target/arm: Split out cpregs.h
Move ARMCPRegInfo and all related declarations to a new internal header, out of the public cpu.h. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20220501055028.646596-2-richard.henderson@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
parent
cda86e2b46
commit
cf7c6d1004
@ -30,6 +30,7 @@
|
||||
#include "qemu/cutils.h"
|
||||
#include "qemu/log.h"
|
||||
#include "qom/object.h"
|
||||
#include "target/arm/cpregs.h"
|
||||
|
||||
static struct {
|
||||
hwaddr io_base;
|
||||
|
@ -17,6 +17,7 @@
|
||||
#include "hw/sysbus.h"
|
||||
#include "migration/vmstate.h"
|
||||
#include "qom/object.h"
|
||||
#include "target/arm/cpregs.h"
|
||||
|
||||
#define ICIP 0x00 /* Interrupt Controller IRQ Pending register */
|
||||
#define ICMR 0x04 /* Interrupt Controller Mask register */
|
||||
|
@ -20,6 +20,7 @@
|
||||
#include "gicv3_internal.h"
|
||||
#include "hw/irq.h"
|
||||
#include "cpu.h"
|
||||
#include "target/arm/cpregs.h"
|
||||
|
||||
/*
|
||||
* Special case return value from hppvi_index(); must be larger than
|
||||
|
@ -31,6 +31,8 @@
|
||||
#include "vgic_common.h"
|
||||
#include "migration/blocker.h"
|
||||
#include "qom/object.h"
|
||||
#include "target/arm/cpregs.h"
|
||||
|
||||
|
||||
#ifdef DEBUG_GICV3_KVM
|
||||
#define DPRINTF(fmt, ...) \
|
||||
|
413
target/arm/cpregs.h
Normal file
413
target/arm/cpregs.h
Normal file
@ -0,0 +1,413 @@
|
||||
/*
|
||||
* QEMU ARM CP Register access and descriptions
|
||||
*
|
||||
* Copyright (c) 2022 Linaro Ltd
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, see
|
||||
* <http://www.gnu.org/licenses/gpl-2.0.html>
|
||||
*/
|
||||
|
||||
#ifndef TARGET_ARM_CPREGS_H
|
||||
#define TARGET_ARM_CPREGS_H
|
||||
|
||||
/*
|
||||
* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
|
||||
* special-behaviour cp reg and bits [11..8] indicate what behaviour
|
||||
* it has. Otherwise it is a simple cp reg, where CONST indicates that
|
||||
* TCG can assume the value to be constant (ie load at translate time)
|
||||
* and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
|
||||
* indicates that the TB should not be ended after a write to this register
|
||||
* (the default is that the TB ends after cp writes). OVERRIDE permits
|
||||
* a register definition to override a previous definition for the
|
||||
* same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
|
||||
* old must have the OVERRIDE bit set.
|
||||
* ALIAS indicates that this register is an alias view of some underlying
|
||||
* state which is also visible via another register, and that the other
|
||||
* register is handling migration and reset; registers marked ALIAS will not be
|
||||
* migrated but may have their state set by syncing of register state from KVM.
|
||||
* NO_RAW indicates that this register has no underlying state and does not
|
||||
* support raw access for state saving/loading; it will not be used for either
|
||||
* migration or KVM state synchronization. (Typically this is for "registers"
|
||||
* which are actually used as instructions for cache maintenance and so on.)
|
||||
* IO indicates that this register does I/O and therefore its accesses
|
||||
* need to be marked with gen_io_start() and also end the TB. In particular,
|
||||
* registers which implement clocks or timers require this.
|
||||
* RAISES_EXC is for when the read or write hook might raise an exception;
|
||||
* the generated code will synchronize the CPU state before calling the hook
|
||||
* so that it is safe for the hook to call raise_exception().
|
||||
* NEWEL is for writes to registers that might change the exception
|
||||
* level - typically on older ARM chips. For those cases we need to
|
||||
* re-read the new el when recomputing the translation flags.
|
||||
*/
|
||||
#define ARM_CP_SPECIAL 0x0001
|
||||
#define ARM_CP_CONST 0x0002
|
||||
#define ARM_CP_64BIT 0x0004
|
||||
#define ARM_CP_SUPPRESS_TB_END 0x0008
|
||||
#define ARM_CP_OVERRIDE 0x0010
|
||||
#define ARM_CP_ALIAS 0x0020
|
||||
#define ARM_CP_IO 0x0040
|
||||
#define ARM_CP_NO_RAW 0x0080
|
||||
#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
|
||||
#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
|
||||
#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
|
||||
#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
|
||||
#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
|
||||
#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600)
|
||||
#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700)
|
||||
#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA
|
||||
#define ARM_CP_FPU 0x1000
|
||||
#define ARM_CP_SVE 0x2000
|
||||
#define ARM_CP_NO_GDB 0x4000
|
||||
#define ARM_CP_RAISES_EXC 0x8000
|
||||
#define ARM_CP_NEWEL 0x10000
|
||||
/* Used only as a terminator for ARMCPRegInfo lists */
|
||||
#define ARM_CP_SENTINEL 0xfffff
|
||||
/* Mask of only the flag bits in a type field */
|
||||
#define ARM_CP_FLAG_MASK 0x1f0ff
|
||||
|
||||
/*
|
||||
* Valid values for ARMCPRegInfo state field, indicating which of
|
||||
* the AArch32 and AArch64 execution states this register is visible in.
