This reverts commit b320e21c48,
which accidentally broke TCG, because it made the TCG -cpu max
report the presence of MTE to the guest even if the board hadn't
enabled MTE by wiring up the tag RAM. This meant that if the guest
then tried to use MTE QEMU would segfault accessing the
non-existent tag RAM:
==346473==ERROR: UndefinedBehaviorSanitizer: SEGV on unknown address (pc 0x55f328952a4a bp 0x00000213a400 sp 0x7f7871859b80 T346476)
==346473==The signal is caused by a READ memory access.
==346473==Hint: this fault was caused by a dereference of a high value address (see register values below). Disassemble the provided pc to learn which register was used.
#0 0x55f328952a4a in address_space_to_flatview /mnt/nvmedisk/linaro/qemu-from-laptop/qemu/include/exec/memory.h:1108:12
#1 0x55f328952a4a in address_space_translate /mnt/nvmedisk/linaro/qemu-from-laptop/qemu/include/exec/memory.h:2797:31
#2 0x55f328952a4a in allocation_tag_mem /mnt/nvmedisk/linaro/qemu-from-laptop/qemu/build/arm-clang/../../target/arm/tcg/mte_helper.c:176:10
#3 0x55f32895366c in helper_stgm /mnt/nvmedisk/linaro/qemu-from-laptop/qemu/build/arm-clang/../../target/arm/tcg/mte_helper.c:461:15
#4 0x7f782431a293 (<unknown module>)
It's also not clear that the KVM logic is correct either:
MTE defaults to on there, rather than being only on if the
board wants it on.
Revert the whole commit for now so we can sort out the issues.
(We didn't catch this in CI because we have no test cases in
avocado that use guests with MTE support.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20230519145808.348701-1-peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Extend the 'mte' property for the virt machine to cover KVM as
well. For KVM, we don't allocate tag memory, but instead enable the
capability.
If MTE has been enabled, we need to disable migration, as we do not
yet have a way to migrate the tags as well. Therefore, MTE will stay
off with KVM unless requested explicitly.
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230428095533.21747-2-cohuck@redhat.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
FEAT_PAN3 adds an EPAN bit to SCTLR_EL1 and SCTLR_EL2, which allows
the PAN bit to make memory non-privileged-read/write if it is
user-executable as well as if it is user-read/write.
Implement this feature and enable it in the AArch64 'max' CPU.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230331145045.2584941-4-peter.maydell@linaro.org
In several places we use arm_is_secure_below_el3 and
arm_is_el3_or_mon separately from arm_is_secure.
These functions make no sense for m-profile, and
would indicate prior incorrect feature testing.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230227225832.816605-4-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The upstream gdb xml only implements {MSP,PSP}{,_NS,S}, but
go ahead and implement the other system registers as well.
Since there is significant overlap between the two, implement
them with common code. The only exception is the systemreg
view of CONTROL, which merges the banked bits as per MRS.
Signed-off-by: David Reiss <dreiss@meta.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230227213329.793795-15-richard.henderson@linaro.org
[rth: Substatial rewrite using enumerator and shared code.]
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The function is only used for aarch64, so move it to the
file that has the other aarch64 gdbstub stuff. Move the
declaration to internals.h.
Reviewed-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230227213329.793795-4-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This function is not used outside gdbstub.c.
Reviewed-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230227213329.793795-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The 'hwaddr' type is only available / meaningful on system emulation.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20221216215519.5522-5-philmd@linaro.org>
Since commit cf7c6d1004 ("target/arm: Split out cpregs.h") we now have
a cpregs.h header which is more suitable for this code.
Code moved verbatim.
Signed-off-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
While dozens of files include "cpu.h", only 3 files require
these NVIC helper declarations.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20230206223502.25122-12-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
There is no point in using a void pointer to access the NVIC.
Use the real type to avoid casting it while debugging.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230206223502.25122-11-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230206223502.25122-10-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20230206223502.25122-9-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20230206223502.25122-8-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Although the 'eabi' field is only used in user emulation where
CPU reset doesn't occur, it doesn't belong to the area to reset.
Move it after the 'end_reset_fields' for consistency.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20230206223502.25122-7-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230206223502.25122-6-philmd@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Implement the HFGITR_EL2.SVC_EL0 and SVC_EL1 fine-grained traps.
These trap execution of the SVC instruction from AArch32 and AArch64.
