FEAT_NV requires that when HCR_EL2.NV is set reads of the CurrentEL
register from EL1 always report EL2 rather than the real EL.
Implement this.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
For FEAT_NV, accesses to system registers and instructions from EL1
which would normally UNDEF there but which work in EL2 need to
instead be trapped to EL2. Detect this both for "we know this will
UNDEF at translate time" and "we found this UNDEFs at runtime", and
make the affected registers trap to EL2 instead.
The Arm ARM defines the set of registers that should trap in terms
of their names; for our implementation this would be both awkward
and inefficent as a test, so we instead trap based on the opc1
field of the sysreg. The regularity of the architectural choice
of encodings for sysregs means that in practice this captures
exactly the correct set of registers.
Regardless of how we try to define the registers this trapping
applies to, there's going to be a certain possibility of breakage
if new architectural features introduce new registers that don't
follow the current rules (FEAT_MEC is one example already visible
in the released sysreg XML, though not yet in the Arm ARM). This
approach seems to me to be straightforward and likely to require
a minimum of manual overrides.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
In handle_sys() we don't do the check for whether the register is
marked as needing an FPU/SVE/SME access check until after we've
handled the special cases covered by ARM_CP_SPECIAL_MASK. This is
conceptually the wrong way around, because if for example we happen
to implement an FPU-access-checked register as ARM_CP_NOP, we should
do the access check first.
Move the access checks up so they are with all the other access
checks, not sandwiched between the special-case read/write handling
and the normal-case read/write handling. This doesn't change
behaviour at the moment, because we happen not to define any
cpregs with both ARM_CPU_{FPU,SVE,SME} and one of the cases
dealt with by ARM_CP_SPECIAL_MASK.
Moving this code also means we have the correct place to put the
FEAT_NV/FEAT_NV2 access handling, which should come after the access
checks and before we try to do any read/write action.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
When FEAT_NV is turned on via the HCR_EL2.NV bit, ERET instructions
are trapped, with the same syndrome information as for the existing
FEAT_FGT fine-grained trap (in the pseudocode this is handled in
AArch64.CheckForEretTrap()).
Rename the DisasContext and tbflag bits to reflect that they are
no longer exclusively for FGT traps, and set the tbflag bit when
FEAT_NV is enabled as well as when the FGT is enabled.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
AArch64 permits code at EL3 to use the HVC instruction; however the
exception we take should go to EL3, not down to EL2 (see the pseudocode
AArch64.CallHypervisor()). Fix the target EL.
Cc: qemu-stable@nongnu.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar@zeroasic.com>
Message-id: 20231109151917.1925107-1-peter.maydell@linaro.org
In commit 442c9d682c when we converted the ERET, ERETAA, ERETAB
instructions to decodetree, the conversion accidentally lost the
correct setting of the syndrome register when taking a trap because
of the FEAT_FGT HFGITR_EL1.ERET bit. Instead of reporting a correct
full syndrome value with the EC and IL bits, we only reported the low
two bits of the syndrome, because the call to syn_erettrap() got
dropped.
Fix the syndrome values for these traps by reinstating the
syn_erettrap() calls.
Fixes: 442c9d682c ("target/arm: Convert ERET, ERETAA, ERETAB to decodetree")
Cc: qemu-stable@nongnu.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20231024172438.2990945-1-peter.maydell@linaro.org
The ext_and_shift_reg helper does this plus a shift.
The non-zero check for shift count is duplicate to
the one done within tcg_gen_shli_i64.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Allow the name 'cpu_env' to be used for something else.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
TARGET_PAGE_ENTRY_EXTRA is a macro that allows guests to specify additional
fields for caching with the full TLB entry. This macro is replaced with
a union in CPUTLBEntryFull, thus making CPUTLB target-agnostic at the
cost of slightly inflated CPUTLBEntryFull for non-arm guests.
Note, this is needed to ensure that fields in CPUTLB don't vary in
offset between various targets.
(arm is the only guest actually making use of this feature.)