|
||||
* If the reginfo doesn't explicitly specify then it is AArch32 only.
|
||||
* If the reginfo is declared to be visible in both states then a second
|
||||
* reginfo is synthesised for the AArch32 view of the AArch64 register,
|
||||
* such that the AArch32 view is the lower 32 bits of the AArch64 one.
|
||||
* Note that we rely on the values of these enums as we iterate through
|
||||
* the various states in some places.
|
||||
*/
|
||||
enum {
|
||||
ARM_CP_STATE_AA32 = 0,
|
||||
ARM_CP_STATE_AA64 = 1,
|
||||
ARM_CP_STATE_BOTH = 2,
|
||||
};
|
||||
|
||||
/*
|
||||
* ARM CP register secure state flags. These flags identify security state
|
||||
* attributes for a given CP register entry.
|
||||
* The existence of both or neither secure and non-secure flags indicates that
|
||||
* the register has both a secure and non-secure hash entry. A single one of
|
||||
* these flags causes the register to only be hashed for the specified
|
||||
* security state.
|
||||
* Although definitions may have any combination of the S/NS bits, each
|
||||
* registered entry will only have one to identify whether the entry is secure
|
||||
* or non-secure.
|
||||
*/
|
||||
enum {
|
||||
ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
|
||||
ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
|
||||
};
|
||||
|
||||
/*
|
||||
* Return true if cptype is a valid type field. This is used to try to
|
||||
* catch errors where the sentinel has been accidentally left off the end
|
||||
* of a list of registers.
|
||||
*/
|
||||
static inline bool cptype_valid(int cptype)
|
||||
{
|
||||
return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
|
||||
|| ((cptype & ARM_CP_SPECIAL) &&
|
||||
((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
|
||||
}
|
||||
|
||||
/*
|
||||
* Access rights:
|
||||
* We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
|
||||
* defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
|
||||
* PL2 (hyp). The other level which has Read and Write bits is Secure PL1
|
||||
* (ie any of the privileged modes in Secure state, or Monitor mode).
|
||||
* If a register is accessible in one privilege level it's always accessible
|
||||
* in higher privilege levels too. Since "Secure PL1" also follows this rule
|
||||
* (ie anything visible in PL2 is visible in S-PL1, some things are only
|
||||
* visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
|
||||
* terminology a little and call this PL3.
|
||||
* In AArch64 things are somewhat simpler as the PLx bits line up exactly
|
||||
* with the ELx exception levels.
|
||||
*
|
||||
* If access permissions for a register are more complex than can be
|
||||
* described with these bits, then use a laxer set of restrictions, and
|
||||
* do the more restrictive/complex check inside a helper function.
|
||||
*/
|
||||
#define PL3_R 0x80
|
||||
#define PL3_W 0x40
|
||||
#define PL2_R (0x20 | PL3_R)
|
||||
#define PL2_W (0x10 | PL3_W)
|
||||
#define PL1_R (0x08 | PL2_R)
|
||||
#define PL1_W (0x04 | PL2_W)
|
||||
#define PL0_R (0x02 | PL1_R)
|
||||
#define PL0_W (0x01 | PL1_W)
|
||||
|
||||
/*
|
||||
* For user-mode some registers are accessible to EL0 via a kernel
|
||||
* trap-and-emulate ABI. In this case we define the read permissions
|
||||
* as actually being PL0_R. However some bits of any given register
|
||||
* may still be masked.
|
||||
*/
|
||||
#ifdef CONFIG_USER_ONLY
|
||||
#define PL0U_R PL0_R
|
||||
#else
|
||||
#define PL0U_R PL1_R
|
||||
#endif
|
||||
|
||||
#define PL3_RW (PL3_R | PL3_W)
|
||||
#define PL2_RW (PL2_R | PL2_W)
|
||||
#define PL1_RW (PL1_R | PL1_W)
|
||||
#define PL0_RW (PL0_R | PL0_W)
|
||||
|
||||
typedef enum CPAccessResult {
|
||||
/* Access is permitted */
|
||||
CP_ACCESS_OK = 0,
|
||||
/*
|
||||
* Access fails due to a configurable trap or enable which would
|
||||
* result in a categorized exception syndrome giving information about
|
||||
* the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
|
||||
* 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
|
||||
* PL1 if in EL0, otherwise to the current EL).
|
||||
*/
|
||||
CP_ACCESS_TRAP = 1,
|
||||
/*
|
||||
* Access fails and results in an exception syndrome 0x0 ("uncategorized").
|
||||
* Note that this is not a catch-all case -- the set of cases which may
|
||||
* result in this failure is specifically defined by the architecture.