(As usual, AArch32 can only trap from EL0, as fine grained traps are
disabled with an AArch32 EL1.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-22-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-22-peter.maydell@linaro.org
Implement the HFGITR_EL2.ERET fine-grained trap. This traps
execution from AArch64 EL1 of ERET, ERETAA and ERETAB. The trap is
reported with a syndrome value of 0x1a.
The trap must take precedence over a possible pointer-authentication
trap for ERETAA and ERETAB.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-21-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-21-peter.maydell@linaro.org
Implement the machinery for fine-grained traps on normal sysregs.
Any sysreg with a fine-grained trap will set the new field to
indicate which FGT register bit it should trap on.
FGT traps only happen when an AArch64 EL2 enables them for
an AArch64 EL1. They therefore are only relevant for AArch32
cpregs when the cpreg can be accessed from EL0. The logic
in access_check_cp_reg() will check this, so it is safe to
add a .fgt marking to an ARM_CP_STATE_BOTH ARMCPRegInfo.
The DO_BIT and DO_REV_BIT macros define enum constants FGT_##bitname
which can be used to specify the FGT bit, eg
.fgt = FGT_AFSR0_EL1
(We assume that there is no bit name duplication across the FGT
registers, for brevity's sake.)
Subsequent commits will add the .fgt fields to the relevant register
definitions and define the FGT_nnn values for them.
Note that some of the FGT traps are for instructions that we don't
handle via the cpregs mechanisms (mostly these are instruction traps).
Those we will have to handle separately.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-10-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-10-peter.maydell@linaro.org
Define the system registers which are provided by the
FEAT_FGT fine-grained trap architectural feature:
HFGRTR_EL2, HFGWTR_EL2, HDFGRTR_EL2, HDFGWTR_EL2, HFGITR_EL2
All these registers are a set of bit fields, where each bit is set
for a trap and clear to not trap on a particular system register
access. The R and W register pairs are for system registers,
allowing trapping to be done separately for reads and writes; the I
register is for system instructions where trapping is on instruction
execution.
The data storage in the CPU state struct is arranged as a set of
arrays rather than separate fields so that when we're looking up the
bits for a system register access we can just index into the array
rather than having to use a switch to select a named struct member.
The later FEAT_FGT2 will add extra elements to these arrays.
The field definitions for the new registers are in cpregs.h because
in practice the code that needs them is code that also needs
the cpregs information; cpu.h is included in a lot more files.
We're also going to add some FGT-specific definitions to cpregs.h
in the next commit.
We do not implement HAFGRTR_EL2, because we don't implement
FEAT_AMUv1.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Fuad Tabba <tabba@google.com>
Message-id: 20230130182459.3309057-9-peter.maydell@linaro.org
Message-id: 20230127175507.2895013-9-peter.maydell@linaro.org
The architecture does not define any functionality for the CLAIM tag bits.
So we will just keep the raw bits, as per spec.
Signed-off-by: Evgeny Iakovlev <eiakovlev@linux.microsoft.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230120155929.32384-2-eiakovlev@linux.microsoft.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This is a 64-bit register on AArch64, even if the high 44 bits
are RES0. Because this is defined as ARM_CP_STATE_BOTH, we are
asserting that the cpreg field is 64-bits.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1400
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230115171633.3171890-1-richard.henderson@linaro.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
FEAT_EVT adds five new bits to the HCR_EL2 register: TTLBIS, TTLBOS,
TICAB, TOCU and TID4. These allow the guest to enable trapping of
various EL1 instructions to EL2. In this commit, add the necessary
code to allow the guest to set these bits if the feature is present;
because the bit is always zero when the feature isn't present we
won't need to use explicit feature checks in the "trap on condition"
tests in the following commits.
Note that although full implementation of the feature (mandatory from
Armv8.5 onward) requires all five trap bits, the ID registers permit
a value indicating that only TICAB, TOCU and TID4 are implemented,
which might be the case for CPUs between Armv8.2 and Armv8.5.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
The MMFR1 field may indicate support for hardware update of
access flag alone, or access flag and dirty bit.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221024051851.3074715-4-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
FEAT_E0PD adds new bits E0PD0 and E0PD1 to TCR_EL1, which allow the
OS to forbid EL0 access to half of the address space. Since this is
an EL0-specific variation on the existing TCR_ELx.{EPD0,EPD1}, we can
implement it entirely in aa64_va_parameters().
