 2009) > pc-q35-2.1 Standard PC (Q35 + ICH9, 2009) > q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-2.2) > pc-q35-2.2 Standard PC (Q35 + ICH9, 2009) Effects on the aarch64 output: Before: > Supported machines are: > lm3s811evb Stellaris LM3S811EVB > canon-a1100 Canon PowerShot A1100 IS > vexpress-a15 ARM Versatile Express for Cortex-A15 > vexpress-a9 ARM Versatile Express for Cortex-A9 > xilinx-zynq-a9 Xilinx Zynq Platform Baseboard for Cortex-A9 > connex Gumstix Connex (PXA255) > n800 Nokia N800 tablet aka. RX-34 (OMAP2420) > lm3s6965evb Stellaris LM3S6965EVB > versatileab ARM Versatile/AB (ARM926EJ-S) > borzoi Borzoi PDA (PXA270) > tosa Tosa PDA (PXA255) > cheetah Palm Tungsten|E aka. Cheetah PDA (OMAP310) > midway Calxeda Midway (ECX-2000) > mainstone Mainstone II (PXA27x) > n810 Nokia N810 tablet aka. RX-44 (OMAP2420) > terrier Terrier PDA (PXA270) > highbank Calxeda Highbank (ECX-1000) > cubieboard cubietech cubieboard > sx1-v1 Siemens SX1 (OMAP310) V1 > sx1 Siemens SX1 (OMAP310) V2 > realview-eb-mpcore ARM RealView Emulation Baseboard (ARM11MPCore) > kzm ARM KZM Emulation Baseboard (ARM1136) > akita Akita PDA (PXA270) > z2 Zipit Z2 (PXA27x) > musicpal Marvell 88w8618 / MusicPal (ARM926EJ-S) > realview-pb-a8 ARM RealView Platform Baseboard for Cortex-A8 > versatilepb ARM Versatile/PB (ARM926EJ-S) > realview-eb ARM RealView Emulation Baseboard (ARM926EJ-S) > realview-pbx-a9 ARM RealView Platform Baseboard Explore for Cortex-A9 > spitz Spitz PDA (PXA270) > none empty machine > virt ARM Virtual Machine > collie Collie PDA (SA-1110) > smdkc210 Samsung SMDKC210 board (Exynos4210) > verdex Gumstix Verdex (PXA270) > nuri Samsung NURI board (Exynos4210) > integratorcp ARM Integrator/CP (ARM926EJ-S) After: > Supported machines are: > akita Akita PDA (PXA270) > borzoi Borzoi PDA (PXA270) > canon-a1100 Canon PowerShot A1100 IS > cheetah Palm Tungsten|E aka. Cheetah PDA (OMAP310) > collie Collie PDA (SA-1110) > connex Gumstix Connex (PXA255) > cubieboard cubietech cubieboard > highbank Calxeda Highbank (ECX-1000) > integratorcp ARM Integrator/CP (ARM926EJ-S) > kzm ARM KZM Emulation Baseboard (ARM1136) > lm3s6965evb Stellaris LM3S6965EVB > lm3s811evb Stellaris LM3S811EVB > mainstone Mainstone II (PXA27x) > midway Calxeda Midway (ECX-2000) > musicpal Marvell 88w8618 / MusicPal (ARM926EJ-S) > n800 Nokia N800 tablet aka. RX-34 (OMAP2420) > n810 Nokia N810 tablet aka. RX-44 (OMAP2420) > none empty machine > nuri Samsung NURI board (Exynos4210) > realview-eb ARM RealView Emulation Baseboard (ARM926EJ-S) > realview-eb-mpcore ARM RealView Emulation Baseboard (ARM11MPCore) > realview-pb-a8 ARM RealView Platform Baseboard for Cortex-A8 > realview-pbx-a9 ARM RealView Platform Baseboard Explore for Cortex-A9 > smdkc210 Samsung SMDKC210 board (Exynos4210) > spitz Spitz PDA (PXA270) > sx1 Siemens SX1 (OMAP310) V2 > sx1-v1 Siemens SX1 (OMAP310) V1 > terrier Terrier PDA (PXA270) > tosa Tosa PDA (PXA255) > verdex Gumstix Verdex (PXA270) > versatileab ARM Versatile/AB (ARM926EJ-S) > versatilepb ARM Versatile/PB (ARM926EJ-S) > vexpress-a15 ARM Versatile Express for Cortex-A15 > vexpress-a9 ARM Versatile Express for Cortex-A9 > virt ARM Virtual Machine > xilinx-zynq-a9 Xilinx Zynq Platform Baseboard for Cortex-A9 > z2 Zipit Z2 (PXA27x) RHBZ: https://bugzilla.redhat.com/show_bug.cgi?id=1145042 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Marcel Apfelbaum <marcel.a@redhat.com> Acked-by: David Gibson <david@gibson.dropbear.id.au>
2014-09-23 00:38:35 +04:00
mc->family = qm->family;
mc->name = qm->name;
mc->alias = qm->alias;
mc->desc = qm->desc;
mc->init = qm->init;
mc->reset = qm->reset;
mc->hot_add_cpu = qm->hot_add_cpu;
mc->kvm_type = qm->kvm_type;
mc->block_default_type = qm->block_default_type;
