irq_eoi is used to count the number of irq injected during eoi
broadcast. It should be set to 0 when updating the ioapic's redirect
table entry.
Suggested-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Li Qiang <liq3ea@163.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Message-Id: <20190624151635.22494-1-liq3ea@163.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In v8M, an attempt to return from an exception which is not
active is an illegal exception return. For this purpose,
exceptions which can configurably target either Secure or
NonSecure are not considered to be active if they are
configured for the opposite security state for the one
we're trying to return from (eg attempt to return from
an NS NMI but NMI targets Secure). In the pseudocode this
is handled by IsActiveForState().
Detect this case rather than counting an active exception
possibly of the wrong security state as being sufficient.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190617175317.27557-4-peter.maydell@linaro.org
To prevent execution priority remaining negative if the guest
returns from an NMI or HardFault with a corrupted IPSR, the
v8M interrupt deactivation process forces the HardFault and NMI
to inactive based on the current raw execution priority,
even if the interrupt the guest is trying to deactivate
is something else. In the pseudocode this is done in the
Deactivate() function.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190617175317.27557-3-peter.maydell@linaro.org
Here's my next pull request for qemu-4.1. I'm not sure if this will
squeak in just before the soft freeze, or just after. I don't think
it really matters - most of this is bugfixes anyway. There's some
cleanups which aren't stictly bugfixes, but which I think are safe
enough improvements to go in the soft freeze. There's no true feature
work.
Unfortunately, I wasn't able to complete a few of my standard battery
of pre-pull tests, due to some failures that appear to also be in
master. I'm hoping that hasn't missed anything important in here.
Highlights are:
* A number of fixe and cleanups for the XIVE implementation
* Cleanups to the XICS interrupt controller to fit better with the new
XIVE code
* Numerous fixes and improvements to TCG handling of ppc vector
instructions
* Remove a number of unnnecessary #ifdef CONFIG_KVM guards
* Fix some errors in the PCI hotplug paths
* Assorted other fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEdfRlhq5hpmzETofcbDjKyiDZs5IFAl0a9JMACgkQbDjKyiDZ
s5ItkQ//bpkDkztJfRbOB7cgFVQCbXIJ5mpG7PBnBJDohXRtEsjCunNwL+GelRMl
FizPJO3sGpR2f+MgH+7MJ+Y6ESSwDhI6u8TbH4MjGTc9kWsqV1YUy6nB3grxwqG7
k9AXN0z6e1MZLaZuseGBrZmPzZcvNwnPKFqEU06ZXqIWscNgXWXteyO5JTZW4O9M
+Ttiser/f6dRCHKrKnlJp3D1blBaJVUXzZTJVqmH6AiJy/xfHq7Ak6LQKrVrt8Vc
I2hGMEqyDE+ppr8cuGku4KR8GWUen9m0F0bTVGjPsG1io+spAznxNZL/Z+KJPzrI
cCFaKoyNknIicx/0/iil5TEuu4rz985erNZBcglarK/w9w0RyW2LlcDbvzV+gO6c
Ln/1WLZZh4WufR4s4195zUJwZPwGp0E4xFdfk20ulzVzV4wVCMbNJHZpchHYFMi3
fW4Yzhpq5zaOTIaew5+tWST+8RuduacZ/Rm+f9LNui42uA52/EMoD8Vo34n8CIro
9DPOS64Jk9BjIr9bMstFOBCyTVt64IFzskDOMCSCznUl51Hm0ytfAJH3Gty7YazQ
ZxncazzlC9E6OzCTYRDNSPnTKGFvccGmuir/SXPWf3bn8oBC9p3P1mPK3cgk//as
CvWW8Y/QAJOrxEls5QZzpIBjxqAcMoMVjir6l1OT2/gvBTJto1Q=
=QAyU
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-4.1-20190702' into staging
ppc patch queue 2019-07-2
Here's my next pull request for qemu-4.1. I'm not sure if this will
squeak in just before the soft freeze, or just after. I don't think
it really matters - most of this is bugfixes anyway. There's some
cleanups which aren't stictly bugfixes, but which I think are safe
enough improvements to go in the soft freeze. There's no true feature
work.
Unfortunately, I wasn't able to complete a few of my standard battery
of pre-pull tests, due to some failures that appear to also be in
master. I'm hoping that hasn't missed anything important in here.
Highlights are:
* A number of fixe and cleanups for the XIVE implementation
* Cleanups to the XICS interrupt controller to fit better with the new
XIVE code
* Numerous fixes and improvements to TCG handling of ppc vector
instructions
* Remove a number of unnnecessary #ifdef CONFIG_KVM guards
* Fix some errors in the PCI hotplug paths
* Assorted other fixes
# gpg: Signature made Tue 02 Jul 2019 07:07:15 BST
# gpg: using RSA key 75F46586AE61A66CC44E87DC6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>" [full]
# gpg: aka "David Gibson (Red Hat) <dgibson@redhat.com>" [full]
# gpg: aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>" [full]
# gpg: aka "David Gibson (kernel.org) <dwg@kernel.org>" [unknown]
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E 87DC 6C38 CACA 20D9 B392
* remotes/dgibson/tags/ppc-for-4.1-20190702: (49 commits)
spapr/xive: Add proper rollback to kvmppc_xive_connect()
ppc/xive: Fix TM_PULL_POOL_CTX special operation
ppc/pnv: Rework cache watch model of PnvXIVE
ppc/xive: Make the PIPR register readonly
ppc/xive: Force the Physical CAM line value to group mode
spapr/xive: simplify spapr_irq_init_device() to remove the emulated init
spapr/xive: rework the mapping the KVM memory regions
spapr_pci: Unregister listeners before destroying the IOMMU address space
target/ppc: improve VSX_FMADD with new GEN_VSX_HELPER_VSX_MADD macro
target/ppc: decode target register in VSX_EXTRACT_INSERT at translation time
target/ppc: decode target register in VSX_VECTOR_LOAD_STORE_LENGTH at translation time
target/ppc: introduce GEN_VSX_HELPER_R2_AB macro to fpu_helper.c
target/ppc: introduce GEN_VSX_HELPER_R2 macro to fpu_helper.c
target/ppc: introduce GEN_VSX_HELPER_R3 macro to fpu_helper.c
target/ppc: introduce GEN_VSX_HELPER_X1 macro to fpu_helper.c
target/ppc: introduce GEN_VSX_HELPER_X2_AB macro to fpu_helper.c
target/ppc: introduce GEN_VSX_HELPER_X2 macro to fpu_helper.c
target/ppc: introduce separate generator and helper for xscvqpdp
target/ppc: introduce GEN_VSX_HELPER_X3 macro to fpu_helper.c
target/ppc: introduce separate VSX_CMP macro for xvcmp* instructions
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Make kvmppc_xive_disconnect() able to undo the changes of a partial
execution of kvmppc_xive_connect() and use it to perform rollback.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <156198735673.293938.7313195993600841641.stgit@bahia>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When a CPU is reseted, the hypervisor (Linux or OPAL) invalidates the
POOL interrupt context of a CPU with this special command. It returns
the POOL CAM line value and resets the VP bit.
Fixes: 4836b45510 ("ppc/xive: activate HV support")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190630204601.30574-5-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When the software modifies the XIVE internal structures, ESB, EAS,
END, NVT, it also must update the caches of the different XIVE
sub-engines. HW offers a set of common interface for such purpose.
The CWATCH_SPEC register defines the block/index of the target and a
set of flags to perform a full update and to watch for update
conflicts.
The cache watch CWATCH_DATAX registers are then loaded with the target
data with a first read on CWATCH_DATA0. Writing back is done in the
opposit order, CWATCH_DATA0 triggering the update.
The SCRUB_TRIG registers are used to flush the cache in RAM, and to
possibly invalidate it. Cache disablement is also an option but as we
do not model the cache, these registers are no-ops
Today, the modeling of these registers is incorrect but it did not
impact the set up of a baremetal system. However, running KVM requires
a rework.
Fixes: 2dfa91a2aa ("ppc/pnv: add a XIVE interrupt controller model for POWER9")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190630204601.30574-4-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When the hypervisor (KVM) dispatches a vCPU on a HW thread, it restores
its thread interrupt context. The Pending Interrupt Priority Register
(PIPR) is computed from the Interrupt Pending Buffer (IPB) and stores
should not be allowed to change its value.
Fixes: 207d9fe985 ("ppc/xive: introduce the XIVE interrupt thread context")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190630204601.30574-3-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When an interrupt needs to be delivered, the XIVE interrupt controller
presenter scans the CAM lines of the thread interrupt contexts of the
HW threads of the chip to find a matching vCPU. The interrupt context
is composed of 4 different sets of registers: Physical, HV, OS and
User.
The encoding of the Physical CAM line depends on the mode in which the
interrupt controller is operating: CAM mode or block group mode.
Block group mode being the default configuration today on POWER9 and
the only one available on the next POWER10 generation, enforce this
encoding in the Physical CAM line :
chip << 19 | 0000000 0 0001 thread (7Bit)
It fits the overall encoding of the NVT ids and simplifies the matching
algorithm in the presenter.
Fixes: d514c48d41 ("ppc/xive: hardwire the Physical CAM line of the thread context")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190630204601.30574-2-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Today, the interrupt device is fully initialized at reset when the CAS
negotiation process has completed. Depending on the KVM capabilities,
the SpaprXive memory regions (ESB, TIMA) are initialized with a host
MMIO backend or a QEMU emulated backend. This results in a complex
initialization sequence partially done at realize and later at reset,
and some memory region leaks.
To simplify this sequence and to remove of the late initialization of
the emulated device which is required to be done only once, we
introduce new memory regions specific for KVM. These regions are
mapped as overlaps on top of the emulated device to make use of the
host MMIOs. Also provide proper cleanups of these regions when the
XIVE KVM device is destroyed to fix the leaks.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190614165920.12670-2-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Make xics_kvm_disconnect() able to undo the changes of a partial execution
of xics_kvm_connect() and use it to perform rollback.