This requires moving the existing regime_is_user() to internals.h
so that the code in helper.c can get at it.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221021160131.3531787-1-peter.maydell@linaro.org
Use a constant target data allocation size for all pages.
This will be necessary to reduce overhead of page tracking.
Since TARGET_PAGE_DATA_SIZE is now required, we can use this
to omit data tracking for targets that don't require it.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
So far, limit the change to S1_ptw_translate, arm_ldl_ptw, and
arm_ldq_ptw. Use probe_access_full to find the host address,
and if so use a host load. If the probe fails, we've got our
fault info already. On the off chance that page tables are not
in RAM, continue to use the address_space_ld* functions.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221011031911.2408754-11-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
We had been marking this ARM_MMU_IDX_NOTLB, move it to a real tlb.
Flush the tlb when invalidating stage 1+2 translations. Re-use
alle1_tlbmask() for other instances of EL1&0 + Stage2.
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221011031911.2408754-6-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Not yet used, but add mmu indexes for 1-1 mapping
to physical addresses.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221011031911.2408754-5-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Add a field to TARGET_PAGE_ENTRY_EXTRA to hold the guarded bit.
In is_guarded_page, use probe_access_full instead of just guessing
that the tlb entry is still present. Also handles the FIXME about
executing from device memory.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221011031911.2408754-4-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The CPUTLBEntryFull structure now stores the original pte attributes, as
well as the physical address. Therefore, we no longer need a separate
bit in MemTxAttrs, nor do we need to walk the tree of memory regions.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221011031911.2408754-3-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Arm CPUs support some subset of the granule (page) sizes 4K, 16K and
64K. The guest selects the one it wants using bits in the TCR_ELx
registers. If it tries to program these registers with a value that
is either reserved or which requests a size that the CPU does not
implement, the architecture requires that the CPU behaves as if the
field was programmed to some size that has been implemented.
Currently we don't implement this, and instead let the guest use any
granule size, even if the CPU ID register fields say it isn't
present.
Make aa64_va_parameters() check against the supported granule size
and force use of a different one if it is not implemented.
(A subsequent commit will make ARMVAParameters use the new enum
rather than the current pair of using16k/using64k bools.)
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20221003162315.2833797-2-peter.maydell@linaro.org
For page walking, we may require HCR for a security state
that is not "current".
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221001162318.153420-14-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
For a-profile aarch64, which does not bank system registers, it takes
quite a lot of code to switch between security states. In the process,
registers such as TCR_EL{1,2} must be swapped, which in itself requires
the flushing of softmmu tlbs. Therefore it doesn't buy us anything to
separate tlbs by security state.
Retain the distinction between Stage2 and Stage2_S.
This will be important as we implement FEAT_RME, and do not wish to
add a third set of mmu indexes for Realm state.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221001162318.153420-11-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Remove the use of regime_is_secure from arm_tr_init_disas_context.
Instead, provide the value of v8m_secure directly from tb_flags.
Rather than use regime_is_secure, use the env->v7m.secure directly,
as per arm_mmu_idx_el.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221001162318.153420-8-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Updates write_scr() to allow setting SCR_EL3.EnTP2 when FEAT_SME is
implemented. SCR_EL3 being a 64-bit register, valid_mask is changed
to uint64_t and the SCR_* constants in target/arm/cpu.h are extended
to 64-bit so that masking and bitwise not (~) behave as expected.
This enables booting Linux with Trusted Firmware-A at EL3 with
"-M virt,secure=on -cpu max".
Cc: qemu-stable@nongnu.org
Fixes: 78cb977666 ("target/arm: Enable SME for -cpu max")
Signed-off-by: Jerome Forissier <jerome.forissier@linaro.org>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20221004072354.27037-1-jerome.forissier@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
It's always better to convey the type of a pointer if at all
possible. So let's add the DumpState typedef to typedefs.h and move
the dump note functions from the opaque pointers to DumpState
pointers.
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
CC: Peter Maydell <peter.maydell@linaro.org>
CC: Cédric Le Goater <clg@kaod.org>
CC: Daniel Henrique Barboza <danielhb413@gmail.com>
CC: David Gibson <david@gibson.dropbear.id.au>
CC: Greg Kurz <groug@kaod.org>
CC: Palmer Dabbelt <palmer@dabbelt.com>
CC: Alistair Francis <alistair.francis@wdc.com>
CC: Bin Meng <bin.meng@windriver.com>
CC: Cornelia Huck <cohuck@redhat.com>
CC: Thomas Huth <thuth@redhat.com>
CC: Richard Henderson <richard.henderson@linaro.org>
CC: David Hildenbrand <david@redhat.com>
Acked-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20220811121111.9878-2-frankja@linux.ibm.com>
Our SDCR_VALID_MASK doesn't include all of the bits which are defined
by the current architecture. In particular in commit 0b42f4fab9 we
forgot to add SCCD, which meant that an AArch32 guest couldn't
actually use the SCCD bit to disable counting in Secure state.