|
||||
*/
|
||||
CP_ACCESS_TRAP_UNCATEGORIZED = 2,
|
||||
/* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
|
||||
CP_ACCESS_TRAP_EL2 = 3,
|
||||
CP_ACCESS_TRAP_EL3 = 4,
|
||||
/* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
|
||||
CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
|
||||
CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
|
||||
} CPAccessResult;
|
||||
|
||||
typedef struct ARMCPRegInfo ARMCPRegInfo;
|
||||
|
||||
/*
|
||||
* Access functions for coprocessor registers. These cannot fail and
|
||||
* may not raise exceptions.
|
||||
*/
|
||||
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
|
||||
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
|
||||
uint64_t value);
|
||||
/* Access permission check functions for coprocessor registers. */
|
||||
typedef CPAccessResult CPAccessFn(CPUARMState *env,
|
||||
const ARMCPRegInfo *opaque,
|
||||
bool isread);
|
||||
/* Hook function for register reset */
|
||||
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
|
||||
|
||||
#define CP_ANY 0xff
|
||||
|
||||
/* Definition of an ARM coprocessor register */
|
||||
struct ARMCPRegInfo {
|
||||
/* Name of register (useful mainly for debugging, need not be unique) */
|
||||
const char *name;
|
||||
/*
|
||||
* Location of register: coprocessor number and (crn,crm,opc1,opc2)
|
||||
* tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
|
||||
* 'wildcard' field -- any value of that field in the MRC/MCR insn
|
||||
* will be decoded to this register. The register read and write
|
||||
* callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
|
||||
* used by the program, so it is possible to register a wildcard and
|
||||
* then behave differently on read/write if necessary.
|
||||
* For 64 bit registers, only crm and opc1 are relevant; crn and opc2
|
||||
* must both be zero.
|
||||
* For AArch64-visible registers, opc0 is also used.
|
||||
* Since there are no "coprocessors" in AArch64, cp is purely used as a
|
||||
* way to distinguish (for KVM's benefit) guest-visible system registers
|
||||
* from demuxed ones provided to preserve the "no side effects on
|
||||
* KVM register read/write from QEMU" semantics. cp==0x13 is guest
|
||||
* visible (to match KVM's encoding); cp==0 will be converted to
|
||||
* cp==0x13 when the ARMCPRegInfo is registered, for convenience.
|
||||
*/
|
||||
uint8_t cp;
|
||||
uint8_t crn;
|
||||
uint8_t crm;
|
||||
uint8_t opc0;
|
||||
uint8_t opc1;
|
||||
uint8_t opc2;
|
||||
/* Execution state in which this register is visible: ARM_CP_STATE_* */
|
||||
int state;
|
||||
/* Register type: ARM_CP_* bits/values */
|
||||
int type;
|
||||
/* Access rights: PL*_[RW] */
|
||||
int access;
|
||||
/* Security state: ARM_CP_SECSTATE_* bits/values */
|
||||
int secure;
|
||||
/*
|
||||
* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
|
||||
* this register was defined: can be used to hand data through to the
|
||||
* register read/write functions, since they are passed the ARMCPRegInfo*.
|
||||
*/
|
||||
void *opaque;
|
||||
/*
|
||||
* Value of this register, if it is ARM_CP_CONST. Otherwise, if
|
||||
* fieldoffset is non-zero, the reset value of the register.
|
||||
*/
|
||||
uint64_t resetvalue;
|
||||
/*
|
||||
* Offset of the field in CPUARMState for this register.
|
||||
* This is not needed if either:
|
||||
* 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
|
||||
* 2. both readfn and writefn are specified
|
||||
*/
|
||||
ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
|
||||
|
||||
/*
|
||||
* Offsets of the secure and non-secure fields in CPUARMState for the
|
||||
* register if it is banked. These fields are only used during the static
|
||||
* registration of a register. During hashing the bank associated
|
||||
* with a given security state is copied to fieldoffset which is used from
|
||||
* there on out.
|
||||
*
|
||||
* It is expected that register definitions use either fieldoffset or
|
||||
* bank_fieldoffsets in the definition but not both. It is also expected
|
||||
* that both bank offsets are set when defining a banked register. This
|
||||
* use indicates that a register is banked.
|
||||
*/
|
||||
ptrdiff_t bank_fieldoffsets[2];
|
||||
|
||||
/*
|
||||
* Function for making any access checks for this register in addition to
|
||||
* those specified by the 'access' permissions bits. If NULL, no extra
|
||||
* checks required. The access check is performed at runtime, not at
|
||||
* translate time.
|
||||
*/
|
||||
CPAccessFn *accessfn;
|
||||
/*
|
||||
* Function for handling reads of this register. If NULL, then reads
|
||||
* will be done by loading from the offset into CPUARMState specified
|
||||
* by fieldoffset.
|
||||
*/
|
||||
CPReadFn *readfn;
|
||||
/*
|
||||
* Function for handling writes of this register. If NULL, then writes
|
||||
* will be done by writing to the offset into CPUARMState specified
|
||||
* by fieldoffset.
