The term "iothread lock" is obsolete. The APIs use Big QEMU Lock (BQL)
in their names. Update the code comments to use "BQL" instead of
"iothread lock".
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Message-id: 20240102153529.486531-5-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
The Big QEMU Lock (BQL) has many names and they are confusing. The
actual QemuMutex variable is called qemu_global_mutex but it's commonly
referred to as the BQL in discussions and some code comments. The
locking APIs, however, are called qemu_mutex_lock_iothread() and
qemu_mutex_unlock_iothread().
The "iothread" name is historic and comes from when the main thread was
split into into KVM vcpu threads and the "iothread" (now called the main
loop thread). I have contributed to the confusion myself by introducing
a separate --object iothread, a separate concept unrelated to the BQL.
The "iothread" name is no longer appropriate for the BQL. Rename the
locking APIs to:
- void bql_lock(void)
- void bql_unlock(void)
- bool bql_locked(void)
There are more APIs with "iothread" in their names. Subsequent patches
will rename them. There are also comments and documentation that will be
updated in later patches.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Acked-by: Fabiano Rosas <farosas@suse.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Eric Farman <farman@linux.ibm.com>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Acked-by: Hyman Huang <yong.huang@smartx.com>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Message-id: 20240102153529.486531-2-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
MDCR_EL2.HPMN allows an hypervisor to limit the number of PMU counters
available to EL1 and EL0 (to keep the others to itself). QEMU already
implements this split correctly, except for PMCR_EL0.N reads: the number
of counters read by EL1 or EL0 should be the one configured in
MDCR_EL2.HPMN.
Cc: qemu-stable@nongnu.org
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Message-id: 20231215144652.4193815-2-jean-philippe@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Hardware accelerators handle that in *hardware*.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20231130142519.28417-3-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20231130142519.28417-2-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The system registers DBGVCR32_EL2, FPEXC32_EL2, DACR32_EL2 and
IFSR32_EL2 are present only to allow an AArch64 EL2 or EL3 to read
and write the contents of an AArch32-only system register. The
architecture requires that they are present only when EL1 can be
AArch32, but we implement them unconditionally. This was OK when all
our CPUs supported AArch32 EL1, but we have quite a lot of CPU models
now which only support AArch64 at EL1:
a64fx
cortex-a76
cortex-a710
neoverse-n1
neoverse-n2
neoverse-v1
Only define these registers for CPUs which allow AArch32 EL1.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20231121144605.3980419-1-peter.maydell@linaro.org
In commit edac4d8a16 back in 2015 when we added support for
the virtual timer offset CNTVOFF_EL2, we didn't correctly update
the timer-recalculation code that figures out when the timer
interrupt is next going to change state. We got it wrong in
two ways:
* for the 0->1 transition, we didn't notice that gt->cval + offset
can overflow a uint64_t
* for the 1->0 transition, we didn't notice that the transition
might now happen before the count rolls over, if offset > count
In the former case, we end up trying to set the next interrupt
for a time in the past, which results in QEMU hanging as the
timer fires continuously.
In the latter case, we would fail to update the interrupt
status when we are supposed to.
Fix the calculations in both cases.
The test case is Alex Bennée's from the bug report, and tests
the 0->1 transition overflow case.
Fixes: edac4d8a16 ("target-arm: Add CNTVOFF_EL2")
Cc: qemu-stable@nongnu.org
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/60
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20231120173506.3729884-1-peter.maydell@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
This is just a constant alias register with the same value as the
"other" MIDR so it serves no purpose being presented to gdbstub.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20231106185112.2755262-6-alex.bennee@linaro.org>
We also mark it ARM_CP_NO_GDB so we avoid duplicate PAR's in the
system register XML we send to gdb.
Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20231107105145.2916124-1-alex.bennee@linaro.org>
The feature test functions isar_feature_*() now take up nearly
a thousand lines in target/arm/cpu.h. This header file is included
by a lot of source files, most of which don't need these functions.
Move the feature test functions to their own header file.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20231024163510.2972081-2-peter.maydell@linaro.org
FEAT_HPMN0 is a small feature which defines that it is valid for
MDCR_EL2.HPMN to be set to 0, meaning "no PMU event counters provided
to an EL1 guest" (previously this setting was reserved). QEMU's
implementation almost gets HPMN == 0 right, but we need to fix
one check in pmevcntr_is_64_bit(). That is enough for us to
advertise the feature in the 'max' CPU.
(We don't need to make the behaviour conditional on feature
presence, because the FEAT_HPMN0 behaviour is within the range
of permitted UNPREDICTABLE behaviour for a non-FEAT_HPMN0
implementation.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230921185445.3339214-1-peter.maydell@linaro.org
On an attempt to access CNTPCT_EL0 from EL0 using a guest running on top
of Xen, a trap from EL2 was observed which is something not reproducible
on HW (also, Xen does not trap accesses to physical counter).