pc/vl: Add units-per-default-bus property This patch adds the 'units_per_default_bus' property which allows individual boards to declare their desired index => (bus,unit) mapping for their default HBA, so that boards such as Q35 can specify that its default if_ide HBA, AHCI, only accepts one unit per bus. This property only overrides the mapping for drives matching the block_default_type interface. This patch also adds this property to *all* past and present Q35 machine types. This retroactive addition is justified because the previous erroneous index=>(bus,unit) mappings caused by lack of such a property were not utilized due to lack of initialization code in the Q35 init routine. Further, semantically, the Q35 board type has always had the property that its default HBA, AHCI, only accepts one unit per bus. The new code added to add devices to drives relies upon the accuracy of this mapping. Thus, the property is applied retroactively to reduce complexity of allowing IDE HBAs with different units per bus. Examples: Prior to this patch, all IDE HBAs were assumed to use 2 units per bus (Master, Slave). When using Q35 and AHCI, however, we only allow one unit per bus. -hdb foo.qcow2 would become index=1, or bus=0,unit=1. -hdd foo.qcow2 would become index=3, or bus=1,unit=1. -drive file=foo.qcow2,index=5 becomes bus=2,unit=1. These are invalid for AHCI. They now become, under Q35 only: -hdb foo.qcow2 --> index=1, bus=1, unit=0. -hdd foo.qcow2 --> index=3, bus=3, unit=0. -drive file=foo.qcow2,index=5 --> bus=5,unit=0. The mapping is adjusted based on the fact that the default IF for the Q35 machine type is IF_IDE, and units-per-default-bus overrides the IDE mapping from its default of 2 units per bus to just 1 unit per bus. Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Message-id: 1412187569-23452-4-git-send-email-jsnow@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2014-10-01 22:19:26 +04:00
mc->units_per_default_bus = qm->units_per_default_bus;
mc->max_cpus = qm->max_cpus;
mc->no_serial = qm->no_serial;
mc->no_parallel = qm->no_parallel;
mc->use_virtcon = qm->use_virtcon;
mc->use_sclp = qm->use_sclp;
mc->no_floppy = qm->no_floppy;
mc->no_cdrom = qm->no_cdrom;
mc->no_sdcard = qm->no_sdcard;
mc->is_default = qm->is_default;
mc->default_machine_opts = qm->default_machine_opts;
mc->default_boot_order = qm->default_boot_order;
mc->default_display = qm->default_display;
mc->compat_props = qm->compat_props;
mc->hw_version = qm->hw_version;
}
void qemu_register_pc_machine(QEMUMachine *m)
{
char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL);
TypeInfo ti = {
.name = name,
.parent = TYPE_PC_MACHINE,
.class_init = pc_generic_machine_class_init,
.class_data = (void *)m,
};
type_register(&ti);
g_free(name);
}
static int pc_dimm_count(Object *obj, void *opaque)
{
int *count = opaque;
if (object_dynamic_cast(obj, TYPE_PC_DIMM)) {
(*count)++;
}
object_child_foreach(obj, pc_dimm_count, opaque);
return 0;
}
static int pc_existing_dimms_capacity(Object *obj, void *opaque)
{
Error *local_err = NULL;
uint64_t *size = opaque;
if (object_dynamic_cast(obj, TYPE_PC_DIMM)) {
(*size) += object_property_get_int(obj, PC_DIMM_SIZE_PROP, &local_err);
if (local_err) {
qerror_report_err(local_err);
error_free(local_err);
return 1;
}
}
object_child_foreach(obj, pc_dimm_count, opaque);
return 0;
}
static void pc_dimm_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
int slot;
HotplugHandlerClass *hhc;
Error *local_err = NULL;
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
MachineState *machine = MACHINE(hotplug_dev);
PCDIMMDevice *dimm = PC_DIMM(dev);
PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
MemoryRegion *mr = ddc->get_memory_region(dimm);
uint64_t existing_dimms_capacity = 0;
uint64_t align = TARGET_PAGE_SIZE;
uint64_t addr;
addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
if (local_err) {
goto out;
}
if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
align = memory_region_get_alignment(mr);
}
addr = pc_dimm_get_free_addr(pcms->hotplug_memory_base,
memory_region_size(&pcms->hotplug_memory),
!addr ? NULL : &addr, align,
memory_region_size(mr), &local_err);
if (local_err) {
goto out;
}
if (pc_existing_dimms_capacity(OBJECT(machine), &existing_dimms_capacity)) {
error_setg(&local_err, "failed to get total size of existing DIMMs");
goto out;
}
if (existing_dimms_capacity + memory_region_size(mr) >
machine->maxram_size - machine->ram_size) {
error_setg(&local_err, "not enough space, currently 0x%" PRIx64
" in use of total 0x" RAM_ADDR_FMT,
existing_dimms_capacity, machine->maxram_size);
goto out;
}
object_property_set_int(OBJECT(dev), addr, PC_DIMM_ADDR_PROP, &local_err);
if (local_err) {
goto out;
}
trace_mhp_pc_dimm_assigned_address(addr);
slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, &local_err);
if (local_err) {
goto out;
}
slot = pc_dimm_get_free_slot(slot == PC_DIMM_UNASSIGNED_SLOT ? NULL : &slot,
machine->ram_slots, &local_err);
if (local_err) {
goto out;
}