Note that kvmppc_define_rtas_kernel_token(0) never fails, no matter the
RTAS call has been defined or not.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156077922319.433243.609897156640506891.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This allows errors happening there to be propagated up to spapr_irq,
just like XIVE already does.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156077921763.433243.4614327010172954196.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Passing both errp and &local_err to functions is a recipe for messing
things up.
Since we must use &local_err for icp_kvm_realize(), use &local_err
everywhere where rollback must happen and have a single call to
error_propagate() them all. While here, add errno to the error
message.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156077921212.433243.11716701611944816815.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
There is no need to rollback anything at this point, so just return an
error.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156077920657.433243.13541093940589972734.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Switch to using the connect/disconnect terminology like we already do for
XIVE.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156077920102.433243.6605099291134598170.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Checking that we're not using the in-kernel XICS is ok with the "xics"
interrupt controller mode, but it is definitely not enough with the
other modes since the guest could be using XIVE.
Ensure XIVE is not in use when emulated XICS RTAS/hypercalls are
called.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156077253666.424706.6104557911104491047.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
So that no one is tempted to drop that code, which is never called
for cold plugged CPUs.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156078063349.435533.12283208810037409702.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Older KVMs on POWER9 don't support destroying/recreating a KVM XICS
device, which is required by 'dual' interrupt controller mode. This
causes QEMU to emit a warning when the guest is rebooted and to fall
back on XICS emulation:
qemu-system-ppc64: warning: kernel_irqchip allowed but unavailable:
Error on KVM_CREATE_DEVICE for XICS: File exists
If kernel irqchip is required, QEMU will thus exit when the guest is
first rebooted. Failing QEMU this late may be a painful experience
for the user.
Detect that and exit at machine init instead.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156044430517.125694.6207865998817342638.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
QEMU may crash when running a spapr machine in 'dual' interrupt controller
mode on some older (but not that old, eg. ubuntu 18.04.2) KVMs with partial
XIVE support:
qemu-system-ppc64: hw/ppc/spapr_rtas.c:411: spapr_rtas_register:
Assertion `!name || !rtas_table[token].name' failed.
XICS is controlled by the guest thanks to a set of RTAS calls. Depending
on whether KVM XICS is used or not, the RTAS calls are handled by KVM or
QEMU. In both cases, QEMU needs to expose the RTAS calls to the guest
through the "rtas" node of the device tree.
The spapr_rtas_register() helper takes care of all of that: it adds the
RTAS call token to the "rtas" node and registers a QEMU callback to be
invoked when the guest issues the RTAS call. In the KVM XICS case, QEMU
registers a dummy callback that just prints an error since it isn't
supposed to be invoked, ever.
Historically, the XICS controller was setup during machine init and
released during final teardown. This changed when the 'dual' interrupt
controller mode was added to the spapr machine: in this case we need
to tear the XICS down and set it up again during machine reset. The
crash happens because we indeed have an incompatibility with older
KVMs that forces QEMU to fallback on emulated XICS, which tries to
re-registers the same RTAS calls.
This could be fixed by adding proper rollback that would unregister
RTAS calls on error. But since the emulated RTAS calls in QEMU can
now detect when they are mistakenly called while KVM XICS is in
use, it seems simpler to register them once and for all at machine
init. This fixes the crash and allows to remove some now useless
lines of code.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156044429963.125694.13710679451927268758.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XICS-related RTAS calls and hypercalls in QEMU are not supposed to
be called when the KVM in-kernel XICS is in use.
Add some explicit checks to detect that, print an error message and report
an hardware error to the guest.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <156044429419.125694.507569071972451514.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
[dwg: Correction to commit message]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The firmware (skiboot) of the PowerNV machines can configure the XIVE
interrupt controller to activate StoreEOI on the ESB pages of the
interrupts. This feature lets software do an EOI with a store instead
of a load. It is not activated today on P9 for rare race condition
issues but it should be on future processors.
Nevertheless, QEMU has a model for StoreEOI which can be used today by
experimental firmwares. But, the use of object_property_set_int() in
the PnvXive model is incorrect and crashes QEMU. Replace it with a
direct access to the ESB flags of the XiveSource object modeling the
internal sources of the interrupt controller.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190612162357.29566-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The legacy interface only supported up to 32 IRQs, which became
restrictive around the AST2400 generation. QEMU support for the SoCs
started with the AST2400 along with an effort to reimplement and
upstream drivers for Linux, so up until this point the consumers of the
QEMU ASPEED support only required the 64 IRQ register interface.
In an effort to support older BMC firmware, add support for the 32 IRQ
interface.
Signed-off-by: Andrew Jeffery <andrew@aj.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Message-id: 20190618165311.27066-22-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The GICv3 specification says that the GICD_TYPER.SecurityExtn bit
is RAZ if GICD_CTLR.DS is 1. We were incorrectly making it RAZ
if the security extension is unsupported. "Security extension
unsupported" always implies GICD_CTLR.DS == 1, but the guest can
also set DS on a GIC which does support the security extension.
Fix the condition to correctly check the GICD_CTLR.DS bit.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20190524124248.28394-3-peter.maydell@linaro.org
The GIC ID registers cover an area 0x30 bytes in size
(12 registers, 4 bytes each). We were incorrectly decoding
only the first 0x20 bytes.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190524124248.28394-2-peter.maydell@linaro.org
Next pull request against qemu-4.1. The big thing here is adding
support for hot plug of P2P bridges, and PCI devices under P2P bridges
on the "pseries" machine (which doesn't use SHPC). Other than that
there's just a handful of fixes and small enhancements.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEdfRlhq5hpmzETofcbDjKyiDZs5IFAl0AkgwACgkQbDjKyiDZ
s5Jyug//cwxP+t1t2CNHtffKwiXFzuEKx9YSNE1V0wog6aB40EbPKU72FzCq6FfA
lev+pZWV9AwVMzFYe4VM/7Lqh7WFMYDT3DOXaZwfANs4471vYtgvPi21L2TBj80d
hMszlyLWMLY9ByOzCxIq3xnbivGpA94G2q9rKbwXdK4T/5i62Pe3SIfgG+gXiiwW
+YlHWCPX0I1cJz2bBs9ElXdl7ONWnn+7uDf7gNfWkTKuiUq6Ps7mxzy3GhJ1T7nz
OFKmQ5dKzLJsgOULSSun8kWpXBmnPffkM3+fCE07edrWZVor09fMCk4HvtfaRy2K
FFa2Kvzn/V/70TL+44dsSX4QcwdcHQztiaMO7UGPq9CMswx5L7gsNmfX6zvK1Nrb
1t7ORZKNJ72hMyvDPSMiGU2DpVjO3ZbBlSL4/xG8Qeal4An0kgkN5NcFlB/XEfnz
dsKu9XzuGSeD1bWz1Mgcf1x7lPDBoHIKLcX6notZ8epP/otu4ywNFvAkPu4fk8s0
4jQGajIT7328SmzpjXClsmiEskpKsEr7hQjPRhu0hFGrhVc+i9PjkmbDl0TYRAf6
N6k6gJQAi+StJde2rcua1iS7Ra+Tka6QRKy+EctLqfqOKPb2VmkZ6fswQ3nfRRlT
LgcTHt2iJcLeud2klVXs1e4pKXzXchkVyFL4ucvmyYG5VeimMzU=
=ERgu
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-4.1-20190612' into staging
ppc patch queue 2019-06-12
Next pull request against qemu-4.1. The big thing here is adding
support for hot plug of P2P bridges, and PCI devices under P2P bridges
on the "pseries" machine (which doesn't use SHPC). Other than that
there's just a handful of fixes and small enhancements.
# gpg: Signature made Wed 12 Jun 2019 06:47:56 BST
# gpg: using RSA key 75F46586AE61A66CC44E87DC6C38CACA20D9B392
# gpg: Good signature from "David Gibson <david@gibson.dropbear.id.au>" [full]
# gpg: aka "David Gibson (Red Hat) <dgibson@redhat.com>" [full]
# gpg: aka "David Gibson (ozlabs.org) <dgibson@ozlabs.org>" [full]
# gpg: aka "David Gibson (kernel.org) <dwg@kernel.org>" [unknown]
# Primary key fingerprint: 75F4 6586 AE61 A66C C44E 87DC 6C38 CACA 20D9 B392
* remotes/dgibson/tags/ppc-for-4.1-20190612:
ppc/xive: Make XIVE generate the proper interrupt types
ppc/pnv: activate the "dumpdtb" option on the powernv machine
target/ppc: Use tcg_gen_gvec_bitsel
spapr: Allow hot plug/unplug of PCI bridges and devices under PCI bridges
spapr: Direct all PCI hotplug to host bridge, rather than P2P bridge
spapr: Don't use bus number for building DRC ids
spapr: Clean up DRC index construction
spapr: Clean up spapr_drc_populate_dt()
spapr: Clean up dt creation for PCI buses
spapr: Clean up device tree construction for PCI devices
spapr: Clean up device node name generation for PCI devices
target/ppc: Fix lxvw4x, lxvh8x and lxvb16x
spapr_pci: Improve error message
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
No header includes qemu-common.h after this commit, as prescribed by
qemu-common.h's file comment.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190523143508.25387-5-armbru@redhat.com>
[Rebased with conflicts resolved automatically, except for
include/hw/arm/xlnx-zynqmp.h hw/arm/nrf51_soc.c hw/arm/msf2-soc.c
block/qcow2-refcount.c block/qcow2-cluster.c block/qcow2-cache.c
target/arm/cpu.h target/lm32/cpu.h target/m68k/cpu.h target/mips/cpu.h
target/moxie/cpu.h target/nios2/cpu.h target/openrisc/cpu.h
target/riscv/cpu.h target/tilegx/cpu.h target/tricore/cpu.h
target/unicore32/cpu.h target/xtensa/cpu.h; bsd-user/main.c and
net/tap-bsd.c fixed up]
It should be generic Hypervisor Virtualization interrupts for HV
directed rings and traditional External Interrupts for the OS directed
ring.