This is because gt_counter_access() checks for an incorrect bit (1
instead of 0) of CNTHCTL_EL2 if HCR_EL2.E2H is 0 and access is made to
physical counter. Refer ARM ARM DDI 0487J.a, D19.12.2:
When HCR_EL2.E2H is 0:
- EL1PCTEN, bit [0]: refers to physical counter
- EL1PCEN, bit [1]: refers to physical timer registers
Drop entire block "if (hcr & HCR_E2H) {...} else {...}" from EL0 case
and fall through to EL1 case, given that after fixing checking for the
correct bit, the handling is the same.
Fixes: 5bc8437136 ("target/arm: Update timer access for VHE")
Signed-off-by: Michal Orzel <michal.orzel@amd.com>
Tested-by: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Message-id: 20230928094404.20802-1-michal.orzel@amd.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
FEAT_MOPS defines a handful of new enable bits:
* HCRX_EL2.MSCEn, SCTLR_EL1.MSCEn, SCTLR_EL2.MSCen:
define whether the new insns should UNDEF or not
* HCRX_EL2.MCE2: defines whether memops exceptions from
EL1 should be taken to EL1 or EL2
Since we don't sanitise what bits can be written for the SCTLR
registers, we only need to handle the new bits in HCRX_EL2, and
define SCTLR_MSCEN for the new SCTLR bit value.
The precedence of "HCRX bits acts as 0 if SCR_EL3.HXEn is 0" versus
"bit acts as 1 if EL2 disabled" is not clear from the register
definition text, but it is clear in the CheckMOPSEnabled()
pseudocode(), so we follow that. We'll have to check whether other
bits we need to implement in future follow the same logic or not.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230912140434.1333369-3-peter.maydell@linaro.org
For user-only mode we reveal a subset of the AArch64 ID registers
to the guest, to emulate the kernel's trap-and-emulate-ID-regs
handling. Update the feature bit masks to match upstream kernel
commit a48fa7efaf1161c1c.
None of these features are yet implemented by QEMU, so this
doesn't yet have a behavioural change, but implementation of
FEAT_MOPS and FEAT_HBC is imminent.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Provide a stub implementation, as a write is a "request".
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230831232441.66020-2-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Aaron Lindsay <aaron@os.amperecomputing.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230829232335.965414-3-richard.henderson@linaro.org
[PMM: drop the HVF part of the patch and just comment that
we need to do something when the register appears in that API]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Access to many of the special registers is enabled or disabled
by ACTLR_EL[23], which we implement as constant 0, which means
that all writes outside EL3 should trap.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20230811214031.171020-7-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Previously we hard-coded the blocksize with GMID_EL1_BS.
But the value we choose for -cpu max does not match the
value that cortex-a710 uses.
Mirror the way we handle dcz_blocksize.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230811214031.171020-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
When FEAT_RME is implemented, these bits override the value of
CNT[VP]_CTL_EL0.IMASK in Realm and Root state. Move the IRQ state update
into a new gt_update_irq() function and test those bits every time we
recompute the IRQ state.
Since we're removing the IRQ state from some trace events, add a new
trace event for gt_update_irq().
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Message-id: 20230809123706.1842548-7-jean-philippe@linaro.org
[PMM: only register change hook if not USER_ONLY and if TCG]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
The AT instruction is UNDEFINED if the {NSE,NS} configuration is
invalid. Add a function to check this on all AT instructions that apply
to an EL lower than 3.
Suggested-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Message-id: 20230809123706.1842548-6-jean-philippe@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
At the moment we only handle Secure and Nonsecure security spaces for
the AT instructions. Add support for Realm and Root.
For AArch64, arm_security_space() gives the desired space. ARM DDI0487J
says (R_NYXTL):
If EL3 is implemented, then when an address translation instruction
that applies to an Exception level lower than EL3 is executed, the
Effective value of SCR_EL3.{NSE, NS} determines the target Security
state that the instruction applies to.
For AArch32, some instructions can access NonSecure space from Secure,
so we still need to pass the state explicitly to do_ats_write().
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20230809123706.1842548-5-jean-philippe@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
GPC checks are not performed on the output address for AT instructions,
as stated by ARM DDI 0487J in D8.12.2:
When populating PAR_EL1 with the result of an address translation
instruction, granule protection checks are not performed on the final
output address of a successful translation.
Rename get_phys_addr_with_secure(), since it's only used to handle AT
instructions.
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20230809123706.1842548-4-jean-philippe@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
When HCR_EL2.E2H is enabled, TLB entries are formed using the EL2&0
translation regime, instead of the EL2 translation regime. The TLB VAE2*
instructions invalidate the regime that corresponds to the current value
of HCR_EL2.E2H.