|
||||
*/
|
||||
CPWriteFn *writefn;
|
||||
/*
|
||||
* Function for doing a "raw" read; used when we need to copy
|
||||
* coprocessor state to the kernel for KVM or out for
|
||||
* migration. This only needs to be provided if there is also a
|
||||
* readfn and it has side effects (for instance clear-on-read bits).
|
||||
*/
|
||||
CPReadFn *raw_readfn;
|
||||
/*
|
||||
* Function for doing a "raw" write; used when we need to copy KVM
|
||||
* kernel coprocessor state into userspace, or for inbound
|
||||
* migration. This only needs to be provided if there is also a
|
||||
* writefn and it masks out "unwritable" bits or has write-one-to-clear
|
||||
* or similar behaviour.
|
||||
*/
|
||||
CPWriteFn *raw_writefn;
|
||||
/*
|
||||
* Function for resetting the register. If NULL, then reset will be done
|
||||
* by writing resetvalue to the field specified in fieldoffset. If
|
||||
* fieldoffset is 0 then no reset will be done.
|
||||
*/
|
||||
CPResetFn *resetfn;
|
||||
|
||||
/*
|
||||
* "Original" writefn and readfn.
|
||||
* For ARMv8.1-VHE register aliases, we overwrite the read/write
|
||||
* accessor functions of various EL1/EL0 to perform the runtime
|
||||
* check for which sysreg should actually be modified, and then
|
||||
* forwards the operation. Before overwriting the accessors,
|
||||
* the original function is copied here, so that accesses that
|
||||
* really do go to the EL1/EL0 version proceed normally.
|
||||
* (The corresponding EL2 register is linked via opaque.)
|
||||
*/
|
||||
CPReadFn *orig_readfn;
|
||||
CPWriteFn *orig_writefn;
|
||||
};
|
||||
|
||||
/*
|
||||
* Macros which are lvalues for the field in CPUARMState for the
|
||||
* ARMCPRegInfo *ri.
|
||||
*/
|
||||
#define CPREG_FIELD32(env, ri) \
|
||||
(*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
|
||||
#define CPREG_FIELD64(env, ri) \
|
||||
(*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
|
||||
|
||||
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
|
||||
|
||||
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
|
||||
const ARMCPRegInfo *regs, void *opaque);
|
||||
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
|
||||
const ARMCPRegInfo *regs, void *opaque);
|
||||
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
|
||||
{
|
||||
define_arm_cp_regs_with_opaque(cpu, regs, 0);
|
||||
}
|
||||
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
|
||||
{
|
||||
define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
|
||||
}
|
||||
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
|
||||
|
||||
/*
|
||||
* Definition of an ARM co-processor register as viewed from
|
||||
* userspace. This is used for presenting sanitised versions of
|
||||
* registers to userspace when emulating the Linux AArch64 CPU
|
||||
* ID/feature ABI (advertised as HWCAP_CPUID).
|
||||
*/
|
||||
typedef struct ARMCPRegUserSpaceInfo {
|
||||
/* Name of register */
|
||||
const char *name;
|
||||
|
||||
/* Is the name actually a glob pattern */
|
||||
bool is_glob;
|
||||
|
||||
/* Only some bits are exported to user space */
|
||||
uint64_t exported_bits;
|
||||
|
||||
/* Fixed bits are applied after the mask */
|
||||
uint64_t fixed_bits;
|
||||
} ARMCPRegUserSpaceInfo;
|
||||
|
||||
#define REGUSERINFO_SENTINEL { .name = NULL }
|
||||
|
||||
void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
|
||||
|
||||
/* CPWriteFn that can be used to implement writes-ignored behaviour */
|
||||
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t value);
|
||||
/* CPReadFn that can be used for read-as-zero behaviour */
|
||||
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
|
||||
|
||||
/*
|
||||
* CPResetFn that does nothing, for use if no reset is required even
|
||||
* if fieldoffset is non zero.
|
||||
*/
|
||||
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
|
||||
|
||||
/*
|
||||
* Return true if this reginfo struct's field in the cpu state struct
|
||||
* is 64 bits wide.
|
||||
*/
|
||||
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
|
||||
{
|
||||
return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
|
||||
}
|
||||
|
||||
static inline bool cp_access_ok(int current_el,
|
||||
const ARMCPRegInfo *ri, int isread)
|
||||
{
|
||||
return (ri->access >> ((current_el * 2) + isread)) & 1;
|
||||
}
|
||||
|
||||
/* Raw read of a coprocessor register (as needed for migration, etc) */
|
||||
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
|
||||
|
||||
#endif /* TARGET_ARM_CPREGS_H */
|
@ -43,6 +43,7 @@
|
||||
#include "kvm_arm.h"
|
||||
#include "disas/capstone.h"
|
||||
#include "fpu/softfloat.h"
|
||||
#include "cpregs.h"
|
||||
|
||||
static void arm_cpu_set_pc(CPUState *cs, vaddr value)
|
||||
{
|
||||
|
368
target/arm/cpu.h
368
target/arm/cpu.h
@ -2595,144 +2595,6 @@ static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
|
||||
return kvmid;
|
||||
}
|
||||
|
||||
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
|
||||
* special-behaviour cp reg and bits [11..8] indicate what behaviour
|
||||
* it has. Otherwise it is a simple cp reg, where CONST indicates that
|
||||
* TCG can assume the value to be constant (ie load at translate time)
|
||||
* and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
|
||||
* indicates that the TB should not be ended after a write to this register
|
||||
* (the default is that the TB ends after cp writes). OVERRIDE permits
|
||||
* a register definition to override a previous definition for the
|
||||
* same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
|
||||
* old must have the OVERRIDE bit set.