Signed-off-by: Anton Johansson <anjo@rev.ng>
Message-Id: <20230912153428.17816-2-anjo@rev.ng>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
The FEAT_MOPS CPY* instructions implement memory copies. These
come in both "always forwards" (memcpy-style) and "overlap OK"
(memmove-style) flavours.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230912140434.1333369-12-peter.maydell@linaro.org
The FEAT_MOPS SETG* instructions are very similar to the SET*
instructions, but as well as setting memory contents they also
set the MTE tags. They are architecturally required to operate
on tag-granule aligned regions only.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230912140434.1333369-10-peter.maydell@linaro.org
Currently the only tag-setting instructions always do so in the
context of the current EL, and so we only need one ATA bit in the TB
flags. The FEAT_MOPS SETG instructions include ones which set tags
for a non-privileged access, so we now also need the equivalent "are
tags enabled?" information for EL0.
Add the new TB flag, and convert the existing 'bool ata' field in
DisasContext to a 'bool ata[2]' that can be indexed by the is_unpriv
bit in an instruction, similarly to mte[2].
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230912140434.1333369-9-peter.maydell@linaro.org
Implement the SET* instructions which collectively implement a
"memset" operation. These come in a set of three, eg SETP
(prologue), SETM (main), SETE (epilogue), and each of those has
different flavours to indicate whether memory accesses should be
unpriv or non-temporal.
This commit does not include the "memset with tag setting"
SETG* instructions.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230912140434.1333369-8-peter.maydell@linaro.org
In every place that we call the get_a64_user_mem_index() function
we do it like this:
memidx = a->unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
Refactor so the caller passes in the bool that says whether they
want the 'unpriv' or 'normal' mem_index rather than having to
do the ?: themselves.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20230912140434.1333369-4-peter.maydell@linaro.org
FEAT_HBC (Hinted conditional branches) provides a new instruction
BC.cond, which behaves exactly like the existing B.cond except
that it provides a hint to the branch predictor about the
likely behaviour of the branch.
Since QEMU does not implement branch prediction, we can treat
this identically to B.cond.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230831232441.66020-5-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Perform the check for EL2 enabled in the security space and the
TIDCP bit in an out-of-line helper.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230831232441.66020-4-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
STGP writes to tag memory, it does not check it.
This happened to work because we wrote tag memory first
so that the check always succeeded.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230901203103.136408-1-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
An instruction is a 'combined' Pointer Authentication instruction
if it does something in addition to PAC -- for instance, branching
to or loading an address from the authenticated pointer.
Knowing whether a PAC operation is 'combined' is needed to
implement FEAT_FPACCOMBINE.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Aaron Lindsay <aaron@os.amperecomputing.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230829232335.965414-9-richard.henderson@linaro.org
Message-Id: <20230609172324.982888-7-aaron@os.amperecomputing.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Previously we hard-coded the blocksize with GMID_EL1_BS.
But the value we choose for -cpu max does not match the
value that cortex-a710 uses.
Mirror the way we handle dcz_blocksize.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230811214031.171020-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
When converting to decodetree, the code to rebuild mop for the pair
only made it into trans_STP and not into trans_STGP.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1790
Fixes: 8c212eb659 ("target/arm: Convert load/store-pair to decodetree")
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230726165416.309624-1-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Split these helpers so that we are not passing 'decrypt'
within the simd descriptor.
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Convert the instructions in the load/store memory tags instruction
group to decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-21-peter.maydell@linaro.org
Convert the ASIMD load/store single structure insns to decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20230602155223.2040685-20-peter.maydell@linaro.org
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Convert the instructions in the ASIMD load/store multiple structures
instruction classes to decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-19-peter.maydell@linaro.org
Convert the instructions in the LDAPR/STLR (unscaled immediate)
group to decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-18-peter.maydell@linaro.org
Convert the instructions in the load/store register (pointer
authentication) group ot decodetree: LDRAA, LDRAB.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-17-peter.maydell@linaro.org
Convert the insns in the atomic memory operations group to
decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-16-peter.maydell@linaro.org
Convert the LDR and STR instructions which take a register
plus register offset to decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-15-peter.maydell@linaro.org
Convert the LDR and STR instructions which use a 12-bit immediate
offset to decodetree. We can reuse the existing LDR and STR
trans functions for these.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-14-peter.maydell@linaro.org
Convert the load and store instructions which use a 9-bit
immediate offset to decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-13-peter.maydell@linaro.org
Convert the "Load register (literal)" instruction class to
decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-11-peter.maydell@linaro.org
Convert the instructions in the load/store exclusive (STXR,
STLXR, LDXR, LDAXR) and load/store ordered (STLR, STLLR,
LDAR, LDLAR) to decodetree.