At the moment we only invalidate the EL2 translation regime. This causes
problems with RMM, which issues TLBI VAE2IS instructions with
HCR_EL2.E2H enabled. Update vae2_tlbmask() to take HCR_EL2.E2H into
account.
Add vae2_tlbbits() as well, since the top-byte-ignore configuration is
different between the EL2&0 and EL2 regime.
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20230809123706.1842548-3-jean-philippe@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The PAR_EL1.SH field documents that for the cases of:
* Device memory
* Normal memory with both Inner and Outer Non-Cacheable
the field should be 0b10 rather than whatever was in the
translation table descriptor field. (In the pseudocode this
is handled by PAREncodeShareability().) Perform this
adjustment when assembling a PAR value.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230807141514.19075-16-peter.maydell@linaro.org
Pass an ARMSecuritySpace instead of a bool secure to
arm_is_el2_enabled_secstate(). This doesn't change behaviour.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230807141514.19075-8-peter.maydell@linaro.org
arm_hcr_el2_eff_secstate() takes a bool secure, which it uses to
determine whether EL2 is enabled in the current security state.
With the advent of FEAT_RME this is no longer sufficient, because
EL2 can be enabled for Secure state but not for Root, and both
of those will pass 'secure == true' in the callsites in ptw.c.
As it happens in all of our callsites in ptw.c we either avoid making
the call or else avoid using the returned value if we're doing a
translation for Root, so this is not a behaviour change even if the
experimental FEAT_RME is enabled. But it is less confusing in the
ptw.c code if we avoid the use of a bool secure that duplicates some
of the information in the ArmSecuritySpace argument.
Make arm_hcr_el2_eff_secstate() take an ARMSecuritySpace argument
instead. Because we always want to know the HCR_EL2 for the
security state defined by the current effective value of
SCR_EL3.{NSE,NS}, it makes no sense to pass ARMSS_Root here,
and we assert that callers don't do that.
To avoid the assert(), we thus push the call to
arm_hcr_el2_eff_secstate() down into the cases in
regime_translation_disabled() that need it, rather than calling the
function and ignoring the result for the Root space translations.
All other calls to this function in ptw.c are already in places
where we have confirmed that the mmu_idx is a stage 2 translation
or that the regime EL is not 3.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230807141514.19075-7-peter.maydell@linaro.org
Unlike architectures with precise self-modifying code semantics
(e.g. x86) ARM processors do not maintain coherency for instruction
execution and memory, requiring an instruction synchronization
barrier on every core that will execute the new code, and on many
models also the explicit use of cache management instructions.
While this is required to make JITs work on actual hardware, QEMU
has gotten away with not handling this since it does not emulate
caches, and unconditionally invalidates code whenever the softmmu
or the user-mode page protection logic detects that code has been
modified.
Unfortunately the latter does not work in the face of dual-mapped
code (a common W^X workaround), where one page is executable and
the other is writable: user-mode has no way to connect one with the
other as that is only known to the kernel and the emulated
application.
This commit works around the issue by telling software that
instruction cache invalidation is required by clearing the
CPR_EL0.DIC flag (regardless of whether the emulated processor
needs it), and then invalidating code in IC IVAU instructions.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1034
Co-authored-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: John Högberg <john.hogberg@ericsson.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 168778890374.24232.3402138851538068785-1@git.sr.ht
[PMM: removed unnecessary AArch64 feature check; moved
"clear CTR_EL1.DIC" code up a bit so it's not in the middle
of the vfp/neon related tests]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Some registers whose 'cooked' writefns induce TLB maintenance do
not have raw_writefn ops defined. If only the writefn ops is set
(ie. no raw_writefn is provided), it is assumed the cooked also
work as the raw one. For those registers it is not obvious the
tlb_flush works on KVM mode so better/safer setting the raw write.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Suggested-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Anton Johansson <anjo@rev.ng>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230621135633.1649-4-anjo@rev.ng>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Handle GPC Fault types in arm_deliver_fault, reporting as
either a GPC exception at EL3, or falling through to insn
or data aborts at various exception levels.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230620124418.805717-19-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Introduce both the enumeration and functions to retrieve
the current state, and state outside of EL3.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230620124418.805717-6-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This includes GPCCR, GPTBR, MFAR, the TLB flush insns PAALL, PAALLOS,
RPALOS, RPAOS, and the cache flush insns CIPAPA and CIGDPAPA.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230620124418.805717-5-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
With RME, SEL2 must also be present to support secure state.
The NS bit is RES1 if SEL2 is not present.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230620124418.805717-4-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Define the missing SCR and HCR bits, allow SCR_NSE and {SCR,HCR}_GPF
to be set, and invalidate TLBs when NSE changes.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230620124418.805717-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
DC CVAP and DC CVADP instructions can be executed in EL0 on Linux,
either directly when SCTLR_EL1.UCI == 1 or emulated by the kernel (see
user_cache_maint_handler() in arch/arm64/kernel/traps.c).