Don't generate anything for the user ring as it isn't actually
supported.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190606174409.12502-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cleanup in the boilerplate that each target must define.
Replace mips_env_get_cpu with env_archcpu. The combination
CPU(mips_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Today, when a reset occurs on a pseries machine using the 'dual'
interrupt mode, the KVM devices are released and recreated depending
on the interrupt mode selected by CAS. If XIVE is selected, the SysBus
memory regions of the SpaprXive model are initialized by the KVM
backend initialization routine each time a reset occurs. This leads to
a crash after a couple of resets because the machine reaches the
QDEV_MAX_MMIO limit of SysBusDevice :
qemu-system-ppc64: hw/core/sysbus.c:193: sysbus_init_mmio: Assertion `dev->num_mmio < QDEV_MAX_MMIO' failed.
To fix, initialize the SysBus memory regions in spapr_xive_realize()
called only once and remove the same inits from the QEMU and KVM
backend initialization routines which are called at each reset.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190522074016.10521-2-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The interrupt mode is chosen by the CAS negotiation process and
activated after a reset to take into account the required changes in
the machine. This brings new constraints on how the associated KVM IRQ
device is initialized.
Currently, each model takes care of the initialization of the KVM
device in their realize method but this is not possible anymore as the
initialization needs to be done globaly when the interrupt mode is
known, i.e. when machine is reseted. It also means that we need a way
to delete a KVM device when another mode is chosen.
Also, to support migration, the QEMU objects holding the state to
transfer should always be available but not necessarily activated.
The overall approach of this proposal is to initialize both interrupt
mode at the QEMU level to keep the IRQ number space in sync and to
allow switching from one mode to another. For the KVM side of things,
the whole initialization of the KVM device, sources and presenters, is
grouped in a single routine. The XICS and XIVE sPAPR IRQ reset
handlers are modified accordingly to handle the init and the delete
sequences of the KVM device.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-15-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Recent commits changed the behavior of ics_set_irq_type() to
initialize correctly LSIs at the KVM level. ics_set_irq_type() is also
called by the realize routine of the different devices of the machine
when initial interrupts are claimed, before the ICSState device is
reseted.
In the case, the ICSIRQState priority is 0x0 and the call to
ics_set_irq_type() results in configuring the target of the
interrupt. On P9, when using the KVM XICS-on-XIVE device, the target
is configured to be server 0, priority 0 and the event queue 0 is
created automatically by KVM.
With the dual interrupt mode creating the KVM device at reset, it
leads to unexpected effects on the guest, mostly blocking IPIs. This
is wrong, fix it by reseting the ICSIRQState structure when
ics_set_irq_type() is called.
Fixes: commit 6cead90c5c ("xics: Write source state to KVM at claim time")
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190513084245.25755-14-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add a check to make sure that the routine initializing the emulated
IRQ device is called once. We don't have much to test on the XICS
side, so we introduce a 'init' boolean under ICSState.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190513084245.25755-13-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The way the XICS and the XIVE devices are initialized follows the same
pattern. First, try to connect to the KVM device and if not possible
fallback on the emulated device, unless a kernel_irqchip is required.
The spapr_irq_init_device() routine implements this sequence in
generic way using new sPAPR IRQ handlers ->init_emu() and ->init_kvm().
The XIVE init sequence is moved under the associated sPAPR IRQ
->init() handler. This will change again when KVM support is added for
the dual interrupt mode.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-12-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The activation of the KVM IRQ device depends on the interrupt mode
chosen at CAS time by the machine and some methods used at reset or by
the migration need to be protected.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190513084245.25755-11-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
If a new interrupt mode is chosen by CAS, the machine generates a
reset to reconfigure. At this point, the connection with the previous
KVM device needs to be closed and a new connection needs to opened
with the KVM device operating the chosen interrupt mode.
New routines are introduced to destroy the XICS and the XIVE KVM
devices. They make use of a new KVM device ioctl which destroys the
device and also disconnects the IRQ presenters from the vCPUs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-10-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When the VM is stopped, the VM state handler stabilizes the XIVE IC
and marks the EQ pages dirty. These are then transferred to destination
before the transfer of the device vmstates starts.
The SpaprXive interrupt controller model captures the XIVE internal
tables, EAT and ENDT and the XiveTCTX model does the same for the
thread interrupt context registers.
At restart, the SpaprXive 'post_load' method restores all the XIVE
states. It is called by the sPAPR machine 'post_load' method, when all
XIVE states have been transferred and loaded.
Finally, the source states are restored in the VM change state handler
when the machine reaches the running state.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-7-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This handler is in charge of stabilizing the flow of event notifications
in the XIVE controller before migrating a guest. This is a requirement
before transferring the guest EQ pages to a destination.
When the VM is stopped, the handler sets the source PQs to PENDING to
stop the flow of events and to possibly catch a triggered interrupt
occuring while the VM is stopped. Their previous state is saved. The
XIVE controller is then synced through KVM to flush any in-flight
event notification and to stabilize the EQs. At this stage, the EQ
pages are marked dirty to make sure the EQ pages are transferred if a
migration sequence is in progress.
The previous configuration of the sources is restored when the VM
resumes, after a migration or a stop. If an interrupt was queued while
the VM was stopped, the handler simply generates the missing trigger.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-6-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This extends the KVM XIVE device backend with 'synchronize_state'
methods used to retrieve the state from KVM. The HW state of the
sources, the KVM device and the thread interrupt contexts are
collected for the monitor usage and also migration.
These get operations rely on their KVM counterpart in the host kernel
which acts as a proxy for OPAL, the host firmware. The set operations
will be added for migration support later.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190513084245.25755-5-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
XIVE hcalls are all redirected to QEMU as none are on a fast path.
When necessary, QEMU invokes KVM through specific ioctls to perform
host operations. QEMU should have done the necessary checks before
calling KVM and, in case of failure, H_HARDWARE is simply returned.
H_INT_ESB is a special case that could have been handled under KVM
but the impact on performance was low when under QEMU. Here are some
figures :
kernel irqchip OFF ON
H_INT_ESB KVM QEMU
rtl8139 (LSI ) 1.19 1.24 1.23 Gbits/sec
virtio 31.80 42.30 -- Gbits/sec
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-4-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This introduces a set of helpers when KVM is in use, which create the
KVM XIVE device, initialize the interrupt sources at a KVM level and
connect the interrupt presenters to the vCPU.
They also handle the initialization of the TIMA and the source ESB
memory regions of the controller. These have a different type under
KVM. They are 'ram device' memory mappings, similarly to VFIO, exposed
to the guest and the associated VMAs on the host are populated
dynamically with the appropriate pages using a fault handler.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20190513084245.25755-3-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Instead of LISN i.e "Logical Interrupt Source Number" as per
Xive PAPR document "info pic" prints as LSIN, let's fix it.
Signed-off-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Message-Id: <20190509080750.21999-1-sathnaga@linux.vnet.ibm.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This proved to be a useful information when debugging issues with OS
event queues allocated above 64GB.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190508171946.657-4-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The high order bits of the address of the OS event queue is stored in
bits [4-31] of word2 of the XIVE END internal structures and the low
order bits in word3. This structure is using Big Endian ordering and
computing the value requires some simple arithmetic which happens to
be wrong. The mask removing bits [0-3] of word2 is applied to the
wrong value and the resulting address is bogus when above 64GB.
Guests with more than 64GB of RAM will allocate pages for the OS event
queues which will reside above the 64GB limit. In this case, the XIVE
device model will wake up the CPUs in case of a notification, such as
IPIs, but the update of the event queue will be written at the wrong
place in memory. The result is uncertain as the guest memory is
trashed and IPI are not delivered.
Introduce a helper xive_end_qaddr() to compute this value correctly in
all places where it is used.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190508171946.657-3-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When the OS configures the EQ page in which to receive event
notifications from the XIVE interrupt controller, the page should be
naturally aligned. Add this check.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190508171946.657-2-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
[dwg: Minor change for printf warning on some platforms]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
As explained in commit aff39be0ed:
Both functions, object_initialize() and object_property_add_child()
increase the reference counter of the new object, so one of the
references has to be dropped afterwards to get the reference
counting right. Otherwise the child object will not be properly
cleaned up when the parent gets destroyed.
Thus let's use now object_initialize_child() instead to get the
reference counting here right.
This patch was generated using the following Coccinelle script:
@use_sysbus_init_child_obj_missing_parent@
expression child_ptr;
expression child_type;
expression child_size;
@@
- object_initialize(child_ptr, child_size, child_type);
...
- qdev_set_parent_bus(DEVICE(child_ptr), sysbus_get_default());
...
?- object_unref(OBJECT(child_ptr));
+ sysbus_init_child_obj(OBJECT(PARENT_OBJ), "CHILD_NAME", child_ptr,
+ child_size, child_type);
We let NVIC adopt the SysTick timer.
While the object_initialize() function doesn't take an
'Error *errp' argument, the object_initialize_child() does.
Since this code is used when a machine is created (and is not
yet running), we deliberately choose to use the &error_abort
argument instead of ignoring errors if an object creation failed.
This choice also matches when using sysbus_init_child_obj(),
since its code is:
void sysbus_init_child_obj(Object *parent,
const char *childname, void *child,
size_t childsize, const char *childtype)
{
object_initialize_child(parent, childname, child, childsize,
childtype, &error_abort, NULL);
qdev_set_parent_bus(DEVICE(child), sysbus_get_default());
}
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Inspired-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20190507163416.24647-17-philmd@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
The ICC_CTLR_EL3 register includes some bits which are aliases
of bits in the ICC_CTLR_EL1(S) and (NS) registers. QEMU chooses
to keep those bits in the cs->icc_ctlr_el1[] struct fields.