|
||||
* ALIAS indicates that this register is an alias view of some underlying
|
||||
* state which is also visible via another register, and that the other
|
||||
* register is handling migration and reset; registers marked ALIAS will not be
|
||||
* migrated but may have their state set by syncing of register state from KVM.
|
||||
* NO_RAW indicates that this register has no underlying state and does not
|
||||
* support raw access for state saving/loading; it will not be used for either
|
||||
* migration or KVM state synchronization. (Typically this is for "registers"
|
||||
* which are actually used as instructions for cache maintenance and so on.)
|
||||
* IO indicates that this register does I/O and therefore its accesses
|
||||
* need to be marked with gen_io_start() and also end the TB. In particular,
|
||||
* registers which implement clocks or timers require this.
|
||||
* RAISES_EXC is for when the read or write hook might raise an exception;
|
||||
* the generated code will synchronize the CPU state before calling the hook
|
||||
* so that it is safe for the hook to call raise_exception().
|
||||
* NEWEL is for writes to registers that might change the exception
|
||||
* level - typically on older ARM chips. For those cases we need to
|
||||
* re-read the new el when recomputing the translation flags.
|
||||
*/
|
||||
#define ARM_CP_SPECIAL 0x0001
|
||||
#define ARM_CP_CONST 0x0002
|
||||
#define ARM_CP_64BIT 0x0004
|
||||
#define ARM_CP_SUPPRESS_TB_END 0x0008
|
||||
#define ARM_CP_OVERRIDE 0x0010
|
||||
#define ARM_CP_ALIAS 0x0020
|
||||
#define ARM_CP_IO 0x0040
|
||||
#define ARM_CP_NO_RAW 0x0080
|
||||
#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
|
||||
#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
|
||||
#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
|
||||
#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
|
||||
#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
|
||||
#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600)
|
||||
#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700)
|
||||
#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA
|
||||
#define ARM_CP_FPU 0x1000
|
||||
#define ARM_CP_SVE 0x2000
|
||||
#define ARM_CP_NO_GDB 0x4000
|
||||
#define ARM_CP_RAISES_EXC 0x8000
|
||||
#define ARM_CP_NEWEL 0x10000
|
||||
/* Used only as a terminator for ARMCPRegInfo lists */
|
||||
#define ARM_CP_SENTINEL 0xfffff
|
||||
/* Mask of only the flag bits in a type field */
|
||||
#define ARM_CP_FLAG_MASK 0x1f0ff
|
||||
|
||||
/* Valid values for ARMCPRegInfo state field, indicating which of
|
||||
* the AArch32 and AArch64 execution states this register is visible in.
|
||||
* If the reginfo doesn't explicitly specify then it is AArch32 only.
|
||||
* If the reginfo is declared to be visible in both states then a second
|
||||
* reginfo is synthesised for the AArch32 view of the AArch64 register,
|
||||
* such that the AArch32 view is the lower 32 bits of the AArch64 one.
|
||||
* Note that we rely on the values of these enums as we iterate through
|
||||
* the various states in some places.
|
||||
*/
|
||||
enum {
|
||||
ARM_CP_STATE_AA32 = 0,
|
||||
ARM_CP_STATE_AA64 = 1,
|
||||
ARM_CP_STATE_BOTH = 2,
|
||||
};
|
||||
|
||||
/* ARM CP register secure state flags. These flags identify security state
|
||||
* attributes for a given CP register entry.
|
||||
* The existence of both or neither secure and non-secure flags indicates that
|
||||
* the register has both a secure and non-secure hash entry. A single one of
|
||||
* these flags causes the register to only be hashed for the specified
|
||||
* security state.
|
||||
* Although definitions may have any combination of the S/NS bits, each
|
||||
* registered entry will only have one to identify whether the entry is secure
|
||||
* or non-secure.
|
||||
*/
|
||||
enum {
|
||||
ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
|
||||
ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
|
||||
};
|
||||
|
||||
/* Return true if cptype is a valid type field. This is used to try to
|
||||
* catch errors where the sentinel has been accidentally left off the end
|
||||
* of a list of registers.
|
||||
*/
|
||||
static inline bool cptype_valid(int cptype)
|
||||
{
|
||||
return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
|
||||
|| ((cptype & ARM_CP_SPECIAL) &&
|
||||
((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
|
||||
}
|
||||
|
||||
/* Access rights:
|
||||
* We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
|
||||
* defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
|
||||
* PL2 (hyp). The other level which has Read and Write bits is Secure PL1
|
||||
* (ie any of the privileged modes in Secure state, or Monitor mode).
