This declares that any `const char *` returned from SDL is owned by SDL, and
promises to be valid _at least_ until the next time the event queue runs, or
SDL_Quit() is called, even if the thing that owns the string gets destroyed
or changed before then.
This is noted in the headers as "the SDL_GetStringRule", so this will both be
greppable to find a detailed explaination in docs/README-strings.md and
wikiheaders will automatically turn it into a link we can point at the
appropriate documentation.
Fixes#9902.
(and several FIXMEs, both known and yet-undocumented.)
This extends the display scaling mode to be global and work in terms of pixels everywhere, with the content scale value set on displays. The per-window property had some issues, and has been removed in favor of retaining only the global hint that changes all coordinates to pixel values, sets the content scale on the displays, and generally makes the Wayland backend behave similarly to Win32 or X11.
Some additional work was needed to fix cases where displays can appear to overlap, since Wayland desktops are always described in logical coordinates, and attempting to adjust the display positions so that they don't overlap can get very ugly in all but the simplest cases, as large gaps between displays can result.
The flags parameter has been removed from SDL_CreateRenderer() and SDL_RENDERER_PRESENTVSYNC has been replaced with SDL_PROP_RENDERER_CREATE_PRESENT_VSYNC_NUMBER during window creation and SDL_PROP_RENDERER_VSYNC_NUMBER after renderer creation.
SDL_SetRenderVSync() now takes additional values besides 0 and 1.
The maximum texture size has been removed from SDL_RendererInfo, replaced with SDL_PROP_RENDERER_MAX_TEXTURE_SIZE_NUMBER.
The pointer confinement protocol does allow attempted warping the pointer via a hint, provided that the pointer is locked at the time of the request, and the requested coordinates fall within the bounds of the window.
Toggle the pointer locked state and request the pointer warp when the required protocol is available. This is similar to what XWayland does internally.
This is just stuff I noticed while working on the wikiheaders updates. A
thorough pass over all the docs would not be terrible, and maybe a simple
script to check for consistency (does everything have a `\since` on it? etc)
might be nice, too.
- Add a globally-accessible function to handle the parsing of filter extensions
- Remove the ability of putting the wildcard ('*') among other patterns; it's either a list of patterns or a single '*' now
- Add a hint to select between portals and Zenity on Unix
This adds HIDAPI support for DualShock 3 controllers on Windows, addressing the current absence of this feature in SDL. To utilize this functionality, the official Sony driver 'sixaxis.sys' must be installed. HID offers several advantages over DirectInput, including rumble support and the ability to control the LED lights that display the controller number.
This pull request adds an implementation of a Vulkan Render backend to SDL. I have so far tested this primarily on Windows, but also smoke tested on Linux and macOS (MoltenVK). I have not tried it yet on Android, but it should be usable there as well (sans any bugs I missed). This began as a port of the SDL Direct3D12 Renderer, which is the closest thing to Vulkan as existed in the SDL codebase. The shaders are more or less identical (with the only differences being in descriptor bindings vs root descriptors). The shaders are built using the HLSL frontend of glslang.
Everything in the code is pure Vulkan 1.0 (no extensions), with the exception of HDR support which requires the Vulkan instance extension `VK_EXT_swapchain_colorspace`. The code could have been simplified considerably if I used dynamic rendering, push descriptors, extended dynamic state, and other modern Vulkan-isms, but I felt it was more important to make the code as vanilla Vulkan as possible so that it would run on any Vulkan implementation.
The main differences with the Direct3D12 renderer are:
* Having to manage renderpasses for performing clears. There is likely some optimization that would still remain for more efficient use of TBDR hardware where there might be some unnecessary load/stores, but it does attempt to do clears using renderpasses.
* Constant buffer data couldn't be directly updated in the command buffer since I didn't want to rely on push descriptors, so there is a persistently mapped buffer with increasing offset per swapchain image where CB data gets written.
* Many more resources are dependent on the swapchain resizing due to i.e. Vulkan requiring the VkFramebuffer to reference the VkImageView of the swapchain, so there is a bit more code around handling that than was necessary in D3D12.
* For NV12/NV21 textures, rather than there being plane data in the texture itself, the UV data is placed in a separate `VkImage`/`VkImageView`.