Unfortunately a missing '~' in the code to update the bits
in those fields meant that writing to ICC_CTLR_EL3 would corrupt
the ICC_CLTR_EL1 register values.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190520162809.2677-5-peter.maydell@linaro.org
In ich_vmcr_write() we enforce "writes of BPR fields to less than
their minimum sets them to the minimum" by doing a "read vbpr and
write it back" operation. A typo here meant that we weren't handling
writes to these fields correctly, because we were reading from VBPR0
but writing to VBPR1.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190520162809.2677-4-peter.maydell@linaro.org
The hw/arm/arm.h header now only includes declarations relating
to boot.c code, so it is only needed by Arm board or SoC code.
Remove some unnecessary inclusions of it from target/arm files
and from hw/intc/armv7m_nvic.c.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190516163857.6430-3-peter.maydell@linaro.org
"megasas: fix mapped frame size" from Peter Lieven.
In addition, -realtime is marked as deprecated.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJc3rY3AAoJEL/70l94x66D91kH/21LLnL+sKmyueSM/Sek4id2
r06tHdGMdl5Od3I5uMD9gnr4AriiCZc9ybQDQ1N879wKMmQPZwcnf2GJ5DZ0wa3L
jHoQO07Bg0KZGWALjXiN5PWB0DlJtXsTm0C4q4tnt6V/ueasjxouBk9/fRLRc09n
QTS379X9QvPElFTv3WPfGz6kmkLq8VMmdRnSlXneB9xTyXXJbFj3zlvDCElNSgWh
fZ7gnfYWB1LOC19HJxp1mJSkAUD5AgImYEK1Hmnr+BMs2sg6gypYNtp3LtE5FzmZ
HSdXYFyPkQV9UyTiV1XBs3bXJbGYj5OApfXCtwo/I2JtP+LhHBA2eq1Gs3QgP98=
=zSSj
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
Mostly bugfixes and cleanups, the most important being
"megasas: fix mapped frame size" from Peter Lieven.
In addition, -realtime is marked as deprecated.
# gpg: Signature made Fri 17 May 2019 14:25:11 BST
# gpg: using RSA key BFFBD25F78C7AE83
# gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>" [full]
# gpg: aka "Paolo Bonzini <pbonzini@redhat.com>" [full]
# Primary key fingerprint: 46F5 9FBD 57D6 12E7 BFD4 E2F7 7E15 100C CD36 69B1
# Subkey fingerprint: F133 3857 4B66 2389 866C 7682 BFFB D25F 78C7 AE83
* remotes/bonzini/tags/for-upstream: (21 commits)
hw/net/ne2000: Extract the PCI device from the chipset common code
hw/char: Move multi-serial devices into separate file
ioapic: allow buggy guests mishandling level-triggered interrupts to make progress
build: don't build hardware objects with linux-user
build: chardev is only needed for softmmu targets
configure: qemu-ga is only needed with softmmu targets
build: replace GENERATED_FILES by generated-files-y
trace: only include trace-event-subdirs when they are needed
sun4m: obey -vga none
mips-fulong2e: obey -vga none
hw/i386/acpi: Assert a pointer is not null BEFORE using it
hw/i386/acpi: Add object_resolve_type_unambiguous to improve modularity
hw/acpi/piix4: Move TYPE_PIIX4_PM to a public header
memory: correct the comment to DIRTY_MEMORY_MIGRATION
vl: fix -sandbox parsing crash when seccomp support is disabled
hvf: Add missing break statement
megasas: fix mapped frame size
vl: Add missing descriptions to the VGA adapters list
Declare -realtime as deprecated
roms: assert if max rom size is less than the used size
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
It was found that Hyper-V 2016 on KVM in some configurations (q35 machine +
piix4-usb-uhci) hangs on boot. Root-cause was that one of Hyper-V
level-triggered interrupt handler performs EOI before fixing the cause of
the interrupt. This results in IOAPIC keep re-raising the level-triggered
interrupt after EOI because irq-line remains asserted.
Gory details: https://www.spinics.net/lists/kvm/msg184484.html
(the whole thread).
Turns out we were dealing with similar issues before; in-kernel IOAPIC
implementation has commit 184564efae4d ("kvm: ioapic: conditionally delay
irq delivery duringeoi broadcast") which describes a very similar issue.
Steal the idea from the above mentioned commit for IOAPIC implementation in
QEMU. SUCCESSIVE_IRQ_MAX_COUNT, delay and the comment are borrowed as well.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20190402080215.10747-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Suggested-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: KONRAD Frederic <frederic.konrad@adacore.com>
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
The M-profile architecture specifies that the DebugMonitor exception
should be initially disabled, not enabled. It should be controlled
by the DEMCR register's MON_EN bit, but we don't implement that
register yet (like most of the debug architecture for M-profile).
Note that BKPT instructions will still work, because they
will be escalated to HardFault.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190430131439.25251-4-peter.maydell@linaro.org
The non-secure versions of the BFAR and BFSR registers are
supposed to be RAZ/WI if AICR.BFHFNMINS == 0; we were
incorrectly allowing NS code to access the real values.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190430131439.25251-3-peter.maydell@linaro.org
Rule R_CQRV says that if two pending interrupts have the same
group priority then ties are broken by looking at the subpriority.
We had a comment describing this but had forgotten to actually
implement the subpriority comparison. Correct the omission.
(The further tie break rules of "lowest exception number" and
"secure before non-secure" are handled implicitly by the order
in which we iterate through the exceptions in the loops.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190430131439.25251-2-peter.maydell@linaro.org
In the v7M architecture, if an exception is generated in the process
of doing the lazy stacking of FP registers, the handling of
possible escalation to HardFault is treated differently to the normal
approach: it works based on the saved information about exception
readiness that was stored in the FPCCR when the stack frame was
created. Provide a new function armv7m_nvic_set_pending_lazyfp()
which pends exceptions during lazy stacking, and implements
this logic.
This corresponds to the pseudocode TakePreserveFPException().
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190416125744.27770-22-peter.maydell@linaro.org
Implement the code which updates the FPCCR register on an
exception entry where we are going to use lazy FP stacking.
We have to defer to the NVIC to determine whether the
various exceptions are currently ready or not.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20190416125744.27770-12-peter.maydell@linaro.org
The M-profile floating point support has three associated config
registers: FPCAR, FPCCR and FPDSCR. It also makes the registers
CPACR and NSACR have behaviour other than reads-as-zero.
Add support for all of these as simple reads-as-written registers.
We will hook up actual functionality later.
The main complexity here is handling the FPCCR register, which
has a mix of banked and unbanked bits.
Note that we don't share storage with the A-profile
cpu->cp15.nsacr and cpu->cp15.cpacr_el1, though the behaviour
is quite similar, for two reasons:
* the M profile CPACR is banked between security states
* it preserves the invariant that M profile uses no state
inside the cp15 substruct
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190416125744.27770-4-peter.maydell@linaro.org
For M-profile the MVFR* ID registers are memory mapped, in the
range we implement via the NVIC. Allow them to be read.
(If the CPU has no FPU, these registers are defined to be RAZ.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190416125744.27770-3-peter.maydell@linaro.org
Tracked down with cleanup-trace-events.pl. Funnies requiring manual
post-processing:
* block.c and blockdev.c trace points are in block/trace-events.
* hw/block/nvme.c uses the preprocessor to hide its trace point use
from cleanup-trace-events.pl.
* include/hw/xen/xen_common.h trace points are in hw/xen/trace-events.
* net/colo-compare and net/filter-rewriter.c use pseudo trace points
colo_compare_udp_miscompare and colo_filter_rewriter_debug to guard
debug code.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-id: 20190314180929.27722-5-armbru@redhat.com
Message-Id: <20190314180929.27722-5-armbru@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
We spell out sub/dir/ in sub/dir/trace-events' comments pointing to
source files. That's because when trace-events got split up, the
comments were moved verbatim.
Delete the sub/dir/ part from these comments. Gets rid of several
misspellings.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190314180929.27722-3-armbru@redhat.com
Message-Id: <20190314180929.27722-3-armbru@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
H_IPOLL takes the CPU# of the processor to poll as an argument,
it doesn't operate on self.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190314063855.27890-1-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Not all interrupt controllers have a working implementation of
message-signalled interrupts; in some cases, the guest may expect
MSI to work but it won't due to the buggy or lacking emulation.
In QEMU this is represented by the "msi_nonbroken" variable. This
patch adds a new configuration symbol enabled whenever the binary
contains an interrupt controller that will set "msi_nonbroken". We
can then use it to remove devices that cannot be possibly added
to the machine, because they require MSI.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The BCM2836 control logic module includes a simple
"local timer" which is a programmable down-counter that
can generates an interrupt. Implement this functionality.
Signed-off-by: Zoltán Baldaszti <bztemail@gmail.com>
[PMM: wrote commit message; wrapped long line; tweaked
some comments to match the final version of the code]
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The qemu coding standard is to use CamelCase for type and structure names,
and the pseries code follows that... sort of. There are quite a lot of
places where we bend the rules in order to preserve the capitalization of
internal acronyms like "PHB", "TCE", "DIMM" and most commonly "sPAPR".
That was a bad idea - it frequently leads to names ending up with hard to
read clusters of capital letters, and means they don't catch the eye as
type identifiers, which is kind of the point of the CamelCase convention in
the first place.
In short, keeping type identifiers look like CamelCase is more important
than preserving standard capitalization of internal "words". So, this
patch renames a heap of spapr internal type names to a more standard
CamelCase.
In addition to case changes, we also make some other identifier renames:
VIOsPAPR* -> SpaprVio*
The reverse word ordering was only ever used to mitigate the capital
cluster, so revert to the natural ordering.
VIOsPAPRVTYDevice -> SpaprVioVty
VIOsPAPRVLANDevice -> SpaprVioVlan
Brevity, since the "Device" didn't add useful information
sPAPRDRConnector -> SpaprDrc
sPAPRDRConnectorClass -> SpaprDrcClass
Brevity, and makes it clearer this is the same thing as a "DRC"
mentioned in many other places in the code
This is 100% a mechanical search-and-replace patch. It will, however,
conflict with essentially any and all outstanding patches touching the
spapr code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The NSR register of the HV ring has a different, although similar, bit
layout. TM_QW3_NSR_HE_PHYS bit should now be raised when the
Hypervisor interrupt line is signaled. Other bits TM_QW3_NSR_HE_POOL
and TM_QW3_NSR_HE_LSI are not modeled. LSI are for special interrupts
reserved for HW bringup and the POOL bit is used when signaling a
group of VPs. This is not currently implemented in Linux but it is in
pHyp.