This patch enables execution of the two instructions in user mode
emulation.
Signed-off-by: Zhuojia Shen <chaosdefinition@hotmail.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
In check_s2_mmu_setup() we have a check that is attempting to
implement the part of AArch64.S2MinTxSZ that is specific to when EL1
is AArch32:
if !s1aarch64 then
// EL1 is AArch32
min_txsz = Min(min_txsz, 24);
Unfortunately we got this wrong in two ways:
(1) The minimum txsz corresponds to a maximum inputsize, but we got
the sense of the comparison wrong and were faulting for all
inputsizes less than 40 bits
(2) We try to implement this as an extra check that happens after
we've done the same txsz checks we would do for an AArch64 EL1, but
in fact the pseudocode is *loosening* the requirements, so that txsz
values that would fault for an AArch64 EL1 do not fault for AArch32
EL1, because it does Min(old_min, 24), not Max(old_min, 24).
You can see this also in the text of the Arm ARM in table D8-8, which
shows that where the implemented PA size is less than 40 bits an
AArch32 EL1 is still OK with a configured stage2 T0SZ for a 40 bit
IPA, whereas if EL1 is AArch64 then the T0SZ must be big enough to
constrain the IPA to the implemented PA size.
Because of part (2), we can't do this as a separate check, but
have to integrate it into aa64_va_parameters(). Add a new argument
to that function to indicate that EL1 is 32-bit. All the existing
callsites except the one in get_phys_addr_lpae() can pass 'false',
because they are either doing a lookup for a stage 1 regime or
else they don't care about the tsz/tsz_oob fields.
Cc: qemu-stable@nongnu.org
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1627
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230509092059.3176487-1-peter.maydell@linaro.org
M-profile doesn't have HCR_EL2. While we could test features
before each call, zero is a generally safe return value to
disable the code in the caller. This test is required to
avoid an assert in arm_is_secure_below_el3.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230227225832.816605-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Since commit a0e61807a3 ("qapi: Remove QMP events and commands from
user-mode builds") we don't generate the "qapi-commands-machine.h"
header in a user-emulation-only build.
Move the QMP functions from helper.c (which is always compiled)
to monitor.c (which is only compiled when system-emulation
is selected). Rename monitor.c to arm-qmp-cmds.c.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230223155540.30370-2-philmd@linaro.org>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
[Straightforward conflict with commit 9def656e7a resolved]
The hflags are used only for TCG code, so introduce a new file
hflags.c to keep that code.
Signed-off-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This is in preparation to moving the hflags code into its own file
under the tcg/ directory.
Signed-off-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
for "all" builds (tcg + kvm), we want to avoid doing
the psci check if tcg is built-in, but not enabled.
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Fabiano Rosas <farosas@suse.de>
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
make it clearer from the name that this is a tcg-only function.
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Signed-off-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20230206223502.25122-5-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement the HFGITR_EL2.SVC_EL0 and SVC_EL1 fine-grained traps.
These trap execution of the SVC instruction from AArch32 and AArch64.
(As usual, AArch32 can only trap from EL0, as fine grained traps are
disabled with an AArch32 EL1.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-22-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-22-peter.maydell@linaro.org
Implement the HFGITR_EL2.ERET fine-grained trap. This traps
execution from AArch64 EL1 of ERET, ERETAA and ERETAB. The trap is
reported with a syndrome value of 0x1a.
The trap must take precedence over a possible pointer-authentication
trap for ERETAA and ERETAB.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-21-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-21-peter.maydell@linaro.org
Mark up the sysreg definitions for the system instructions
trapped by HFGITR bits 48..63.
Some of these bits are for trapping instructions which are
not in the system instruction encoding (i.e. which are
not handled by the ARMCPRegInfo mechanism):
* ERET, ERETAA, ERETAB
* SVC
We will have to handle those separately and manually.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-20-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-20-peter.maydell@linaro.org
Mark up the sysreg definitions for the system instructions
trapped by HFGITR bits 18..47. These bits cover TLBI
TLB maintenance instructions.
(If we implemented FEAT_XS we would need to trap some of the
instructions added by that feature using these bits; but we don't
yet, so will need to add the .fgt markup when we do.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-19-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-19-peter.maydell@linaro.org
Mark up the sysreg definitions for the system instructions
trapped by HFGITR bits 12..17. These bits cover AT address
translation instructions.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-18-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-18-peter.maydell@linaro.org
Mark up the sysreg definitions for the system instructions
trapped by HFGITR bits 0..11. These bits cover various
cache maintenance operations.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-17-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-17-peter.maydell@linaro.org
Mark up the sysreg definitions for the registers trapped
by HDFGRTR/HDFGWTR bits 12..x.
