Configuration overlay does not explicitly say whether there are ICACHE
and DCACHE in the core. Current code uses XCHAL_[ID]CACHE_WAYS to detect
if corresponding cache option is enabled, but that's not correct: on
cores without cache these macros are defined as 1, not as 0.
Check XCHAL_[ID]CACHE_SIZE instead.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
There's no point in continuing translating guest instructions once an
unconditional exception is thrown.
There's also no point in updating pc before any instruction is
translated, don't do it.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Delimit each instruction that may access timers or IRQ state with
qemu_io_start/qemu_io_end, so that qemu-system-xtensa could be run with
-icount option.
Raise EXCP_YIELD after CCOMPARE reprogramming to let tcg_cpu_exec
recalculate how long this CPU is allowed to run.
RSR now may need to terminate TB, but it can't be done in RSR handler
because the same handler is used for XSR together with WSR handler, which
may also need to terminate TB. Change RSR and WSR handlers return type
to bool indicating whether TB termination is needed (RSR) or has been
done (WSR), and add TB termination after RSR/WSR dispatcher call.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Xtensa cores may have a register (CCOUNT) that counts core clock cycles.
It may also have a number of registers (CCOMPAREx); when CCOUNT value
passes the value of CCOMPAREx, timer interrupt x is raised.
Currently xtensa target counts a number of completed instructions and
assumes that for CCOUNT one instruction takes one cycle to complete.
It calls helper function to update CCOUNT register at every TB end and
raise timer interrupts. This scheme works very predictably and doesn't
have noticeable performance impact, but it is hard to use with multiple
synchronized processors, especially with coming MTTCG.
Derive CCOUNT from the virtual simulation time, QEMU_CLOCK_VIRTUAL.
Use native QEMU timers for CCOMPARE timers, one timer for each register.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
RUNSTALL signal stalls core execution while it's applied. It is widely
used in multicore configurations to control activity of additional
cores.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Xtensa cores may have two distinct addresses for the static vectors
group. Provide a function to select one of them.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
On 680x0 family only.
Address Register indirect With postincrement:
When using the stack pointer (A7) with byte size data, the register
is incremented by two.
Address Register indirect With predecrement:
When using the stack pointer (A7) with byte size data, the register
is decremented by two.
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Thomas Huth <huth@tuxfamily.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-Id: <1484332593-16782-6-git-send-email-laurent@vivier.eu>
In these cases we must update the address register after
the operation.
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-Id: <1484332593-16782-4-git-send-email-laurent@vivier.eu>
gen_flush_flags() is setting unconditionally cc_op_synced to 1
and s->cc_op to CC_OP_FLAGS, whereas env->cc_op can be set
to something else by a previous tcg fragment.
We fix that by not setting cc_op_synced to 1
(except for gen_helper_flush_flags() that updates env->cc_op)
FIX: https://github.com/vivier/qemu-m68k/issues/19
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-Id: <1484332593-16782-3-git-send-email-laurent@vivier.eu>
M680x0 bit operations with an immediate value use 9 bits of the 16bit
value, while coldfire ones use only 8 bits.
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-Id: <1484332593-16782-2-git-send-email-laurent@vivier.eu>
We have never has the concept of global TLB entries which would avoid
the flush so we never actually use this flag. Drop it and make clear
that tlb_flush is the sledge-hammer it has always been.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
[DG: ppc portions]
Acked-by: David Gibson <david@gibson.dropbear.id.au>
It is a common thing amongst the various cpu reset functions want to
flush the SoftMMU's TLB entries. This is done either by calling
tlb_flush directly or by way of a general memset of the CPU
structure (sometimes both).
This moves the tlb_flush call to the common reset function and
additionally ensures it is only done for the CONFIG_SOFTMMU case and
when tcg is enabled.
In some target cases we add an empty end_of_reset_fields structure to the
target vCPU structure so have a clear end point for any memset which
is resetting value in the structure before CPU_COMMON (where the TLB
structures are).
While this is a nice clean-up in general it is also a precursor for
changes coming to cputlb for MTTCG where the clearing of entries
can't be done arbitrarily across vCPUs. Currently the cpu_reset
function is usually called from the context of another vCPU as the
architectural power up sequence is run. By using the cputlb API
functions we can ensure the right behaviour in the future.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
The new typename attribute on query-cpu-definitions will be used
to help management software use device-list-properties to check
which properties can be set using -cpu or -global for the CPU
model.
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <1479320499-29818-1-git-send-email-ehabkost@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
In commit c52ab08aee,
the patch snippet for the "syscall" insn got applied to "iret".
Signed-off-by: Doug Evans <dje@google.com>
Message-Id: <f403045cde4049058c05446d5c04@google.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
If D[15] is != sign_ext(const4) then PC will be set to (PC +
zero_ext(disp4 + 16)).
[BK: fixed style errors]
Signed-off-by: Peer Adelt <peer.adelt@c-lab.de>
Message-Id: <1465314555-11501-5-git-send-email-peer.adelt@c-lab.de>
Signed-off-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de>
Puts the content of data register D[a] into E[c][63:32] and the
content of data register D[b] into E[c][31:0].
[BK: fix style error]
[BK: Allocate temporaries only when needed]
Signed-off-by: Peer Adelt <peer.adelt@c-lab.de>
Message-Id: <1465314555-11501-4-git-send-email-peer.adelt@c-lab.de>
Signed-off-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de>
Multiplies D[a] and D[b] and adds/subtracts the result to/from D[d].
The result is put in D[c]. All operands are floating-point numbers.
Signed-off-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Converts a 32-bit floating point number to an unsigned int. The
result is rounded towards zero.