The most important special commands on the HV TIMA page are added to
let the core manage interrupts : acking and changing the CPU priority.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-10-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is a simple model of the POWER9 XIVE interrupt controller for the
PowerNV machine which only addresses the needs of the skiboot
firmware. The PowerNV model reuses the common XIVE framework developed
for sPAPR as the fundamentals aspects are quite the same. The
difference are outlined below.
The controller initial BAR configuration is performed using the XSCOM
bus from there, MMIO are used for further configuration.
The MMIO regions exposed are :
- Interrupt controller registers
- ESB pages for IPIs and ENDs
- Presenter MMIO (Not used)
- Thread Interrupt Management Area MMIO, direct and indirect
The virtualization controller MMIO region containing the IPI ESB pages
and END ESB pages is sub-divided into "sets" which map portions of the
VC region to the different ESB pages. These are modeled with custom
address spaces and the XiveSource and XiveENDSource objects are sized
to the maximum allowed by HW. The memory regions are resized at
run-time using the configuration of EDT set translation table provided
by the firmware.
The XIVE virtualization structure tables (EAT, ENDT, NVTT) are now in
the machine RAM and not in the hypervisor anymore. The firmware
(skiboot) configures these tables using Virtual Structure Descriptor
defining the characteristics of each table : SBE, EAS, END and
NVT. These are later used to access the virtual interrupt entries. The
internal cache of these tables in the interrupt controller is updated
and invalidated using a set of registers.
Still to address to complete the model but not fully required is the
support for block grouping. Escalation support will be necessary for
KVM guests.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-7-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The PowerNV machine with need to encode the block id in the source
interrupt number before forwarding the source event notification to
the Router.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-5-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The PowerNV machine can perform indirect loads and stores on the TIMA
on behalf of another CPU. Give the controller the possibility to call
the TIMA memory accessors with a XiveTCTX of its choice.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-4-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
By default on P9, the HW CAM line (23bits) is hardwired to :
0x000||0b1||4Bit chip number||7Bit Thread number.
When the block group mode is enabled at the controller level (PowerNV),
the CAM line is changed for CAM compares to :
4Bit chip number||0x001||7Bit Thread number
This will require changes in xive_presenter_tctx_match() possibly.
This is a lowlevel functionality of the HW controller and it is not
strictly needed. Leave it for later.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-2-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The POWERNV switch should always select ISA_IPMI_BT, then the other
IPMI options are turned on automatically now.
CONFIG_DIMM should always be selected by the pseries machine,
which in turn depends on CONFIG_MEM_DEVICE since DIMM implements
this interface.
CONFIG_VIRTIO_VGA can be dropped from default-configs/ppc64-softmmu.mak
completely since this device is already automatically enabled via
hw/display/Kconfig now.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The make_device_config.sh script is replaced by minikconf, which
is modified to support the same command line as its predecessor.
The roots of the parsing are default-configs/*.mak, Kconfig.host and
hw/Kconfig. One difference with make_device_config.sh is that all symbols
have to be defined in a Kconfig file, including those coming from the
configure script. This is the reason for the Kconfig.host file introduced
in the previous patch. Whenever a file in default-configs/*.mak used
$(...) to refer to a config-host.mak symbol, this is replaced by a
Kconfig dependency; this part must be done already in this patch
for bisectability.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Acked-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20190123065618.3520-28-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Kconfig files were generated mostly with this script:
for i in `grep -ho CONFIG_[A-Z0-9_]* default-configs/* | sort -u`; do
set fnord `git grep -lw $i -- 'hw/*/Makefile.objs' `
shift
if test $# = 1; then
cat >> $(dirname $1)/Kconfig << EOF
config ${i#CONFIG_}
bool
EOF
git add $(dirname $1)/Kconfig
else
echo $i $*
fi
done
sed -i '$d' hw/*/Kconfig
for i in hw/*; do
if test -d $i && ! test -f $i/Kconfig; then
touch $i/Kconfig
git add $i/Kconfig
fi
done
Whenever a symbol is referenced from multiple subdirectories, the
script prints the list of directories that reference the symbol.
These symbols have to be added manually to the Kconfig files.
Kconfig.host and hw/Kconfig were created manually.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20190123065618.3520-27-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both functions, object_initialize() and object_property_add_child() increase
the reference counter of the new object, so one of the references has to be
dropped afterwards to get the reference counting right. Otherwise the child
object will not be properly cleaned up when the parent gets destroyed.
Thus let's use now object_initialize_child() instead to get the reference
counting here right.
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <1550748288-30598-1-git-send-email-thuth@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Patch "target/ppc: Add POWER9 external interrupt model" should have
removed the section covering PPC_FLAGS_INPUT_POWER7.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190219142530.17807-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This will be needed by PHB hotplug in order to access the "phandle"
property of the interrupt controller node.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <155059668867.1466090.6339199751719123386.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The pseries machine only uses LSIs to support legacy PCI devices. Every
PHB claims 4 LSIs at realize time. When using in-kernel XICS (or upcoming
in-kernel XIVE), QEMU synchronizes the state of all irqs, including these
LSIs, later on at machine reset.
In order to support PHB hotplug, we need a way to tell KVM about the LSIs
that doesn't require a machine reset. An easy way to do that is to always
inform KVM when an interrupt is claimed, which really isn't a performance
path.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155059668360.1466090.5969630516627776426.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Adds support for the Hypervisor directed interrupts in addition to the
OS ones.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[clg: - modified the icp_realize() and xive_tctx_realize() to take
into account explicitely the POWER9 interrupt model
- introduced a specific power9_set_irq for POWER9 ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190215161648.9600-10-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The KVM ICS class isn't used anymore. Drop it.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023084177.1011724.14693955932559990358.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We want to use the "simple" ICS type in both KVM and non-KVM setups.
Teach the "simple" ICS how to present interrupts to KVM and adapt
sPAPR accordingly.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023082996.1011724.16237920586343905010.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The KVM ICS reset handler simply writes the ICS state to KVM. This
doesn't need the overkill parent_reset logic we have today. Also
we want to use the same ICS type for the KVM and non-KVM case with
pseries.
Call icp_set_kvm_state() from the "simple" ICS reset function.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023082407.1011724.1983100830860273401.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The pre_save(), post_load() and synchronize_state() methods of the
ICSStateClass type are really KVM only things. Make that obvious
by dropping the indirections and directly calling the KVM functions
instead.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023081817.1011724.14078777320394028836.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The KVM ICP class isn't used anymore. Drop it.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023081228.1011724.12474992370439652538.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The realization of KVM ICP currently follows the parent_realize logic,
which is a bit overkill here. Also we want to get rid of the KVM ICP
class. Explicitely call icp_kvm_realize() from the base ICP realize
function.
Note that ICPStateClass::parent_realize is retained because powernv
needs it.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023080049.1011724.15423463482790260696.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The KVM ICP reset handler simply writes the ICP state to KVM. This
doesn't need the overkill parent_reset logic we have today. Call
icp_set_kvm_state() from the base ICP reset function instead.
Since there are no other users for ICPStateClass::parent_reset, and
it isn't currently expected to change, drop it as well.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023079461.1011724.12644984391500635645.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The pre_save(), post_load() and synchronize_state() methods of the
ICPStateClass type are really KVM only things. Make that obvious
by dropping the indirections and directly calling the KVM functions
instead.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023078871.1011724.3083923389814185598.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
MSI is the default and LSI specific code is guarded by the
xive_source_irq_is_lsi() helper. The xive_source_irq_set()
helper is a nop for MSIs.
Simplify the code by turning xive_source_irq_set() into
xive_source_irq_set_lsi() and only call it for LSIs. The
call to xive_source_irq_set(false) in spapr_xive_irq_free()
is also a nop. Just drop it.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <154999584656.690774.18352404495120358613.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The code for handling the NVIC SHPR1 register intends to permit
byte and halfword accesses (as the architecture requires). However
the 'case' line for it only lists the base address of the
register, so attempts to access bytes other than the first one
end up in the "bad write" default logic. This bug was added
accidentally when we split out the SHPR1 logic from SHPR2 and
SHPR3 to support v6M.
Fixes: 7c9140afd5 ("nvic: Handle ARMv6-M SCS reserved registers")
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
---
The Zephyr RTOS happens to access SHPR1 byte at a time,
which is how I spotted this.
Next step is to remove them from under the PowerPCCPU
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It provides a mean to retrieve the XiveTCTX of a CPU. This will become
necessary with future changes which move the interrupt presenter
object pointers under the PowerPCCPU machine_data.
The PowerNV machine has an extra requirement on TIMA accesses that
this new method addresses. The machine can perform indirect loads and
stores on the TIMA on behalf of another CPU. The PIR being defined in
the controller registers, we need a way to peek in the controller
model to find the PIR value.
The XiveTCTX is moved above the XiveRouter definition to avoid forward
typedef declarations.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Currently the ARMv7M NVIC object's realize method assumes that the
CPU the NVIC is attached to is CPU 0, because it thinks there can
only ever be one CPU in the system. To allow a dual-Cortex-M33
setup we need to remove this assumption; instead the armv7m
wrapper object tells the NVIC its CPU, in the same way that it
already tells the CPU what the NVIC is.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-2-peter.maydell@linaro.org
When compiling with Clang in -std=gnu99 mode, there is a warning/error:
CC ppc64-softmmu/hw/intc/xics_spapr.o
In file included from /home/thuth/devel/qemu/hw/intc/xics_spapr.c:34:
/home/thuth/devel/qemu/include/hw/ppc/xics.h:203:34: error: redefinition of typedef 'sPAPRMachineState' is a C11 feature
[-Werror,-Wtypedef-redefinition]
typedef struct sPAPRMachineState sPAPRMachineState;
^
/home/thuth/devel/qemu/include/hw/ppc/spapr_irq.h:25:34: note: previous definition is here
typedef struct sPAPRMachineState sPAPRMachineState;
^
We have to remove the duplicated typedef here and include "spapr.h" instead.