Bits 12..22 and bit 58 are for PMU registers.
The remaining bits in HDFGRTR/HDFGWTR are for traps on
registers that are part of features we don't implement:
Bits 23..32 and 63 : FEAT_SPE
Bits 33..48 : FEAT_ETE
Bits 50..56 : FEAT_TRBE
Bits 59..61 : FEAT_BRBE
Bit 62 : FEAT_SPEv1p2.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-16-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-16-peter.maydell@linaro.org
Mark up the sysreg definitions for the registers trapped
by HFGRTR/HFGWTR bits 36..63.
Of these, some correspond to RAS registers which we implement as
always-UNDEF: these don't need any extra handling for FGT because the
UNDEF-to-EL1 always takes priority over any theoretical
FGT-trap-to-EL2.
Bit 50 (NACCDATA_EL1) is for the ACCDATA_EL1 register which is part
of the FEAT_LS64_ACCDATA feature which we don't yet implement.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-14-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-14-peter.maydell@linaro.org
Implement the machinery for fine-grained traps on normal sysregs.
Any sysreg with a fine-grained trap will set the new field to
indicate which FGT register bit it should trap on.
FGT traps only happen when an AArch64 EL2 enables them for
an AArch64 EL1. They therefore are only relevant for AArch32
cpregs when the cpreg can be accessed from EL0. The logic
in access_check_cp_reg() will check this, so it is safe to
add a .fgt marking to an ARM_CP_STATE_BOTH ARMCPRegInfo.
The DO_BIT and DO_REV_BIT macros define enum constants FGT_##bitname
which can be used to specify the FGT bit, eg
.fgt = FGT_AFSR0_EL1
(We assume that there is no bit name duplication across the FGT
registers, for brevity's sake.)
Subsequent commits will add the .fgt fields to the relevant register
definitions and define the FGT_nnn values for them.
Note that some of the FGT traps are for instructions that we don't
handle via the cpregs mechanisms (mostly these are instruction traps).
Those we will have to handle separately.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-10-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-10-peter.maydell@linaro.org
Define the system registers which are provided by the
FEAT_FGT fine-grained trap architectural feature:
HFGRTR_EL2, HFGWTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGITR_EL2
All these registers are a set of bit fields, where each bit is set
for a trap and clear to not trap on a particular system register
access. The R and W register pairs are for system registers,
allowing trapping to be done separately for reads and writes; the I
register is for system instructions where trapping is on instruction
execution.
The data storage in the CPU state struct is arranged as a set of
arrays rather than separate fields so that when we're looking up the
bits for a system register access we can just index into the array
rather than having to use a switch to select a named struct member.
The later FEAT_FGT2 will add extra elements to these arrays.
The field definitions for the new registers are in cpregs.h because
in practice the code that needs them is code that also needs
the cpregs information; cpu.h is included in a lot more files.
We're also going to add some FGT-specific definitions to cpregs.h
in the next commit.
We do not implement HAFGRTR_EL2, because we don't implement
FEAT_AMUv1.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-9-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-9-peter.maydell@linaro.org
The HSTR_EL2 register is not supposed to have an effect unless EL2 is
enabled in the current security state. We weren't checking for this,
which meant that if the guest set up the HSTR_EL2 register we would
incorrectly trap even for accesses from Secure EL0 and EL1.
Add the missing checks. (Other places where we look at HSTR_EL2
for the not-in-v8A bits TTEE and TJDBX are already checking that
we are in NS EL0 or EL1, so there we alredy know EL2 is enabled.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-8-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-8-peter.maydell@linaro.org
The AArch32 ATS12NSO* address translation operations are supposed to
trap to either EL2 or EL3 if they're executed at Secure EL1 (which
can only happen if EL3 is AArch64). We implement this, but we got
the syndrome value wrong: like other traps to EL2 or EL3 on an
AArch32 cpreg access, they should report the 0x3 syndrome, not the
0x0 'uncategorized' syndrome. This is clear in the access pseudocode
for these instructions.
Fix the syndrome value for these operations by correcting the
returned value from the ats_access() function.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-3-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-3-peter.maydell@linaro.org
The encodings 0,0,C7,C9,0 and 0,0,C7,C9,1 are AT SP1E1RP and AT
S1E1WP, but our ARMCPRegInfo definitions for them incorrectly name
them AT S1E1R and AT S1E1W (which are entirely different
instructions). Fix the names.
(This has no guest-visible effect as the names are for debug purposes
only.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-2-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-2-peter.maydell@linaro.org
Unify the two helper_set_pstate_{sm,za} in this function.
