qemu/hw/nvme/nvme.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

715 lines
18 KiB
C
Raw Normal View History

/*
* QEMU NVM Express
*
* Copyright (c) 2012 Intel Corporation
* Copyright (c) 2021 Minwoo Im
* Copyright (c) 2021 Samsung Electronics Co., Ltd.
*
* Authors:
* Keith Busch <kbusch@kernel.org>
* Klaus Jensen <k.jensen@samsung.com>
* Gollu Appalanaidu <anaidu.gollu@samsung.com>
* Dmitry Fomichev <dmitry.fomichev@wdc.com>
* Minwoo Im <minwoo.im.dev@gmail.com>
*
* This code is licensed under the GNU GPL v2 or later.
*/
#ifndef HW_NVME_NVME_H
#define HW_NVME_NVME_H
#include "qemu/uuid.h"
#include "hw/pci/pci_device.h"
#include "hw/block/block.h"
#include "block/nvme.h"
#define NVME_MAX_CONTROLLERS 256
#define NVME_MAX_NAMESPACES 256
#define NVME_EUI64_DEFAULT ((uint64_t)0x5254000000000000)
#define NVME_FDP_MAX_EVENTS 63
#define NVME_FDP_MAXPIDS 128
hw/block/nvme: Support Zoned Namespace Command Set The emulation code has been changed to advertise NVM Command Set when "zoned" device property is not set (default) and Zoned Namespace Command Set otherwise. Define values and structures that are needed to support Zoned Namespace Command Set (NVMe TP 4053) in PCI NVMe controller emulator. Define trace events where needed in newly introduced code. In order to improve scalability, all open, closed and full zones are organized in separate linked lists. Consequently, almost all zone operations don't require scanning of the entire zone array (which potentially can be quite large) - it is only necessary to enumerate one or more zone lists. Handlers for three new NVMe commands introduced in Zoned Namespace Command Set specification are added, namely for Zone Management Receive, Zone Management Send and Zone Append. Device initialization code has been extended to create a proper configuration for zoned operation using device properties. Read/Write command handler is modified to only allow writes at the write pointer if the namespace is zoned. For Zone Append command, writes implicitly happen at the write pointer and the starting write pointer value is returned as the result of the command. Write Zeroes handler is modified to add zoned checks that are identical to those done as a part of Write flow. Subsequent commits in this series add ZDE support and checks for active and open zone limits. Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com> Signed-off-by: Ajay Joshi <ajay.joshi@wdc.com> Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Matias Bjorling <matias.bjorling@wdc.com> Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Signed-off-by: Adam Manzanares <adam.manzanares@wdc.com> Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com> Reviewed-by: Niklas Cassel <Niklas.Cassel@wdc.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2020-12-08 23:04:06 +03:00
/*
* The controller only supports Submission and Completion Queue Entry Sizes of
* 64 and 16 bytes respectively.
*/
#define NVME_SQES 6
#define NVME_CQES 4
QEMU_BUILD_BUG_ON(NVME_MAX_NAMESPACES > NVME_NSID_BROADCAST - 1);
typedef struct NvmeCtrl NvmeCtrl;
typedef struct NvmeNamespace NvmeNamespace;
#define TYPE_NVME_BUS "nvme-bus"
OBJECT_DECLARE_SIMPLE_TYPE(NvmeBus, NVME_BUS)
typedef struct NvmeBus {
BusState parent_bus;
} NvmeBus;
#define TYPE_NVME_SUBSYS "nvme-subsys"
#define NVME_SUBSYS(obj) \
OBJECT_CHECK(NvmeSubsystem, (obj), TYPE_NVME_SUBSYS)
#define SUBSYS_SLOT_RSVD (void *)0xFFFF
typedef struct NvmeReclaimUnit {
uint64_t ruamw;
} NvmeReclaimUnit;
typedef struct NvmeRuHandle {
uint8_t ruht;
uint8_t ruha;
uint64_t event_filter;
uint8_t lbafi;
uint64_t ruamw;
/* reclaim units indexed by reclaim group */
NvmeReclaimUnit *rus;
} NvmeRuHandle;
typedef struct NvmeFdpEventBuffer {
NvmeFdpEvent events[NVME_FDP_MAX_EVENTS];
unsigned int nelems;
unsigned int start;
unsigned int next;
} NvmeFdpEventBuffer;
typedef struct NvmeEnduranceGroup {
uint8_t event_conf;
struct {
NvmeFdpEventBuffer host_events, ctrl_events;