|
||||
* If a register is accessible in one privilege level it's always accessible
|
||||
* in higher privilege levels too. Since "Secure PL1" also follows this rule
|
||||
* (ie anything visible in PL2 is visible in S-PL1, some things are only
|
||||
* visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
|
||||
* terminology a little and call this PL3.
|
||||
* In AArch64 things are somewhat simpler as the PLx bits line up exactly
|
||||
* with the ELx exception levels.
|
||||
*
|
||||
* If access permissions for a register are more complex than can be
|
||||
* described with these bits, then use a laxer set of restrictions, and
|
||||
* do the more restrictive/complex check inside a helper function.
|
||||
*/
|
||||
#define PL3_R 0x80
|
||||
#define PL3_W 0x40
|
||||
#define PL2_R (0x20 | PL3_R)
|
||||
#define PL2_W (0x10 | PL3_W)
|
||||
#define PL1_R (0x08 | PL2_R)
|
||||
#define PL1_W (0x04 | PL2_W)
|
||||
#define PL0_R (0x02 | PL1_R)
|
||||
#define PL0_W (0x01 | PL1_W)
|
||||
|
||||
/*
|
||||
* For user-mode some registers are accessible to EL0 via a kernel
|
||||
* trap-and-emulate ABI. In this case we define the read permissions
|
||||
* as actually being PL0_R. However some bits of any given register
|
||||
* may still be masked.
|
||||
*/
|
||||
#ifdef CONFIG_USER_ONLY
|
||||
#define PL0U_R PL0_R
|
||||
#else
|
||||
#define PL0U_R PL1_R
|
||||
#endif
|
||||
|
||||
#define PL3_RW (PL3_R | PL3_W)
|
||||
#define PL2_RW (PL2_R | PL2_W)
|
||||
#define PL1_RW (PL1_R | PL1_W)
|
||||
#define PL0_RW (PL0_R | PL0_W)
|
||||
|
||||
/* Return the highest implemented Exception Level */
|
||||
static inline int arm_highest_el(CPUARMState *env)
|
||||
{
|
||||
@ -2784,236 +2646,6 @@ static inline int arm_current_el(CPUARMState *env)
|
||||
}
|
||||
}
|
||||
|
||||
typedef struct ARMCPRegInfo ARMCPRegInfo;
|
||||
|
||||
typedef enum CPAccessResult {
|
||||
/* Access is permitted */
|
||||
CP_ACCESS_OK = 0,
|
||||
/* Access fails due to a configurable trap or enable which would
|
||||
* result in a categorized exception syndrome giving information about
|
||||
* the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
|
||||
* 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
|
||||
* PL1 if in EL0, otherwise to the current EL).
|
||||
*/
|
||||
CP_ACCESS_TRAP = 1,
|
||||
/* Access fails and results in an exception syndrome 0x0 ("uncategorized").
|
||||
* Note that this is not a catch-all case -- the set of cases which may
|
||||
* result in this failure is specifically defined by the architecture.
|
||||
*/
|
||||
CP_ACCESS_TRAP_UNCATEGORIZED = 2,
|
||||
/* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
|
||||
CP_ACCESS_TRAP_EL2 = 3,
|
||||
CP_ACCESS_TRAP_EL3 = 4,
|
||||
/* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
|
||||
CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
|
||||
CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
|
||||
} CPAccessResult;
|
||||
|
||||
/* Access functions for coprocessor registers. These cannot fail and
|
||||
* may not raise exceptions.
|
||||
*/
|
||||
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
|
||||
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
|
||||
uint64_t value);
|
||||
/* Access permission check functions for coprocessor registers. */
|
||||
typedef CPAccessResult CPAccessFn(CPUARMState *env,
|
||||
const ARMCPRegInfo *opaque,
|
||||
bool isread);
|
||||
/* Hook function for register reset */
|
||||
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
|
||||
|
||||
#define CP_ANY 0xff
|
||||
|
||||
/* Definition of an ARM coprocessor register */
|
||||
struct ARMCPRegInfo {
|
||||
/* Name of register (useful mainly for debugging, need not be unique) */
|
||||
const char *name;
|
||||
/* Location of register: coprocessor number and (crn,crm,opc1,opc2)
|
||||
* tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
|
||||
* 'wildcard' field -- any value of that field in the MRC/MCR insn
|
||||
* will be decoded to this register. The register read and write
|
||||
* callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
|
||||
* used by the program, so it is possible to register a wildcard and
|
||||
* then behave differently on read/write if necessary.
|
||||
* For 64 bit registers, only crm and opc1 are relevant; crn and opc2
|
||||
* must both be zero.
|
||||
* For AArch64-visible registers, opc0 is also used.
|
||||
* Since there are no "coprocessors" in AArch64, cp is purely used as a
|
||||
* way to distinguish (for KVM's benefit) guest-visible system registers
|
||||
* from demuxed ones provided to preserve the "no side effects on
|
||||
* KVM register read/write from QEMU" semantics. cp==0x13 is guest
|
||||
* visible (to match KVM's encoding); cp==0 will be converted to
|
||||
* cp==0x13 when the ARMCPRegInfo is registered, for convenience.