Add all the currently defined bits; we don't implement all of them,
but this makes them be reads-as-written, which is architecturally
valid and matches how we currently handle most of the others in the
mask.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220923123412.1214041-4-peter.maydell@linaro.org
With FEAT_PMUv3p5, the event counters are now 64 bit, rather than 32
bit. (Previously, only the cycle counter could be 64 bit, and other
event counters were always 32 bits). For any given event counter,
whether the overflow event is noted for overflow from bit 31 or from
bit 63 is controlled by a combination of PMCR.LP, MDCR_EL2.HLP and
MDCR_EL2.HPMN.
Implement the 64-bit event counter handling. We choose to make our
counters always 64 bits, and mask out the top 32 bits on read or
write of PMXEVCNTR for CPUs which don't have FEAT_PMUv3p5.
(Note that the changes to pmenvcntr_op_start() and
pmenvcntr_op_finish() bring their logic closer into line with that of
pmccntr_op_start() and pmccntr_op_finish(), which already had to cope
with the overflow being either at 32 or 64 bits.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220822132358.3524971-10-peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
FEAT_PMUv3p5 introduces new bits which disable the cycle
counter from counting:
* MDCR_EL2.HCCD disables the counter when in EL2
* MDCR_EL3.SCCD disables the counter when Secure
Add the code to support these bits.
(Note that there is a third documented counter-disable
bit, MDCR_EL3.MCCD, which disables the counter when in
EL3. This is not present until FEAT_PMUv3p7, so is
out of scope for now.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220822132358.3524971-9-peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Our feature test functions that check the PMU version are named
isar_feature_{aa32,aa64,any}_pmu_8_{1,4}. This doesn't match the
current Arm ARM official feature names, which are FEAT_PMUv3p1 and
FEAT_PMUv3p4. Rename these functions to _pmuv3p1 and _pmuv3p4.
This commit was created with:
sed -i -e 's/pmu_8_/pmuv3p/g' target/arm/*.[ch]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220822132358.3524971-8-peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
In Armv8.6, a new AArch32 ID register ID_DFR1 is defined; implement
it. We don't have any CPUs with features that they need to advertise
here yet, but plumbing in the ID register gives it the right name
when debugging and will help in future when we do add a CPU that
has non-zero ID_DFR1 fields.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220819110052.2942289-5-peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
In Armv8.6 a new AArch32 ID register ID_MMFR5 is defined.
Implement this; we want to be able to use it to report to
the guest that we implement FEAT_ETS.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220819110052.2942289-4-peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
In commit 7390e0e9ab, we added support for SME loads and stores.
Unlike SVE loads and stores, these include handling of 128-bit
elements. The SME load/store functions call down into the existing
sve_cont_ldst_elements() function, which uses the element size MO_*
value as an index into the pred_esz_masks[] array. Because this code
path now has to handle MO_128, we need to add an extra element to the
array.
This bug was spotted by Coverity because it meant we were reading off
the end of the array.
Resolves: Coverity CID 1490539, 1490541, 1490543, 1490544, 1490545,
1490546, 1490548, 1490549, 1490550, 1490551, 1490555, 1490557,
1490558, 1490560, 1490561, 1490563
Fixes: 7390e0e9ab ("target/arm: Implement SME LD1, ST1")
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220718100144.3248052-1-peter.maydell@linaro.org
In regime_tcr() we return the appropriate TCR register for the
translation regime. For Secure EL2, we return the VSTCR_EL2 value,
but in this translation regime some fields that control behaviour are
in VTCR_EL2. When this code was originally written (as the comment
notes), QEMU didn't care about any of those fields, but we have since
added support for features such as LPA2 which do need the values from
those fields.
Synthesize a TCR value by merging in the relevant VTCR_EL2 fields to
the VSTCR_EL2 value.
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1103
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220714132303.1287193-8-peter.maydell@linaro.org