Do not call helper_* functions from svcr_write.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Fabiano Rosas <farosas@suse.de>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20230112102436.1913-8-philmd@linaro.org
Message-Id: <20230112004322.161330-1-richard.henderson@linaro.org>
[PMD: Split patch in multiple tiny steps]
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
ARM trusted firmware, when built with FEAT_HCX support, sets SCR_EL3.HXEn bit
to allow EL2 to modify HCRX_EL2 register without trapping it in EL3. Qemu
uses a valid mask to clear unsupported SCR_EL3 bits when emulating SCR_EL3
write, and that mask doesn't include SCR_EL3.HXEn bit even if FEAT_HCX is
enabled and exposed to the guest. As a result EL3 writes of that bit are
ignored.
Cc: qemu-stable@nongnu.org
Signed-off-by: Evgeny Iakovlev <eiakovlev@linux.microsoft.com>
Message-id: 20230105221251.17896-4-eiakovlev@linux.microsoft.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
In CPUID registers exposed to userspace, some registers were missing
and some fields were not exposed. This patch aligns exposed ID
registers and their fields with what the upstream kernel currently
exposes.
Specifically, the following new ID registers/fields are exposed to
userspace:
ID_AA64PFR1_EL1.BT: bits 3-0
ID_AA64PFR1_EL1.MTE: bits 11-8
ID_AA64PFR1_EL1.SME: bits 27-24
ID_AA64ZFR0_EL1.SVEver: bits 3-0
ID_AA64ZFR0_EL1.AES: bits 7-4
ID_AA64ZFR0_EL1.BitPerm: bits 19-16
ID_AA64ZFR0_EL1.BF16: bits 23-20
ID_AA64ZFR0_EL1.SHA3: bits 35-32
ID_AA64ZFR0_EL1.SM4: bits 43-40
ID_AA64ZFR0_EL1.I8MM: bits 47-44
ID_AA64ZFR0_EL1.F32MM: bits 55-52
ID_AA64ZFR0_EL1.F64MM: bits 59-56
ID_AA64SMFR0_EL1.F32F32: bit 32
ID_AA64SMFR0_EL1.B16F32: bit 34
ID_AA64SMFR0_EL1.F16F32: bit 35
ID_AA64SMFR0_EL1.I8I32: bits 39-36
ID_AA64SMFR0_EL1.F64F64: bit 48
ID_AA64SMFR0_EL1.I16I64: bits 55-52
ID_AA64SMFR0_EL1.FA64: bit 63
ID_AA64MMFR0_EL1.ECV: bits 63-60
ID_AA64MMFR1_EL1.AFP: bits 47-44
ID_AA64MMFR2_EL1.AT: bits 35-32
ID_AA64ISAR0_EL1.RNDR: bits 63-60
ID_AA64ISAR1_EL1.FRINTTS: bits 35-32
ID_AA64ISAR1_EL1.BF16: bits 47-44
ID_AA64ISAR1_EL1.DGH: bits 51-48
ID_AA64ISAR1_EL1.I8MM: bits 55-52
ID_AA64ISAR2_EL1.WFxT: bits 3-0
ID_AA64ISAR2_EL1.RPRES: bits 7-4
ID_AA64ISAR2_EL1.GPA3: bits 11-8
ID_AA64ISAR2_EL1.APA3: bits 15-12
The code is also refactored to use symbolic names for ID register fields
for better readability and maintainability.
The test case in tests/tcg/aarch64/sysregs.c is also updated to match
the intended behavior.
Signed-off-by: Zhuojia Shen <chaosdefinition@hotmail.com>
Message-id: DS7PR12MB6309FB585E10772928F14271ACE79@DS7PR12MB6309.namprd12.prod.outlook.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
[PMM: use Sn_n_Cn_Cn_n syntax to work with older assemblers
that don't recognize id_aa64isar2_el1 and id_aa64mmfr2_el1]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Fix the following:
ERROR: spaces required around that '|' (ctx:VxV)
ERROR: space required before the open parenthesis '('
ERROR: spaces required around that '+' (ctx:VxB)
ERROR: space prohibited between function name and open parenthesis '('
(the last two still have some occurrences in macros which I left
behind because it might impact readability)
Signed-off-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Claudio Fontana <cfontana@suse.de>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Message-id: 20221213190537.511-3-farosas@suse.de
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Fix these:
WARNING: Block comments use a leading /* on a separate line
WARNING: Block comments use * on subsequent lines
WARNING: Block comments use a trailing */ on a separate line
Signed-off-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Claudio Fontana <cfontana@suse.de>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Message-id: 20221213190537.511-2-farosas@suse.de
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
RVBAR shadows RVBAR_ELx where x is the highest exception
level if the highest EL is not EL3. This patch also allows
ARMv8 CPUs to change the reset address with
the rvbar property.