I've verified that `testcolorspace` works with both sRGB and HDR linear. I've tested `testoverlay` works with the various YUV/NV12/NV21 formats. I've tested `testsprite`. I've checked that window resizing and swapchain out-of-date handling when minimizing are working. I've run through `testautomation` with the render tests. I also have run several of the tests with Vulkan validation and synchronization validation. Surely I will have missed some things, but I think it's in a good state to be merged and build out from here.
Add a mode that forces Wayland windows to output with scaling that forces 1:1 pixel mapping.
This is intended to allow legacy applications to be displayed without desktop scaling being applied, and may have issues with some display configurations, as this forces the window to behave in a way that Wayland desktops were not designed to accommodate (rounding errors can result from certain combinations of window/scale values, the window may be unusably small, jump in size at times, or appear to be larger than the desktop space, and cursor precision may be reduced).
Windows flagged as DPI-aware are not affected by this.
The automated video test suite passes with the hint turned on.
SDL window size, state, and position functions have been considered immediate, with their effects assuming to have taken effect upon successful return of the function. However, several windowing systems handle these requests asynchronously, resulting in the functions blocking until the changes have taken effect, potentially for long periods of time. Additionally, some windowing systems treat these as requests, and can potentially deny or fulfill the request in a manner differently than the application expects, such as not allowing a window to be positioned or sized beyond desktop borders, prohibiting fullscreen, and so on.
With these changes, applications can make requests of the window manager that do not block, with the understanding that an associated event will be sent if the request is fulfilled. Currently, size, position, maximize, minimize, and fullscreen calls are handled as asynchronous requests, with events being returned if the request is honored. If the application requires that the change take effect immediately, it can call the new SDL_SyncWindow function, which will attempt to block until the request is fulfilled, or some arbitrary timeout period elapses, the duration of which depends not only on the windowing system, but on the operation requested as well (e.g. a 100ms timeout is fine for most X11 events, but maximizing a window can take considerably longer for some reason). There is also a new hint 'SDL_VIDEO_SYNC_ALL_WINDOW_OPS' that will mimic the old behavior by synchronizing after every window operation with, again, the understanding that using this may result in the associated calls blocking for a relatively long period.
The deferred model also results in the window size and position getters not reporting false coordinates anymore, as they only forward what the window manager reports vs allowing applications to set arbitrary values, and fullscreen enter/leave events that were initiated via the window manager update the window state appropriately, where they didn't before.
Care was taken to ensure that order of operations is maintained, and that requests are not ignored or dropped. This does require some implicit internal synchronization in the various backends if many requests are made in a short period, as some state and behavior depends on other bits of state that need to be known at that particular point in time, but this isn't something that typical applications will hit, unless they are sending a lot of window state in a short time as the tests do.
The automated tests developed to test the previous behavior also resulted in previously undefined behavior being defined and normalized across platforms, particularly when it comes to the sizing and positioning of windows when they are in a fixed-size state, such as maximized or fullscreen. Size and position requests made when the window is not in a movable or resizable state will be deferred until it can be applied, so no requests are lost. These changes fix another long-standing issue with renderers recreating maximized windows, where the original non-maximized size was lost, resulting in the window being restored to the wrong size. All automated video tests pass across all platforms.
Overall, the "make a request/get an event" model better reflects how most windowing systems work, and some backends avoid spending significant time blocking while waiting for operations to complete.
This can be used to work around issues where the Apple GCController driver doesn't work for some controllers but there's no way to know which GCController maps to which IOKit device.
This patch adds an API for querying pressure-
sensitive pens, cf. SDL_pen.h:
- Enumerate all pens
- Get pen capabilities, names, GUIDs
- Distinguishes pens and erasers
- Distinguish attached and detached pens
- Pressure and tilt support
- Rotation, distance, throttle wheel support
(throttle wheel untested)
- Pen type and meta-information reporting
(partially tested)
Pen event reporting:
- Three new event structures: PenTip, PenMotion, and
PenButton
- Report location with sub-pixel precision
- Include axis and button status, is-eraser flag
Internal pen tracker, intended to be independent
of platform APIs, cf. SDL_pen_c.h:
- Track known pens
- Handle pen hotplugging
Automatic test:
- testautomation_pen.c
Other features:
- XInput2 implementation, incl. hotplugging
- Wayland implementation, incl. hotplugging
- Backward compatibility: pen events default to
emulating pens with mouse ID SDL_PEN_MOUSEID
- Can be toggled via SDL_HINT_PEN_NOT_MOUSE
- Test/demo program (testpen)
- Wacom pen feature identification by pen ID
Acknowledgements:
- Ping Cheng (Wacom) provided extensive feedback
on Wacom pen features and detection so that
hopefully untested Wacom devices have a
realistic chance of working out of the box.