|
||||
*/
|
||||
uint8_t cp;
|
||||
uint8_t crn;
|
||||
uint8_t crm;
|
||||
uint8_t opc0;
|
||||
uint8_t opc1;
|
||||
uint8_t opc2;
|
||||
/* Execution state in which this register is visible: ARM_CP_STATE_* */
|
||||
int state;
|
||||
/* Register type: ARM_CP_* bits/values */
|
||||
int type;
|
||||
/* Access rights: PL*_[RW] */
|
||||
int access;
|
||||
/* Security state: ARM_CP_SECSTATE_* bits/values */
|
||||
int secure;
|
||||
/* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
|
||||
* this register was defined: can be used to hand data through to the
|
||||
* register read/write functions, since they are passed the ARMCPRegInfo*.
|
||||
*/
|
||||
void *opaque;
|
||||
/* Value of this register, if it is ARM_CP_CONST. Otherwise, if
|
||||
* fieldoffset is non-zero, the reset value of the register.
|
||||
*/
|
||||
uint64_t resetvalue;
|
||||
/* Offset of the field in CPUARMState for this register.
|
||||
*
|
||||
* This is not needed if either:
|
||||
* 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
|
||||
* 2. both readfn and writefn are specified
|
||||
*/
|
||||
ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
|
||||
|
||||
/* Offsets of the secure and non-secure fields in CPUARMState for the
|
||||
* register if it is banked. These fields are only used during the static
|
||||
* registration of a register. During hashing the bank associated
|
||||
* with a given security state is copied to fieldoffset which is used from
|
||||
* there on out.
|
||||
*
|
||||
* It is expected that register definitions use either fieldoffset or
|
||||
* bank_fieldoffsets in the definition but not both. It is also expected
|
||||
* that both bank offsets are set when defining a banked register. This
|
||||
* use indicates that a register is banked.
|
||||
*/
|
||||
ptrdiff_t bank_fieldoffsets[2];
|
||||
|
||||
/* Function for making any access checks for this register in addition to
|
||||
* those specified by the 'access' permissions bits. If NULL, no extra
|
||||
* checks required. The access check is performed at runtime, not at
|
||||
* translate time.
|
||||
*/
|
||||
CPAccessFn *accessfn;
|
||||
/* Function for handling reads of this register. If NULL, then reads
|
||||
* will be done by loading from the offset into CPUARMState specified
|
||||
* by fieldoffset.
|
||||
*/
|
||||
CPReadFn *readfn;
|
||||
/* Function for handling writes of this register. If NULL, then writes
|
||||
* will be done by writing to the offset into CPUARMState specified
|
||||
* by fieldoffset.
|
||||
*/
|
||||
CPWriteFn *writefn;
|
||||
/* Function for doing a "raw" read; used when we need to copy
|
||||
* coprocessor state to the kernel for KVM or out for
|
||||
* migration. This only needs to be provided if there is also a
|
||||
* readfn and it has side effects (for instance clear-on-read bits).
|
||||
*/
|
||||
CPReadFn *raw_readfn;
|
||||
/* Function for doing a "raw" write; used when we need to copy KVM
|
||||
* kernel coprocessor state into userspace, or for inbound
|
||||
* migration. This only needs to be provided if there is also a
|
||||
* writefn and it masks out "unwritable" bits or has write-one-to-clear
|
||||
* or similar behaviour.
|
||||
*/
|
||||
CPWriteFn *raw_writefn;
|
||||
/* Function for resetting the register. If NULL, then reset will be done
|
||||
* by writing resetvalue to the field specified in fieldoffset. If
|
||||
* fieldoffset is 0 then no reset will be done.
|
||||
*/
|
||||
CPResetFn *resetfn;
|
||||
|
||||
/*
|
||||
* "Original" writefn and readfn.
|
||||
* For ARMv8.1-VHE register aliases, we overwrite the read/write
|
||||
* accessor functions of various EL1/EL0 to perform the runtime
|
||||
* check for which sysreg should actually be modified, and then
|
||||
* forwards the operation. Before overwriting the accessors,
|
||||
* the original function is copied here, so that accesses that
|
||||
* really do go to the EL1/EL0 version proceed normally.
|
||||
* (The corresponding EL2 register is linked via opaque.)
|
||||
*/
|
||||
CPReadFn *orig_readfn;
|
||||
CPWriteFn *orig_writefn;
|
||||
};
|
||||
|
||||
/* Macros which are lvalues for the field in CPUARMState for the
|
||||
* ARMCPRegInfo *ri.
|
||||
*/
|
||||
#define CPREG_FIELD32(env, ri) \
|
||||
(*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
|
||||
#define CPREG_FIELD64(env, ri) \
|
||||
(*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
|
||||
|
||||
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
|
||||
|
||||
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
|
||||
const ARMCPRegInfo *regs, void *opaque);
|
||||
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
|
||||
const ARMCPRegInfo *regs, void *opaque);
|
||||
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
|
||||
{
|
||||
define_arm_cp_regs_with_opaque(cpu, regs, 0);
|
||||
}
|
||||
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
|
||||
{
|
||||
define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
|
||||
}
|
||||
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
|
||||
|
||||
/*
|
||||
* Definition of an ARM co-processor register as viewed from
|
||||
* userspace. This is used for presenting sanitised versions of
|
||||
* registers to userspace when emulating the Linux AArch64 CPU
|
||||
* ID/feature ABI (advertised as HWCAP_CPUID).