object_property_set_int(OBJECT(dev), slot, PC_DIMM_SLOT_PROP, &local_err);
if (local_err) {
goto out;
}
trace_mhp_pc_dimm_assigned_slot(slot);
if (!pcms->acpi_dev) {
error_setg(&local_err,
"memory hotplug is not enabled: missing acpi device");
goto out;
}
if (kvm_enabled() && !kvm_has_free_slot(machine)) {
error_setg(&local_err, "hypervisor has no free memory slots left");
goto out;
}
memory_region_add_subregion(&pcms->hotplug_memory,
addr - pcms->hotplug_memory_base, mr);
vmstate_register_ram(mr, dev);
hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
out:
error_propagate(errp, local_err);
}
static void pc_cpu_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
HotplugHandlerClass *hhc;
Error *local_err = NULL;
PCMachineState *pcms = PC_MACHINE(hotplug_dev);
if (!dev->hotplugged) {
goto out;
}
if (!pcms->acpi_dev) {
error_setg(&local_err,
"cpu hotplug is not enabled: missing acpi device");
goto out;
}
hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
if (local_err) {
goto out;
}
/* increment the number of CPUs */
rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
out:
error_propagate(errp, local_err);
}
static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
pc_dimm_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
pc_cpu_plug(hotplug_dev, dev, errp);
}
}
static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
DeviceState *dev)
{
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
return HOTPLUG_HANDLER(machine);
}
return pcmc->get_hotplug_handler ?
pcmc->get_hotplug_handler(machine, dev) : NULL;
}
static void
pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
int64_t value = memory_region_size(&pcms->hotplug_memory);
visit_type_int(v, &value, name, errp);
}
static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
void *opaque, const char *name,
Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
uint64_t value = pcms->max_ram_below_4g;
visit_type_size(v, &value, name, errp);
}
static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
void *opaque, const char *name,
Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
Error *error = NULL;
uint64_t value;
visit_type_size(v, &value, name, &error);
if (error) {
error_propagate(errp, error);
return;
}
if (value > (1ULL << 32)) {
error_set(&error, ERROR_CLASS_GENERIC_ERROR,
"Machine option 'max-ram-below-4g=%"PRIu64
"' expects size less than or equal to 4G", value);
error_propagate(errp, error);
return;
}
if (value < (1ULL << 20)) {
error_report("Warning: small max_ram_below_4g(%"PRIu64
") less than 1M. BIOS may not work..",
value);
}
pcms->max_ram_below_4g = value;
}
static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
OnOffAuto vmport = pcms->vmport;
visit_type_OnOffAuto(v, &vmport, name, errp);
}
static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
}
static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
{
PCMachineState *pcms = PC_MACHINE(obj);
return pcms->enforce_aligned_dimm;
}
static void pc_machine_initfn(Object *obj)
{
PCMachineState *pcms = PC_MACHINE(obj);
object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
pc_machine_get_hotplug_memory_region_size,
NULL, NULL, NULL, NULL);
pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
pc_machine_get_max_ram_below_4g,
pc_machine_set_max_ram_below_4g,
NULL, NULL, NULL);
object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
"Maximum ram below the 4G boundary (32bit boundary)",
NULL);
pcms->vmport = ON_OFF_AUTO_AUTO;
object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
pc_machine_get_vmport,
pc_machine_set_vmport,
NULL, NULL, NULL);
object_property_set_description(obj, PC_MACHINE_VMPORT,
"Enable vmport (pc & q35)",
NULL);
pcms->enforce_aligned_dimm = true;
object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
pc_machine_get_aligned_dimm,
NULL, NULL);
}
static void pc_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
pcmc->get_hotplug_handler = mc->get_hotplug_handler;
mc->get_hotplug_handler = pc_get_hotpug_handler;
hc->plug = pc_machine_device_plug_cb;
}
static const TypeInfo pc_machine_info = {
.name = TYPE_PC_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(PCMachineState),
.instance_init = pc_machine_initfn,
.class_size = sizeof(PCMachineClass),
.class_init = pc_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
},
};
static void pc_machine_register_types(void)
{
type_register_static(&pc_machine_info);
}
type_init(pc_machine_register_types)