This gives applications and binding systems a clearer view of what the hardware is so they can make intelligent decisions about how to present things to the user.
Gamepad mappings continue to use abxy for the face buttons for simplicity and compatibility with earlier versions of SDL, however the "SDL_GAMECONTROLLER_USE_BUTTON_LABELS" hint no longer has any effect.
Fixes https://github.com/libsdl-org/SDL/issues/6117
This lets apps optionally have a handful of callbacks for their entry points instead of a single main function. If used, the actual main/SDL_main/whatever entry point will be implemented in the single-header library SDL_main.h and the app will implement four separate functions:
First:
int SDL_AppInit(int argc, char **argv);
This will be called once before anything else. argc/argv work like they always do. If this returns 0, the app runs. If it returns < 0, the app calls SDL_AppQuit and terminates with an exit code that reports an error to the platform. If it returns > 0, the app calls SDL_AppQuit and terminates with an exit code that reports success to the platform. This function should not go into an infinite mainloop; it should do any one-time startup it requires and then return.
Then:
int SDL_AppIterate(void);
This is called over and over, possibly at the refresh rate of the display or some other metric that the platform dictates. This is where the heart of your app runs. It should return as quickly as reasonably possible, but it's not a "run one memcpy and that's all the time you have" sort of thing. The app should do any game updates, and render a frame of video. If it returns < 0, SDL will call SDL_AppQuit and terminate the process with an exit code that reports an error to the platform. If it returns > 0, the app calls SDL_AppQuit and terminates with an exit code that reports success to the platform. If it returns 0, then SDL_AppIterate will be called again at some regular frequency. The platform may choose to run this more or less (perhaps less in the background, etc), or it might just call this function in a loop as fast as possible. You do not check the event queue in this function (SDL_AppEvent exists for that).
Next:
int SDL_AppEvent(const SDL_Event *event);
This will be called once for each event pushed into the SDL queue. This may be called from any thread, and possibly in parallel to SDL_AppIterate. The fields in event do not need to be free'd (as you would normally need to do for SDL_EVENT_DROP_FILE, etc), and your app should not call SDL_PollEvent, SDL_PumpEvent, etc, as SDL will manage this for you. Return values are the same as from SDL_AppIterate(), so you can terminate in response to SDL_EVENT_QUIT, etc.
Finally:
void SDL_AppQuit(void);
This is called once before terminating the app--assuming the app isn't being forcibly killed or crashed--as a last chance to clean up. After this returns, SDL will call SDL_Quit so the app doesn't have to (but it's safe for the app to call it, too). Process termination proceeds as if the app returned normally from main(), so atexit handles will run, if your platform supports that.
The app does not implement SDL_main if using this. To turn this on, define SDL_MAIN_USE_CALLBACKS before including SDL_main.h. Defines like SDL_MAIN_HANDLED and SDL_MAIN_NOIMPL are also respected for callbacks, if the app wants to do some sort of magic main implementation thing.
In theory, on most platforms these can be implemented in the app itself, but this saves some #ifdefs in the app and lets everyone struggle less against some platforms, and might be more efficient in the long run, too.
On some platforms, it's possible this is the only reasonable way to go, but we haven't actually hit one that 100% requires it yet (but we will, if we want to write a RetroArch backend, for example).
Using the callback entry points works on every platform, because on platforms that don't require them, we can fake them with a simple loop in an internal implementation of the usual SDL_main.
The primary way we expect people to write SDL apps is with SDL_main, and this is not intended to replace it. If the app chooses to use this, it just removes some platform-specific details they might have to otherwise manage, and maybe removes a barrier to entry on some future platform.
Fixes#6785.
Reference PR #8247.
On some system like MacBook Pro Intel with AMD card, asking for the default device will always return the AMD GPU.
This is not an issue for 99% of the case when the renderer context is here to provide the maximum performance level like for game.
However, for video application using GPU for 1 quad and 1 texture, using the discrete GPU for that lead to an important power consumption (4 to 8W), heat increase, and fan noise.
With this patch, I successfully amend ffplay to only use the integrated GPU (i.e. the Intel one), instead of the discrete GPU (i.e. the AMD one).