* whitespace cleanup and renamed log2() to radeon_log2 (conflicts with log2 in math.h)
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@39620 a95241bf-73f2-0310-859d-f6bbb57e9c96
few warnings. Thanks! I did not apply the hunks about moving
a logging function in the common accelerant code to be static.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@39320 a95241bf-73f2-0310-859d-f6bbb57e9c96
This allows to use lower resolution screen modes with black border.
Added a set of TODOs :
* The smaller scren is not centered, but aligned top-left
* The base resolution used is the one reported from edid 1.1, because I'm still not sure how to parse EDID 1.2. This resolution is too small on my laptop, but it works.
Also added two ways of setting 8-to-6 dithering for 18-bit LVDS panel. No visible result for me, unfortunately.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@38354 a95241bf-73f2-0310-859d-f6bbb57e9c96
Supports Banshee, Voodoo3 and Voodoo5 chips.
It will be promoted as older tdfx replacement soon, but not until
my small changes around phys_addr_t are validated.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@37241 a95241bf-73f2-0310-859d-f6bbb57e9c96
map_physical_memory()'s physicalAddress parameter type from void* to
phys_addr_t. This breaks source compatibility, but -- as long as
phys_{addr,size}_t remain 32 bit wide -- keeps binary compatibility with
BeOS.
* Adjusted all code using the affected interfaces (Oh what fun!). Added a few
TODOs in places where the wrong types (e.g. void* for physical addresses
are used). Looks like quite a few drivers aren't 64 bit safe and others
will break with PAE.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@36960 a95241bf-73f2-0310-859d-f6bbb57e9c96
* added header for dealing with binary numbers and bitmasks (C++ templates)
these "macro's" might not work well for long words, though
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@33749 a95241bf-73f2-0310-859d-f6bbb57e9c96
I've now removed that code, and factored out a retrieve_current_mode()
function that can work on head A and B.
* This fixes Adrien's flickering problem on his laptop - I can't find the
bug ticket, though. Hopefully it does not break other laptop chips. Testing
would be welcome, as I don't have any other machine here.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@33633 a95241bf-73f2-0310-859d-f6bbb57e9c96
device is not compatible, after all.
* No longer accept color changes if the mode is not an 8 bit one. I think that
BWindowScreen does that after changing the mode, so that is messes up the
colors, at least that's the theory, will test on real iron now.
* Use VGA as a fallback if setting the palette via VBE failed. This brings back
the colors for ParticlesII in Qemu (but not in VirtualBox, which seems to be
completely broken in this regard).
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@32359 a95241bf-73f2-0310-859d-f6bbb57e9c96
* The vesa driver no longer uses VGA programming if the chip does not support
VGA compatibility.
* The VESA driver now tries to set the DAC to 8 bits per color gun.
* In VESA modes, the driver no longer tries to use VGA programming; introduced
the new vesa_set_indexed_colors() that is now used for palette programming.
This should fix wrong colors of 8 bit BWindowScreen users with VESA on real
hardware (emulators usually didn't mind either way).
* Note that the app_server needs to maintain a palette per 8 bit screen, as
right now, the colors are garbled after a workspace switch. Stefano, are you
looking into that already?
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@32347 a95241bf-73f2-0310-859d-f6bbb57e9c96
be broken in the app_server now, but I haven't checked yet.
* Fixed typo in vesa.h.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@32141 a95241bf-73f2-0310-859d-f6bbb57e9c96
mode informations are available.
* This is passed to the graphics card when the mode is set in the hopes that it
will be more conforming.
* Not yet tested on real hardware, though, therefore the VESA driver doesn't
do anything like this yet. I will test next, but please report any problems
with this nonetheless.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@28390 a95241bf-73f2-0310-859d-f6bbb57e9c96
* The hardware cursor is now disabled at 640x480 with a Virge VX (before it
was just invisible).
* EDID info can now be read for all S3 chips.
* For the Savage IX, Savage MX, and SuperSavage chips the display is no
longer expanded to fill a laptop LCD display when the mode resolution is
less than the size of LCD display.
* Savage IX, Savage MX, and SuperSavage chips will now display mode
1400x1050 on a 1400x1050 laptop LCD display. Previously the display was
blank at that resolution.
* Previously about half the Savage chips would not draw properly at
1400x1050. That is, the image was badly skewed and unusable. All of
them now draw properly at 1400x1050.
* Some code was reorganized to remove unnecessary and redundant code.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@27863 a95241bf-73f2-0310-859d-f6bbb57e9c96
be put into a boot_item in frame_buffer_console_init().
* The VESA driver now supports gettings the EDID information as well; this
is necessary now, since the app_server no longer takes over the mode the
boot loader had chosen.
* Note, we might want to do this via vm86 instead in the future, and remove
the kernel part again.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@25786 a95241bf-73f2-0310-859d-f6bbb57e9c96
* Use vm86 mode to call the VESA BIOS to do the actual mode switching by
providing an ioctl in the vesa driver.
* Fix vm86.h.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@25680 a95241bf-73f2-0310-859d-f6bbb57e9c96
Gerald Zajac. Thanks a lot!
* Also put it on the image by default.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@25583 a95241bf-73f2-0310-859d-f6bbb57e9c96
we now always only use the primary ring buffer.
* Removed secondary ring buffer allocation and member fields.
* Increased size of the primary ring buffer to 65536 bytes.
* The bytes per row register is computed differently for 9xx chips.
* On G33, the overlay does not need a physical address anymore, so we
don't pass B_APERTURE_NEED_PHYSICAL to the allocation anymore for that
device.
* intel_free_memory() accidently added the aperture base to the allocation
and would therefore never free any memory.
* INTEL_RING_BUFFER_SIZE_MASK was shifted one bit to the right, didn't
cause any harm with our buffer sizes, yet, though.
* With these changes, the driver runs stable on a G33 chipset (I have not
yet tested the hardware cursor, though, it might need some work, too).
The only known issue left is that overlay flickers a bit if its buffer
is partially backed up by reserved and allocated memory.
git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@23798 a95241bf-73f2-0310-859d-f6bbb57e9c96