Signed-off-by: Tobias Röhmel <tobias.roehmel@rwth-aachen.de>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221206102504.165775-3-tobias.roehmel@rwth-aachen.de
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Cores with PMSA have the MPUIR register which has the
same encoding as the MIDR alias with opc2=4. So we only
add that alias if we are not realizing a core that
implements PMSA.
Signed-off-by: Tobias Röhmel <tobias.roehmel@rwth-aachen.de>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221206102504.165775-2-tobias.roehmel@rwth-aachen.de
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
For FEAT_EVT, the HCR_EL2.TID4 trap allows trapping of the cache ID
registers CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1 and CSSELR_EL1 (and
their AArch32 equivalents). This is a subset of the registers
trapped by HCR_EL2.TID2, which includes all of these and also the
CTR_EL0 register.
Our implementation already uses a separate access function for
CTR_EL0 (ctr_el0_access()), so all of the registers currently using
access_aa64_tid2() should also be checking TID4. Make that function
check both TID2 and TID4, and rename it appropriately.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
For FEAT_EVT, the HCR_EL2.TICAB bit allows trapping of the ICIALLUIS
and IC IALLUIS cache maintenance instructions.
The HCR_EL2.TOCU bit traps all the other cache maintenance
instructions that operate to the point of unification:
AArch64 IC IVAU, IC IALLU, DC CVAU
AArch32 ICIMVAU, ICIALLU, DCCMVAU
The two trap bits between them cover all of the cache maintenance
instructions which must also check the HCR_TPU flag. Turn the old
aa64_cacheop_pou_access() function into a helper function which takes
the set of HCR_EL2 flags to check as an argument, and call it from
new access_ticab() and access_tocu() functions as appropriate for
each cache op.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
For FEAT_EVT, the HCR_EL2.TTLBOS bit allows trapping on EL1
use of TLB maintenance instructions that operate on the
outer shareable domain:
TLBI VMALLE1OS, TLBI VAE1OS, TLBI ASIDE1OS,TLBI VAAE1OS,
TLBI VALE1OS, TLBI VAALE1OS, TLBI RVAE1OS, TLBI RVAAE1OS,
TLBI RVALE1OS, and TLBI RVAALE1OS.
(There are no AArch32 outer-shareable TLB maintenance ops.)
Implement the trapping.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
For FEAT_EVT, the HCR_EL2.TTLBIS bit allows trapping on EL1 use of
TLB maintenance instructions that operate on the inner shareable
domain:
AArch64:
TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS,
TLBI VALE1IS, TLBI VAALE1IS, TLBI RVAE1IS, TLBI RVAAE1IS,
TLBI RVALE1IS, and TLBI RVAALE1IS.
AArch32:
TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS,
and TLBIMVAALIS.
Add the trapping support.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
FEAT_EVT adds five new bits to the HCR_EL2 register: TTLBIS, TTLBOS,
TICAB, TOCU and TID4. These allow the guest to enable trapping of
various EL1 instructions to EL2. In this commit, add the necessary
code to allow the guest to set these bits if the feature is present;
because the bit is always zero when the feature isn't present we
won't need to use explicit feature checks in the "trap on condition"
tests in the following commits.
Note that although full implementation of the feature (mandatory from
Armv8.5 onward) requires all five trap bits, the ID registers permit
a value indicating that only TICAB, TOCU and TID4 are implemented,
which might be the case for CPUs between Armv8.2 and Armv8.5.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
We need to check HCR_E2H and HCR_TGE to select the right MMU index for
the correct translation regime.
To check for EL2&0 translation regime:
- For S1E0*, S1E1* and S12E* ops, check both HCR_E2H and HCR_TGE
- For S1E2* ops, check only HCR_E2H
Signed-off-by: Ake Koomsin <ake@igel.co.jp>
Message-id: 20221101064250.12444-1-ake@igel.co.jp
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
When we implemented the PAN support we theoretically wanted
to support it for both AArch32 and AArch64, but in practice
several bugs made it essentially unusable with an AArch32
guest. Fix all those problems:
- Use CPSR.PAN to check for PAN state in aarch32 mode
- throw permission fault during address translation when PAN is
enabled and kernel tries to access user acessible page
- ignore SCTLR_XP bit for armv7 and armv8 (conflicts with SCTLR_SPAN).
Signed-off-by: Timofey Kutergin <tkutergin@gmail.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221027112619.2205229-1-tkutergin@gmail.com
[PMM: tweak commit message]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The HCR_EL2.TTLB bit is supposed to trap all EL1 execution of TLB
maintenance instructions. However we have added new TLB insns for
FEAT_TLBIOS and FEAT_TLBIRANGE, and forgot to set their accessfn to
access_ttlb. Add the missing accessfns.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 20221024051851.3074715-5-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reduce the amount of typing required for this check.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221024051851.3074715-2-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
FEAT_E0PD adds new bits E0PD0 and E0PD1 to TCR_EL1, which allow the
OS to forbid EL0 access to half of the address space. Since this is
an EL0-specific variation on the existing TCR_ELx.{EPD0,EPD1}, we can
implement it entirely in aa64_va_parameters().