Note that for STLR, STLLR, LDAR, LDLAR this fixes an under-decoding
in the legacy decoder where we were not checking that the RES1 bits
in the Rs and Rt2 fields were set.
The new function ldst_iss_sf() is equivalent to the existing
disas_ldst_compute_iss_sf(), but it takes the pre-decoded 'ext' field
rather than taking an undecoded two-bit opc field and extracting
'ext' from it. Once all the loads and stores have been converted
to decodetree disas_ldst_compute_iss_sf() will be unused and
can be deleted.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-9-peter.maydell@linaro.org
Convert the exception generation instructions SVC, HVC, SMC, BRK and
HLT to decodetree.
The old decoder decoded the halting-debug insnns DCPS1, DCPS2 and
DCPS3 just in order to then make them UNDEF; as with DRPS, we don't
bother to decode them, but document the patterns in a64.decode.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-8-peter.maydell@linaro.org
Convert MSR (reg), MRS, SYS, SYSL to decodetree. For QEMU these are
all essentially the same instruction (system register access).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-7-peter.maydell@linaro.org
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Convert the MSR (immediate) insn to decodetree. Our implementation
has basically no commonality between the different destinations,
so we decode the destination register in a64.decode.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-6-peter.maydell@linaro.org
Convert the CFINV, XAFLAG and AXFLAG insns to decodetree.
The old decoder handles these in handle_msr_i(), but
the architecture defines them as separate instructions
from MSR (immediate).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-5-peter.maydell@linaro.org
Convert the insns in the "Barriers" instruction class to
decodetree: CLREX, DSB, DMB, ISB and SB.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-4-peter.maydell@linaro.org
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Convert the various instructions in the hint instruction space
to decodetree.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-3-peter.maydell@linaro.org
In the recent refactoring we missed a few places which should be
calling finalize_memop_asimd() for ASIMD loads and stores but
instead are just calling finalize_memop(); fix these.
For the disas_ldst_single_struct() and disas_ldst_multiple_struct()
cases, this is not a behaviour change because there the size
is never MO_128 and the two finalize functions do the same thing.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
In disas_ldst_reg_imm9() we missed one place where a call to
a gen_mte_check* function should now be passed the memop we
have created rather than just being passed the size. Fix this.
Fixes: 0a9091424d ("target/arm: Pass memop to gen_mte_check1*")
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
The LDG instruction loads the tag from a memory address (identified
by [Xn + offset]), and then merges that tag into the destination
register Xt. We implemented this correctly for the case when
allocation tags are enabled, but didn't get it right when ATA=0:
instead of merging the tag bits into Xt, we merged them into the
memory address [Xn + offset] and then set Xt to that.
Merge the tag bits into the old Xt value, as they should be.
Cc: qemu-stable@nongnu.org
Fixes: c15294c1e3 ("target/arm: Implement LDG, STG, ST2G instructions")
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The atomic memory operations are supposed to return the old memory
data value in the destination register. This value is not
sign-extended, even if the operation is the signed minimum or
maximum. (In the pseudocode for the instructions the returned data
value is passed to ZeroExtend() to create the value in the register.)
We got this wrong because we were doing a 32-to-64 zero extend on the
result for 8 and 16 bit data values, rather than the correct amount
of zero extension.
Fix the bug by using ext8u and ext16u for the MO_8 and MO_16 data
sizes rather than ext32u.
Cc: qemu-stable@nongnu.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230602155223.2040685-2-peter.maydell@linaro.org
Push the mte check behind the exclusive_addr check.
Document the several ways that we are still out of spec
with this implementation.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230530191438.411344-18-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>