But "spapr.h" should not be included for the pnv machine files. So move
the spapr-related prototypes into a new file called "xics_spapr.h" instead.
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Most files that have TABs only contain a handful of them. Change
them to spaces so that we don't confuse people.
disas, standard-headers, linux-headers and libdecnumber are imported
from other projects and probably should be exempted from the check.
Outside those, after this patch the following files still contain both
8-space and TAB sequences at the beginning of the line. Many of them
have a majority of TABs, or were initially committed with all tabs.
bsd-user/i386/target_syscall.h
bsd-user/x86_64/target_syscall.h
crypto/aes.c
hw/audio/fmopl.c
hw/audio/fmopl.h
hw/block/tc58128.c
hw/display/cirrus_vga.c
hw/display/xenfb.c
hw/dma/etraxfs_dma.c
hw/intc/sh_intc.c
hw/misc/mst_fpga.c
hw/net/pcnet.c
hw/sh4/sh7750.c
hw/timer/m48t59.c
hw/timer/sh_timer.c
include/crypto/aes.h
include/disas/bfd.h
include/hw/sh4/sh.h
libdecnumber/decNumber.c
linux-headers/asm-generic/unistd.h
linux-headers/linux/kvm.h
linux-user/alpha/target_syscall.h
linux-user/arm/nwfpe/double_cpdo.c
linux-user/arm/nwfpe/fpa11_cpdt.c
linux-user/arm/nwfpe/fpa11_cprt.c
linux-user/arm/nwfpe/fpa11.h
linux-user/flat.h
linux-user/flatload.c
linux-user/i386/target_syscall.h
linux-user/ppc/target_syscall.h
linux-user/sparc/target_syscall.h
linux-user/syscall.c
linux-user/syscall_defs.h
linux-user/x86_64/target_syscall.h
slirp/cksum.c
slirp/if.c
slirp/ip.h
slirp/ip_icmp.c
slirp/ip_icmp.h
slirp/ip_input.c
slirp/ip_output.c
slirp/mbuf.c
slirp/misc.c
slirp/sbuf.c
slirp/socket.c
slirp/socket.h
slirp/tcp_input.c
slirp/tcpip.h
slirp/tcp_output.c
slirp/tcp_subr.c
slirp/tcp_timer.c
slirp/tftp.c
slirp/udp.c
slirp/udp.h
target/cris/cpu.h
target/cris/mmu.c
target/cris/op_helper.c
target/sh4/helper.c
target/sh4/op_helper.c
target/sh4/translate.c
tcg/sparc/tcg-target.inc.c
tests/tcg/cris/check_addo.c
tests/tcg/cris/check_moveq.c
tests/tcg/cris/check_swap.c
tests/tcg/multiarch/test-mmap.c
ui/vnc-enc-hextile-template.h
ui/vnc-enc-zywrle.h
util/envlist.c
util/readline.c
The following have only TABs:
bsd-user/i386/target_signal.h
bsd-user/sparc64/target_signal.h
bsd-user/sparc64/target_syscall.h
bsd-user/sparc/target_signal.h
bsd-user/sparc/target_syscall.h
bsd-user/x86_64/target_signal.h
crypto/desrfb.c
hw/audio/intel-hda-defs.h
hw/core/uboot_image.h
hw/sh4/sh7750_regnames.c
hw/sh4/sh7750_regs.h
include/hw/cris/etraxfs_dma.h
linux-user/alpha/termbits.h
linux-user/arm/nwfpe/fpopcode.h
linux-user/arm/nwfpe/fpsr.h
linux-user/arm/syscall_nr.h
linux-user/arm/target_signal.h
linux-user/cris/target_signal.h
linux-user/i386/target_signal.h
linux-user/linux_loop.h
linux-user/m68k/target_signal.h
linux-user/microblaze/target_signal.h
linux-user/mips64/target_signal.h
linux-user/mips/target_signal.h
linux-user/mips/target_syscall.h
linux-user/mips/termbits.h
linux-user/ppc/target_signal.h
linux-user/sh4/target_signal.h
linux-user/sh4/termbits.h
linux-user/sparc64/target_syscall.h
linux-user/sparc/target_signal.h
linux-user/x86_64/target_signal.h
linux-user/x86_64/termbits.h
pc-bios/optionrom/optionrom.h
slirp/mbuf.h
slirp/misc.h
slirp/sbuf.h
slirp/tcp.h
slirp/tcp_timer.h
slirp/tcp_var.h
target/i386/svm.h
target/sparc/asi.h
target/xtensa/core-dc232b/xtensa-modules.inc.c
target/xtensa/core-dc233c/xtensa-modules.inc.c
target/xtensa/core-de212/core-isa.h
target/xtensa/core-de212/xtensa-modules.inc.c
target/xtensa/core-fsf/xtensa-modules.inc.c
target/xtensa/core-sample_controller/core-isa.h
target/xtensa/core-sample_controller/xtensa-modules.inc.c
target/xtensa/core-test_kc705_be/core-isa.h
target/xtensa/core-test_kc705_be/xtensa-modules.inc.c
tests/tcg/cris/check_abs.c
tests/tcg/cris/check_addc.c
tests/tcg/cris/check_addcm.c
tests/tcg/cris/check_addoq.c
tests/tcg/cris/check_bound.c
tests/tcg/cris/check_ftag.c
tests/tcg/cris/check_int64.c
tests/tcg/cris/check_lz.c
tests/tcg/cris/check_openpf5.c
tests/tcg/cris/check_sigalrm.c
tests/tcg/cris/crisutils.h
tests/tcg/cris/sys.c
tests/tcg/i386/test-i386-ssse3.c
ui/vgafont.h
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20181213223737.11793-3-pbonzini@redhat.com>
Reviewed-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Wainer dos Santos Moschetta <wainersm@redhat.com>
Acked-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: Eric Blake <eblake@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Stefan Markovic <smarkovic@wavecomp.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make them more QOMConventional.
Cc:qemu-trivial@nongnu.org
Signed-off-by: Li Qiang <liq3ea@163.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <20190105023831.66910-1-liq3ea@163.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Depending on the interrupt mode of the machine, enable or disable the
XIVE MMIOs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The qemu_irq array is now allocated at the machine level using a sPAPR
IRQ set_irq handler depending on the chosen interrupt mode. The use of
this handler is slightly inefficient today but it will become necessary
when the 'dual' interrupt mode is introduced.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
To support the 'dual' interrupt mode, XICS and XIVE, we plan to move
the qemu_irq array of each interrupt controller under the machine and
do the allocation under the sPAPR IRQ init method.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Now that the 'intc' pointer is only used by the XICS interrupt mode,
let's make things clear and use a XICS type and name.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
which will be used by the machine only when the XIVE interrupt mode is
in use.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The qirq routines of the XiveSource and the sPAPRXive model are only
used under the sPAPR IRQ backend. Simplify the overall call stack and
gather all the code under spapr_qirq_xive(). It will ease future
changes.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
For the time being, the XIVE reset handler updates the OS CAM line of
the vCPU as it is done under a real hypervisor when a vCPU is
scheduled to run on a HW thread. This will let the XIVE presenter
engine find a match among the NVTs dispatched on the HW threads.
This handler will become even more useful when we introduce the
machine supporting both interrupt modes, XIVE and XICS. In this
machine, the interrupt mode is chosen by the CAS negotiation process
and activated after a reset.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Each interrupt mode has its own specific interrupt presenter object,
that we store under the CPU object, one for XICS and one for XIVE.
Extend the sPAPR IRQ backend with a new handler to support them both.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XIVE interface for the guest is described in the device tree under
the "interrupt-controller" node. A couple of new properties are
specific to XIVE :
- "reg"
contains the base address and size of the thread interrupt
managnement areas (TIMA), for the User level and for the Guest OS
level. Only the Guest OS level is taken into account today.
- "ibm,xive-eq-sizes"
the size of the event queues. One cell per size supported, contains
log2 of size, in ascending order.
- "ibm,xive-lisn-ranges"
the IRQ interrupt number ranges assigned to the guest for the IPIs.
and also under the root node :
- "ibm,plat-res-int-priorities"
contains a list of priorities that the hypervisor has reserved for
its own use. OPAL uses the priority 7 queue to automatically
escalate interrupts for all other queues (DD2.X POWER9). So only
priorities [0..6] are allowed for the guest.
Extend the sPAPR IRQ backend with a new handler to populate the DT
with the appropriate "interrupt-controller" node.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The different XIVE virtualization structures (sources and event queues)
are configured with a set of Hypervisor calls :
- H_INT_GET_SOURCE_INFO
used to obtain the address of the MMIO page of the Event State
Buffer (ESB) entry associated with the source.
- H_INT_SET_SOURCE_CONFIG
assigns a source to a "target".
- H_INT_GET_SOURCE_CONFIG
determines which "target" and "priority" is assigned to a source
- H_INT_GET_QUEUE_INFO
returns the address of the notification management page associated
with the specified "target" and "priority".
- H_INT_SET_QUEUE_CONFIG
sets or resets the event queue for a given "target" and "priority".
It is also used to set the notification configuration associated
with the queue, only unconditional notification is supported for
the moment. Reset is performed with a queue size of 0 and queueing
is disabled in that case.
- H_INT_GET_QUEUE_CONFIG
returns the queue settings for a given "target" and "priority".
- H_INT_RESET
resets all of the guest's internal interrupt structures to their
initial state, losing all configuration set via the hcalls
H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
- H_INT_SYNC
issue a synchronisation on a source to make sure all notifications
have reached their queue.