Signed-off-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Use the new primitives for RDWINM and RLDICL.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Richard Henderson <rth@twiddle.net>
A couple of places where it was easy to identify a right-shift
followed by an extract or and-with-immediate, and the obvious
sign-extract from a high byte register.
Acked-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Richard Henderson <rth@twiddle.net>
This is a cleanup patch. It adds call to tcg_temp_free()
when it is missing.
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Also manage word and byte operands and fix the computation of
overflow in the case of M68000 arithmetic shifts.
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Richard Henderson <rth@twiddle.net>
Message-Id: <1478699171-10637-4-git-send-email-rth@twiddle.net>
Report this properly via exception and, importantly, allow
the disassembler the chance to tell us what insn is not handled.
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Richard Henderson <rth@twiddle.net>
Message-Id: <1478699171-10637-3-git-send-email-rth@twiddle.net>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
680x0 movem can load/store words and long words and can use more
addressing modes. Coldfire can only use long words with (Ax) and
(d16,Ax) addressing modes.
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Richard Henderson <rth@twiddle.net>
Message-Id: <1478699171-10637-2-git-send-email-rth@twiddle.net>
Implement CAS using cmpxchg.
Implement CAS2 using helper and either cmpxchg when
the 32bit addresses are consecutive, or with
parallel_cpus+cpu_loop_exit_atomic() otherwise.
Suggested-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Update helper to set the throwing location in case of div-by-0.
Cleanup divX.w and add quad word variants of divX.l.
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Richard Henderson <rth@twidle.net>
[laurent: modified to clear Z on overflow, as found with risu]
Provide gen_lea_mode and gen_ea_mode, where the mode can be
specified manually, rather than taken from the instruction.
Signed-off-by: Richard Henderson <rth@twiddle.net>
Message-Id: <1478206203-4606-3-git-send-email-rth@twiddle.net>
ARM1176 CPUs have TrustZone support and can use the Vector Base
Address Register, but currently, qemu only adds VBAR support to ARMv7
CPUs. Fix this by adding a new feature ARM_FEATURE_VBAR which can used
for ARMv7 and ARM1176 CPUs.
The VBAR feature is always set for ARMv7 because some legacy boards
require it even if this is not architecturally correct.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 1481810970-9692-1-git-send-email-clg@kaod.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
We already log exception entry; add logging of the AArch64 exception
return path as well.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
We add s->be_data within do_vec_ld/st. Adding it here means that
we have the wrong bits set in SIZE for a big-endian host, leading
to g_assert_not_reached in write_vec_element and read_vec_element.
Signed-off-by: Richard Henderson <rth@twiddle.net>
Message-id: 1481085020-2614-3-git-send-email-rth@twiddle.net
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Since CPUARMState.vfp.regs is not 16 byte aligned, the ^ 8 fixup used
for a big-endian host doesn't do what's intended. Fix this by adding
in the vfp.regs offset after computing the inter-register offset.
Signed-off-by: Richard Henderson <rth@twiddle.net>
Message-id: 1481085020-2614-2-git-send-email-rth@twiddle.net
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The value of the MVFR1 (Media and VFP Feature Register 1) register for
the Cortex-A8 appears to be incorrect (according to the TRM, DDI0344K),
with the "full denormal arithmetic" and "propagation of NaN" fields
holding both 0 instead of both 1.
I had a go tracing the history of the use of this value, and it seems
it's always just been wrong in QEMU: maybe it was derived from early
documentation, or guessed based on the use of a "VFP Lite" implementation
in the Cortex-A8.
Depending on the startup/early-boot code in use, this can manifest as
failure to perform denormal arithmetic properly: in our case, selecting
a Cortex-A8 CPU when using QEMU as an instruction-set simulator for
bare-metal GCC testing caused tests using denormal arithmetic to
fail. Problems might be masked (or not occur) when using a full OS kernel
with suitable trap handlers (I'm not sure).
Signed-off-by: Julian Brown <julian@codesourcery.com>
Message-id: 1481130858-31767-1-git-send-email-julian@codesourcery.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The new paging more is extension of IA32e mode with more additional page
table level.
It brings support of 57-bit vitrual address space (128PB) and 52-bit
physical address space (4PB).
The structure of new page table level is identical to pml4.
The feature is enumerated with CPUID.(EAX=07H, ECX=0):ECX[bit 16].
CR4.LA57[bit 12] need to be set when pageing enables to activate 5-level
paging mode.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Message-Id: <20161215001305.146807-1-kirill.shutemov@linux.intel.com>
[Drop changes to target-i386/translate.c. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The syscall and sysret instructions behave a bit differently:
TF is checked after the instruction completes.
This allows the o/s to disable #DB at a syscall by adding TF to FMASK.
And then when the sysret is executed the #DB is taken "as if" the
syscall insn just completed.
Signed-off-by: Doug Evans <dje@google.com>
Message-Id: <94eb2c0bfa1c6a9fec0543057483@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check for KVM_CAP_ADJUST_CLOCK capability KVM_CLOCK_TSC_STABLE, which
indicates that KVM_GET_CLOCK returns a value as seen by the guest at
that moment.
For new machine types, use this value rather than reading
from guest memory.
This reduces kvmclock difference on migration from 5s to 0.1s
(when max_downtime == 5s).
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Message-Id: <20161121105052.598267440@redhat.com>
[Add comment explaining what is going on. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The remote protocol can't handle flipping back and forth
between 32-bit and 64-bit regs. To compensate, pretend "as if"
on 64-bit cpu when in 32-bit mode.
Signed-off-by: Doug Evans <dje@google.com>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Message-Id: <001a113dca8274572005406e03c3@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>