|
||||
*/
|
||||
typedef struct ARMCPRegUserSpaceInfo {
|
||||
/* Name of register */
|
||||
const char *name;
|
||||
|
||||
/* Is the name actually a glob pattern */
|
||||
bool is_glob;
|
||||
|
||||
/* Only some bits are exported to user space */
|
||||
uint64_t exported_bits;
|
||||
|
||||
/* Fixed bits are applied after the mask */
|
||||
uint64_t fixed_bits;
|
||||
} ARMCPRegUserSpaceInfo;
|
||||
|
||||
#define REGUSERINFO_SENTINEL { .name = NULL }
|
||||
|
||||
void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
|
||||
|
||||
/* CPWriteFn that can be used to implement writes-ignored behaviour */
|
||||
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
|
||||
uint64_t value);
|
||||
/* CPReadFn that can be used for read-as-zero behaviour */
|
||||
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
|
||||
|
||||
/* CPResetFn that does nothing, for use if no reset is required even
|
||||
* if fieldoffset is non zero.
|
||||
*/
|
||||
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
|
||||
|
||||
/* Return true if this reginfo struct's field in the cpu state struct
|
||||
* is 64 bits wide.
|
||||
*/
|
||||
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
|
||||
{
|
||||
return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
|
||||
}
|
||||
|
||||
static inline bool cp_access_ok(int current_el,
|
||||
const ARMCPRegInfo *ri, int isread)
|
||||
{
|
||||
return (ri->access >> ((current_el * 2) + isread)) & 1;
|
||||
}
|
||||
|
||||
/* Raw read of a coprocessor register (as needed for migration, etc) */
|
||||
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
|
||||
|
||||
/**
|
||||
* write_list_to_cpustate
|
||||
* @cpu: ARMCPU
|
||||
|
@ -34,6 +34,7 @@
|
||||
#include "hvf_arm.h"
|
||||
#include "qapi/visitor.h"
|
||||
#include "hw/qdev-properties.h"
|
||||
#include "cpregs.h"
|
||||
|
||||
|
||||
#ifndef CONFIG_USER_ONLY
|
||||
|
@ -18,6 +18,7 @@
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
#include "hw/boards.h"
|
||||
#endif
|
||||
#include "cpregs.h"
|
||||
|
||||
/* CPU models. These are not needed for the AArch64 linux-user build. */
|
||||
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
|
||||
|
@ -19,8 +19,9 @@
|
||||
*/
|
||||
#include "qemu/osdep.h"
|
||||
#include "cpu.h"
|
||||
#include "internals.h"
|
||||
#include "exec/gdbstub.h"
|
||||
#include "internals.h"
|
||||
#include "cpregs.h"
|
||||
|
||||
typedef struct RegisterSysregXmlParam {
|
||||
CPUState *cs;
|
||||
|
@ -36,6 +36,7 @@
|
||||
#include "exec/cpu_ldst.h"
|
||||
#include "semihosting/common-semi.h"
|
||||
#endif
|
||||
#include "cpregs.h"
|
||||
|
||||
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
|
||||
#define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
|
||||
|
@ -23,6 +23,7 @@
|
||||
#include "internals.h"
|
||||
#include "exec/exec-all.h"
|
||||
#include "exec/cpu_ldst.h"
|
||||
#include "cpregs.h"
|
||||
|
||||
#define SIGNBIT (uint32_t)0x80000000
|
||||
#define SIGNBIT64 ((uint64_t)1 << 63)
|
||||
|
@ -27,14 +27,12 @@
|
||||
#include "translate.h"
|
||||
#include "internals.h"
|
||||
#include "qemu/host-utils.h"
|
||||
|
||||
#include "semihosting/semihost.h"
|
||||
#include "exec/gen-icount.h"
|
||||
|
||||
#include "exec/helper-proto.h"
|
||||
#include "exec/helper-gen.h"
|
||||
#include "exec/log.h"
|
||||
|
||||
#include "cpregs.h"
|
||||
#include "translate-a64.h"
|
||||
#include "qemu/atomic128.h"
|
||||
|
||||
|
@ -30,11 +30,10 @@
|
||||
#include "qemu/bitops.h"
|
||||
#include "arm_ldst.h"
|
||||
#include "semihosting/semihost.h"
|
||||
|
||||
#include "exec/helper-proto.h"
|
||||
#include "exec/helper-gen.h"
|
||||
|
||||
#include "exec/log.h"
|
||||
#include "cpregs.h"
|
||||
|
||||
|
||||
#define ENABLE_ARCH_4T arm_dc_feature(s, ARM_FEATURE_V4T)
|
||||
|
Loading…
Reference in New Issue
Block a user