Calls that still need to be addressed :
H_INT_SET_OS_REPORTING_LINE
H_INT_GET_OS_REPORTING_LINE
See the code for more documentation on each hcall.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Folded in fix for field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The IVPE scans the O/S CAM line of the XIVE thread interrupt contexts
to find a matching Notification Virtual Target (NVT) among the NVTs
dispatched on the HW processor threads.
On a real system, the thread interrupt contexts are updated by the
hypervisor when a Virtual Processor is scheduled to run on a HW
thread. Under QEMU, the model will emulate the same behavior by
hardwiring the NVT identifier in the thread context registers at
reset.
The NVT identifier used by the sPAPRXive model is the VCPU id. The END
identifier is also derived from the VCPU id. A set of helpers doing
the conversion between identifiers are provided for the hcalls
configuring the sources and the ENDs.
The model does not need a NVT table but the XiveRouter NVT operations
are provided to perform some extra checks in the routing algorithm.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
sPAPRXive models the XIVE interrupt controller of the sPAPR machine.
It inherits from the XiveRouter and provisions storage for the routing
tables :
- Event Assignment Structure (EAS)
- Event Notification Descriptor (END)
The sPAPRXive model incorporates an internal XiveSource for the IPIs
and for the interrupts of the virtual devices of the guest. This model
is consistent with XIVE architecture which also incorporates an
internal IVSE for IPIs and accelerator interrupts in the IVRE
sub-engine.
The sPAPRXive model exports two memory regions, one for the ESB
trigger and management pages used to control the sources and one for
the TIMA pages. They are mapped by default at the addresses found on
chip 0 of a baremetal system. This is also consistent with the XIVE
architecture which defines a Virtualization Controller BAR for the
internal IVSE ESB pages and a Thread Managment BAR for the TIMA.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Fold in field accessor fixes]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
After the event data was enqueued in the O/S Event Queue, the IVPE
raises the bit corresponding to the priority of the pending interrupt
in the register IBP (Interrupt Pending Buffer) to indicate there is an
event pending in one of the 8 priority queues. The Pending Interrupt
Priority Register (PIPR) is also updated using the IPB. This register
represent the priority of the most favored pending notification.
The PIPR is then compared to the the Current Processor Priority
Register (CPPR). If it is more favored (numerically less than), the
CPU interrupt line is raised and the EO bit of the Notification Source
Register (NSR) is updated to notify the presence of an exception for
the O/S. The check needs to be done whenever the PIPR or the CPPR are
changed.
The O/S acknowledges the interrupt with a special load in the Thread
Interrupt Management Area. If the EO bit of the NSR is set, the CPPR
takes the value of PIPR. The bit number in the IBP corresponding to
the priority of the pending interrupt is reseted and so is the EO bit
of the NSR.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The last sub-engine of the XIVE architecture is the Interrupt
Virtualization Presentation Engine (IVPE). On HW, the IVRE and the
IVPE share elements, the Power Bus interface (CQ), the routing table
descriptors, and they can be combined in the same HW logic. We do the
same in QEMU and combine both engines in the XiveRouter for
simplicity.
When the IVRE has completed its job of matching an event source with a
Notification Virtual Target (NVT) to notify, it forwards the event
notification to the IVPE sub-engine. The IVPE scans the thread
interrupt contexts of the Notification Virtual Targets (NVT)
dispatched on the HW processor threads and if a match is found, it
signals the thread. If not, the IVPE escalates the notification to
some other targets and records the notification in a backlog queue.
The IVPE maintains the thread interrupt context state for each of its
NVTs not dispatched on HW processor threads in the Notification
Virtual Target table (NVTT).
The model currently only supports single NVT notifications.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Folded in fix for field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Each POWER9 processor chip has a XIVE presenter that can generate four
different exceptions to its threads:
- hypervisor exception,
- O/S exception
- Event-Based Branch (EBB)
- msgsnd (doorbell).
Each exception has a state independent from the others called a Thread
Interrupt Management context. This context is a set of registers which
lets the thread handle priority management and interrupt acknowledgment
among other things. The most important ones being :
- Interrupt Priority Register (PIPR)
- Interrupt Pending Buffer (IPB)
- Current Processor Priority (CPPR)
- Notification Source Register (NSR)
These registers are accessible through a specific MMIO region, called
the Thread Interrupt Management Area (TIMA), four aligned pages, each
exposing a different view of the registers. First page (page address
ending in 0b00) gives access to the entire context and is reserved for
the ring 0 view for the physical thread context. The second (page
address ending in 0b01) is for the hypervisor, ring 1 view. The third
(page address ending in 0b10) is for the operating system, ring 2
view. The fourth (page address ending in 0b11) is for user level, ring
3 view.
The thread interrupt context is modeled with a XiveTCTX object
containing the values of the different exception registers. The TIMA
region is mapped at the same address for each CPU.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The Event Notification Descriptor (END) XIVE structure also contains
two Event State Buffers providing further coalescing of interrupts,
one for the notification event (ESn) and one for the escalation events
(ESe). A MMIO page is assigned for each to control the EOI through
loads only. Stores are not allowed.
The END ESBs are modeled through an object resembling the 'XiveSource'
It is stateless as the END state bits are backed into the XiveEND
structure under the XiveRouter and the MMIO accesses follow the same
rules as for the XiveSource ESBs.
END ESBs are not supported by the Linux drivers neither on OPAL nor on
sPAPR. Nevetherless, it provides a mean to study the question in the
future and validates a bit more the XIVE model.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fold in a later fix for field access]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
To complete the event routing, the IVRE sub-engine uses a second table
containing Event Notification Descriptor (END) structures.
An END specifies on which Event Queue (EQ) the event notification
data, defined in the associated EAS, should be posted when an
exception occurs. It also defines which Notification Virtual Target
(NVT) should be notified.
The Event Queue is a memory page provided by the O/S defining a
circular buffer, one per server and priority couple, containing Event
Queue entries. These are 4 bytes long, the first bit being a
'generation' bit and the 31 following bits the END Data field. They
are pulled by the O/S when the exception occurs.
The END Data field is a way to set an invariant logical event source
number for an IRQ. On sPAPR machines, it is set with the
H_INT_SET_SOURCE_CONFIG hcall when the EISN flag is used.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fold in a later fix from Cédric fixing field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XiveRouter models the second sub-engine of the XIVE architecture :
the Interrupt Virtualization Routing Engine (IVRE).
The IVRE handles event notifications of the IVSE and performs the
interrupt routing process. For this purpose, it uses a set of tables
stored in system memory, the first of which being the Event Assignment
Structure (EAS) table.
The EAT associates an interrupt source number with an Event Notification
Descriptor (END) which will be used in a second phase of the routing
process to identify a Notification Virtual Target.
The XiveRouter is an abstract class which needs to be inherited from
to define a storage for the EAT, and other upcoming tables.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Folded in parts of a later fix by Cédric fixing field access]
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XiveNotifier offers a simple interface, between the XiveSource
object and the main interrupt controller of the machine. It will
forward event notifications to the XIVE Interrupt Virtualization
Routing Engine (IVRE).
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Adjust type name string for XiveNotifier]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'sent' status of the LSI interrupt source is modeled with the 'P'
bit of the ESB and the assertion status of the source is maintained
with an extra bit under the main XiveSource object. The type of the
source is stored in the same array for practical reasons.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fix style nit]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The first sub-engine of the overall XIVE architecture is the Interrupt
Virtualization Source Engine (IVSE). An IVSE can be integrated into
another logic, like in a PCI PHB or in the main interrupt controller
to manage IPIs.
Each IVSE instance is associated with an Event State Buffer (ESB) that
contains a two bit state entry for each possible event source. When an
event is signaled to the IVSE, by MMIO or some other means, the
associated interrupt state bits are fetched from the ESB and
modified. Depending on the resulting ESB state, the event is forwarded
to the IVRE sub-engine of the controller doing the routing.
Each supported ESB entry is associated with either a single or a
even/odd pair of pages which provides commands to manage the source:
to EOI, to turn off the source for instance.
On a sPAPR machine, the O/S will obtain the page address of the ESB
entry associated with a source and its characteristic using the
H_INT_GET_SOURCE_INFO hcall. On PowerNV, a similar OPAL call is used.
The xive_source_notify() routine is in charge forwarding the source
event notification to the routing engine. It will be filled later on.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The API of cpu_physical_memory_write_rom() is odd, because it
takes an AddressSpace, unlike all the other cpu_physical_memory_*
access functions. Rename it to address_space_write_rom(), and
bring its API into line with address_space_write().
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Message-id: 20181122133507.30950-3-peter.maydell@linaro.org
Replace arm_hcr_el2_{fmo,imo,amo} with a more general routine
that also takes SCR_EL3.NS (aka arm_is_secure_below_el3) into
account, as documented for the plethora of bits in HCR_EL2.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20181210150501.7990-2-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Use DeviceClass rather than SysBusDeviceClass in
puv3_intc_class_init().
Cc: gxt@mprc.pku.edu.cn
Signed-off-by: Mao Zhongyi <maozhongyi@cmss.chinamobile.com>
Signed-off-by: Zhang Shengju <zhangshengju@cmss.chinamobile.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20181130093852.20739-11-maozhongyi@cmss.chinamobile.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Because they are supposed to remain const.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20181114132931.22624-1-marcandre.lureau@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Create struct ARMISARegisters, to be accessed during translation.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20181016223115.24100-2-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Calling error_report() in a function that takes an Error ** argument
is suspicious. ioapic_realize() does that, and then exit()s.
Currently mostly harmless, as the device cannot be hot-plugged.
Fixes: 20fd4b7b6d
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20181017082702.5581-11-armbru@redhat.com>
Add a slight improvement of the Coccinelle semantic patch from commit
007b06578a, and use it to clean up. It leaves dead Error * variables
behind, cleaned up manually.