This requires moving the existing regime_is_user() to internals.h
so that the code in helper.c can get at it.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221021160131.3531787-1-peter.maydell@linaro.org
Compare only the VMID field when considering whether we need to flush.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221011031911.2408754-7-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
We had been marking this ARM_MMU_IDX_NOTLB, move it to a real tlb.
Flush the tlb when invalidating stage 1+2 translations. Re-use
alle1_tlbmask() for other instances of EL1&0 + Stage2.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221011031911.2408754-6-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Now we have an enum for the granule size, use it in the
ARMVAParameters struct instead of the using16k/using64k bools.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221003162315.2833797-3-peter.maydell@linaro.org
Arm CPUs support some subset of the granule (page) sizes 4K, 16K and
64K. The guest selects the one it wants using bits in the TCR_ELx
registers. If it tries to program these registers with a value that
is either reserved or which requests a size that the CPU does not
implement, the architecture requires that the CPU behaves as if the
field was programmed to some size that has been implemented.
Currently we don't implement this, and instead let the guest use any
granule size, even if the CPU ID register fields say it isn't
present.
Make aa64_va_parameters() check against the supported granule size
and force use of a different one if it is not implemented.
(A subsequent commit will make ARMVAParameters use the new enum
rather than the current pair of using16k/using64k bools.)
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221003162315.2833797-2-peter.maydell@linaro.org
Adjust GetPhysAddrResult to fill in CPUTLBEntryFull,
so that it may be passed directly to tlb_set_page_full.
The change is large, but mostly mechanical. The major
non-mechanical change is page_size -> lg_page_size.
Most of the time this is obvious, and is related to
TARGET_PAGE_BITS.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221001162318.153420-21-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
For page walking, we may require HCR for a security state
that is not "current".
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221001162318.153420-14-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
For a-profile aarch64, which does not bank system registers, it takes
quite a lot of code to switch between security states. In the process,
registers such as TCR_EL{1,2} must be swapped, which in itself requires
the flushing of softmmu tlbs. Therefore it doesn't buy us anything to
separate tlbs by security state.
Retain the distinction between Stage2 and Stage2_S.
This will be important as we implement FEAT_RME, and do not wish to
add a third set of mmu indexes for Realm state.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221001162318.153420-11-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Use get_phys_addr_with_secure directly. For a-profile, this is the
one place where the value of is_secure may not equal arm_is_secure(env).
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221001162318.153420-10-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Remove the use of regime_is_secure from arm_tr_init_disas_context.
Instead, provide the value of v8m_secure directly from tb_flags.
Rather than use regime_is_secure, use the env->v7m.secure directly,
as per arm_mmu_idx_el.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221001162318.153420-8-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Updates write_scr() to allow setting SCR_EL3.EnTP2 when FEAT_SME is
implemented. SCR_EL3 being a 64-bit register, valid_mask is changed
to uint64_t and the SCR_* constants in target/arm/cpu.h are extended
to 64-bit so that masking and bitwise not (~) behave as expected.
This enables booting Linux with Trusted Firmware-A at EL3 with
"-M virt,secure=on -cpu max".
Cc: qemu-stable@nongnu.org
Fixes: 78cb977666 ("target/arm: Enable SME for -cpu max")
Signed-off-by: Jerome Forissier <jerome.forissier@linaro.org>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221004072354.27037-1-jerome.forissier@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
SP_EL1 must be kept when EL3 is present but EL2 is not. Therefore mark
it with ARM_CP_EL3_NO_EL2_KEEP.
Cc: qemu-stable@nongnu.org
Fixes: 696ba37718 ("target/arm: Handle cpreg registration for missing EL")
Signed-off-by: Jerome Forissier <jerome.forissier@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220927120058.670901-1-jerome.forissier@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
In commit 01765386a8 we fixed a bug where we weren't correctly
bracketing changes to some registers with pmu_op_start() and
pmu_op_finish() calls for changes which affect whether the PMU
counters might be enabled. However, we missed the case of writes to
the AArch64 MDCR_EL3 register, because (unlike its AArch32
counterpart) they are currently done directly to the CPU state struct
without going through the sdcr_write() function.
Give MDCR_EL3 a writefn which handles the PMU start/finish calls.
The SDCR writefn then simplfies to "call the MDCR_EL3 writefn after
masking off the bits which don't exist in the AArch32 register".
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220923123412.1214041-3-peter.maydell@linaro.org