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Alexander Graf <agraf@suse.de>
Cc: Eric Blake <eblake@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20181017082702.5581-3-armbru@redhat.com>
From include/qapi/error.h:
* Pass an existing error to the caller with the message modified:
* error_propagate(errp, err);
* error_prepend(errp, "Could not frobnicate '%s': ", name);
Fei Li pointed out that doing error_propagate() first doesn't work
well when @errp is &error_fatal or &error_abort: the error_prepend()
is never reached.
Since I doubt fixing the documentation will stop people from getting
it wrong, introduce error_propagate_prepend(), in the hope that it
lures people away from using its constituents in the wrong order.
Update the instructions in error.h accordingly.
Convert existing error_prepend() next to error_propagate to
error_propagate_prepend(). If any of these get reached with
&error_fatal or &error_abort, the error messages improve. I didn't
check whether that's the case anywhere.
Cc: Fei Li <fli@suse.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20181017082702.5581-2-armbru@redhat.com>
The GIC_BASE_IRQ macro is a leftover from when we shared code
between the GICv2 and the v7M NVIC. Since the NVIC is now
split off, GIC_BASE_IRQ is always 0, and we can just delete it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Luc Michel <luc.michel@greensocs.com>
Message-id: 20180824161819.11085-1-peter.maydell@linaro.org
Reduce the size of the per-cpu GICH memory regions from 0x1000
to 0x200. The registers only cover 0x200 bytes, and the Cortex-A15
wants to map them at a spacing of 0x200 bytes apart. Having the
region be too large interferes with mapping them like that, so
reduce it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Luc Michel <luc.michel@greensocs.com>
Message-id: 20180821132811.17675-3-peter.maydell@linaro.org
Switch the apic away from using the old_mmio MemoryRegionOps
accessor functions.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20180803101943.23722-1-peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On real v7M hardware, the NMI line is an externally visible signal
that an SoC or board can toggle to assert an NMI. Expose it in
our QEMU NVIC and armv7m container objects so that a board model
can wire it up if it needs to.
In particular, the MPS2 watchdog is wired to NMI.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
In scripts/arch-run.bash of kvm-unit-tests, it will check the qemu
output log with:
if [ -z "$(echo "$errors" | grep -vi warning)" ]; then
Thus without the warning prefix, all of the test fail.
Since it is not unrecoverable error in kvm_arm_its_reset for
current implementation, downgrading the report from error to
warn makes sense.
Signed-off-by: Jia He <jia.he@hxt-semitech.com>
Message-id: 1531969910-32843-1-git-send-email-jia.he@hxt-semitech.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The IMO, FMO and AMO bits in HCR_EL2 are defined to "behave as
1 for all purposes other than direct reads" if HCR_EL2.TGE
is set and HCR_EL2.E2H is 0, and to "behave as 0 for all
purposes other than direct reads" if HCR_EL2.TGE is set
and HRC_EL2.E2H is 1.
To avoid having to check E2H and TGE everywhere where we test IMO and
FMO, provide accessors arm_hcr_el2_imo(), arm_hcr_el2_fmo()and
arm_hcr_el2_amo(). We don't implement ARMv8.1-VHE yet, so the E2H
case will never be true, but we include the logic to save effort when
we eventually do get to that.
(Note that in several of these callsites the change doesn't
actually make a difference as either the callsite is handling
TGE specially anyway, or the CPU can't get into that situation
with TGE set; we change everywhere for consistency.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20180724115950.17316-5-peter.maydell@linaro.org
Add some traces to the ARM GIC to catch register accesses (distributor,
(v)cpu interface and virtual interface), and to take into account
virtualization extensions (print `vcpu` instead of `cpu` when needed).
Also add some virtualization extensions specific traces: LR updating
and maintenance IRQ generation.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-19-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement the maintenance interrupt generation that is part of the GICv2
virtualization extensions.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-18-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add the gic_update_virt() function to update the vCPU interface states
and raise vIRQ and vFIQ as needed. This commit renames gic_update() to
gic_update_internal() and generalizes it to handle both cases, with a
`virt' parameter to track whether we are updating the CPU or vCPU
interfaces.
The main difference between CPU and vCPU is the way we select the best
IRQ. This part has been split into the gic_get_best_(v)irq functions.
For the virt case, the LRs are iterated to find the best candidate.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-17-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement the read and write functions for the virtual interface of the
virtualization extensions in the GICv2.
One mirror region per CPU is also created, which maps to that specific
CPU id. This is required by the GIC architecture specification.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-16-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add the read/write functions to handle accesses to the vCPU interface.
Those accesses are forwarded to the real CPU interface, with the CPU id
being converted to the corresponding vCPU id (vCPU id = CPU id +
GIC_NCPU).
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Message-id: 20180727095421.386-15-luc.michel@greensocs.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement virtualization extensions in the gic_cpu_read() and
gic_cpu_write() functions. Those are the last bits missing to fully
support virtualization extensions in the CPU interface path.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-14-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement virtualization extensions in the gic_deactivate_irq() and
gic_complete_irq() functions.
When the guest writes an invalid vIRQ to V_EOIR or V_DIR, since the
GICv2 specification is not entirely clear here, we adopt the behaviour
observed on real hardware:
* When V_CTRL.EOIMode is false (EOI split is disabled):
- In case of an invalid vIRQ write to V_EOIR:
-> If some bits are set in H_APR, an invalid vIRQ write to V_EOIR
triggers a priority drop, and increments V_HCR.EOICount.
-> If V_APR is already cleared, nothing happen
- An invalid vIRQ write to V_DIR is ignored.
* When V_CTRL.EOIMode is true:
- In case of an invalid vIRQ write to V_EOIR:
-> If some bits are set in H_APR, an invalid vIRQ write to V_EOIR
triggers a priority drop.
-> If V_APR is already cleared, nothing happen
- An invalid vIRQ write to V_DIR increments V_HCR.EOICount.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Message-id: 20180727095421.386-13-luc.michel@greensocs.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement virtualization extensions in the gic_acknowledge_irq()
function. This function changes the state of the highest priority IRQ
from pending to active.
When the current CPU is a vCPU, modifying the state of an IRQ modifies
the corresponding LR entry. However if we clear the pending flag before
setting the active one, we lose track of the LR entry as it becomes
invalid. The next call to gic_get_lr_entry() will fail.
To overcome this issue, we call gic_activate_irq() before
gic_clear_pending(). This does not change the general behaviour of
gic_acknowledge_irq.
We also move the SGI case in gic_clear_pending_sgi() to enhance
code readability as the virtualization extensions support adds a if-else
level.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-12-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement virtualization extensions in gic_activate_irq() and
gic_drop_prio() and in gic_get_prio_from_apr_bits() called by
gic_drop_prio().
When the current CPU is a vCPU:
- Use GIC_VIRT_MIN_BPR and GIC_VIRT_NR_APRS instead of their non-virt
counterparts,
- the vCPU APR is stored in the virtual interface, in h_apr.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-11-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add some helper functions to gic_internal.h to get or change the state
of an IRQ. When the current CPU is not a vCPU, the call is forwarded to
the GIC distributor. Otherwise, it acts on the list register matching
the IRQ in the current CPU virtual interface.
gic_clear_active can have a side effect on the distributor, even in the
vCPU case, when the correponding LR has the HW field set.
Use those functions in the CPU interface code path to prepare for the
vCPU interface implementation.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20180727095421.386-10-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
An access to the CPU interface is non-secure if the current GIC instance
implements the security extensions, and the memory access is actually
non-secure. Until then, it was checked with tests such as
if (s->security_extn && !attrs.secure) { ... }
in various places of the CPU interface code.
With the implementation of the virtualization extensions, those tests
must be updated to take into account whether we are in a vCPU interface
or not. This is because the exposed vCPU interface does not implement
security extensions.
This commits replaces all those tests with a call to the
gic_cpu_ns_access() function to check if the current access to the CPU
interface is non-secure. This function takes into account whether the
current CPU is a vCPU or not.
Note that this function is used only in the (v)CPU interface code path.
The distributor code path is left unchanged, as the distributor is not
exposed to vCPUs at all.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20180727095421.386-9-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add some helper macros and functions related to the virtualization
extensions to gic_internal.h.
The GICH_LR_* macros help extracting specific fields of a list register
value. The only tricky one is the priority field as only the MSB are
stored. The value must be shifted accordingly to obtain the correct
priority value.
gic_is_vcpu() and gic_get_vcpu_real_id() help with (v)CPU id manipulation
to abstract the fact that vCPU id are in the range
[ GIC_NCPU; (GIC_NCPU + num_cpu) [.
gic_lr_* and gic_virq_is_valid() help with the list registers.
gic_get_lr_entry() returns the LR entry for a given (vCPU, irq) pair. It
is meant to be used in contexts where we know for sure that the entry
exists, so we assert that entry is actually found, and the caller can
avoid the NULL check on the returned pointer.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-8-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add the register definitions for the virtual interface of the GICv2.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-7-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add the necessary parts of the virtualization extensions state to the
GIC state. We choose to increase the size of the CPU interfaces state to
add space for the vCPU interfaces (the GIC_NCPU_VCPU macro). This way,
we'll be able to reuse most of the CPU interface code for the vCPUs.
The only exception is the APR value, which is stored in h_apr in the
virtual interface state for vCPUs. This is due to some complications
with the GIC VMState, for which we don't want to break backward
compatibility. APRs being stored in 2D arrays, increasing the second
dimension would lead to some ugly VMState description. To avoid
that, we keep it in h_apr for vCPUs.
The vCPUs are numbered from GIC_NCPU to (GIC_NCPU * 2) - 1. The
`gic_is_vcpu` function help to determine if a given CPU id correspond to
a physical CPU or a virtual one.
For the in-kernel KVM VGIC, since the exposed VGIC does not implement
the virtualization extensions, we report an error if the corresponding
property is set to true.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-6-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Some functions are now only used in arm_gic.c, put them static. Some of
them where only used by the NVIC implementation and are not used
anymore, so remove them.
Signed-off-by: Luc Michel <luc.michel@greensocs.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20180727095421.386-4-luc.michel@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>