uint16_t nruh;
uint16_t nrg;
uint8_t rgif;
uint64_t runs;
uint64_t hbmw;
uint64_t mbmw;
uint64_t mbe;
bool enabled;
NvmeRuHandle *ruhs;
} fdp;
} NvmeEnduranceGroup;
typedef struct NvmeSubsystem {
DeviceState parent_obj;
NvmeBus bus;
uint8_t subnqn[256];
char *serial;
NvmeCtrl *ctrls[NVME_MAX_CONTROLLERS];
NvmeNamespace *namespaces[NVME_MAX_NAMESPACES + 1];
NvmeEnduranceGroup endgrp;
struct {
char *nqn;
struct {
bool enabled;
uint64_t runs;
uint16_t nruh;
uint32_t nrg;
} fdp;
} params;
} NvmeSubsystem;
int nvme_subsys_register_ctrl(NvmeCtrl *n, Error **errp);
void nvme_subsys_unregister_ctrl(NvmeSubsystem *subsys, NvmeCtrl *n);
static inline NvmeCtrl *nvme_subsys_ctrl(NvmeSubsystem *subsys,
uint32_t cntlid)
{
if (!subsys || cntlid >= NVME_MAX_CONTROLLERS) {
return NULL;
}
if (subsys->ctrls[cntlid] == SUBSYS_SLOT_RSVD) {
return NULL;
}
return subsys->ctrls[cntlid];
}
static inline NvmeNamespace *nvme_subsys_ns(NvmeSubsystem *subsys,
uint32_t nsid)
{
if (!subsys || !nsid || nsid > NVME_MAX_NAMESPACES) {
return NULL;
}
return subsys->namespaces[nsid];
}
#define TYPE_NVME_NS "nvme-ns"
#define NVME_NS(obj) \
OBJECT_CHECK(NvmeNamespace, (obj), TYPE_NVME_NS)
typedef struct NvmeZone {
NvmeZoneDescr d;
uint64_t w_ptr;
QTAILQ_ENTRY(NvmeZone) entry;
} NvmeZone;
#define FDP_EVT_MAX 0xff
#define NVME_FDP_MAX_NS_RUHS 32u
#define FDPVSS 0
static const uint8_t nvme_fdp_evf_shifts[FDP_EVT_MAX] = {
/* Host events */
[FDP_EVT_RU_NOT_FULLY_WRITTEN] = 0,
[FDP_EVT_RU_ATL_EXCEEDED] = 1,
[FDP_EVT_CTRL_RESET_RUH] = 2,
[FDP_EVT_INVALID_PID] = 3,
/* CTRL events */
[FDP_EVT_MEDIA_REALLOC] = 32,
[FDP_EVT_RUH_IMPLICIT_RU_CHANGE] = 33,
};
#define NGUID_LEN 16
typedef struct {
uint8_t data[NGUID_LEN];
} NvmeNGUID;
bool nvme_nguid_is_null(const NvmeNGUID *nguid);
extern const PropertyInfo qdev_prop_nguid;
#define DEFINE_PROP_NGUID_NODEFAULT(_name, _state, _field) \
DEFINE_PROP(_name, _state, _field, qdev_prop_nguid, NvmeNGUID)
typedef struct NvmeNamespaceParams {
bool detached;
bool shared;
uint32_t nsid;
QemuUUID uuid;
NvmeNGUID nguid;
uint64_t eui64;
bool eui64_default;
uint16_t ms;
uint8_t mset;
uint8_t pi;
uint8_t pil;
uint8_t pif;
uint16_t mssrl;
uint32_t mcl;
uint8_t msrc;
bool zoned;
bool cross_zone_read;
uint64_t zone_size_bs;
uint64_t zone_cap_bs;
uint32_t max_active_zones;
uint32_t max_open_zones;
uint32_t zd_extension_size;
uint32_t numzrwa;
uint64_t zrwas;
uint64_t zrwafg;
struct {
char *ruhs;
} fdp;
} NvmeNamespaceParams;
typedef struct NvmeAtomic {
uint32_t atomic_max_write_size;
bool atomic_writes;
} NvmeAtomic;
typedef struct NvmeNamespace {
DeviceState parent_obj;
BlockConf blkconf;
int32_t bootindex;
int64_t size;
int64_t moff;
NvmeIdNs id_ns;
NvmeIdNsNvm id_ns_nvm;
NvmeIdNsInd id_ns_ind;
NvmeLBAF lbaf;
unsigned int nlbaf;
size_t lbasz;
const uint32_t *iocs;
uint8_t csi;
uint16_t status;
int attached;
uint8_t pif;
struct {
uint16_t zrwas;
uint16_t zrwafg;
uint32_t numzrwa;
} zns;
QTAILQ_ENTRY(NvmeNamespace) entry;
NvmeIdNsZoned *id_ns_zoned;
NvmeZone *zone_array;
QTAILQ_HEAD(, NvmeZone) exp_open_zones;
QTAILQ_HEAD(, NvmeZone) imp_open_zones;
QTAILQ_HEAD(, NvmeZone) closed_zones;
QTAILQ_HEAD(, NvmeZone) full_zones;
uint32_t num_zones;
uint64_t zone_size;
uint64_t zone_capacity;
uint32_t zone_size_log2;
uint8_t *zd_extensions;
int32_t nr_open_zones;
int32_t nr_active_zones;
NvmeNamespaceParams params;
NvmeSubsystem *subsys;
NvmeEnduranceGroup *endgrp;
struct {
uint32_t err_rec;
} features;
struct {
uint16_t nphs;
/* reclaim unit handle identifiers indexed by placement handle */
uint16_t *phs;
} fdp;
} NvmeNamespace;
static inline uint32_t nvme_nsid(NvmeNamespace *ns)
{
if (ns) {
return ns->params.nsid;
}
return 0;
}
static inline size_t nvme_l2b(NvmeNamespace *ns, uint64_t lba)
{
return lba << ns->lbaf.ds;
}
static inline size_t nvme_m2b(NvmeNamespace *ns, uint64_t lba)
{
return ns->lbaf.ms * lba;
}
static inline int64_t nvme_moff(NvmeNamespace *ns, uint64_t lba)
{
return ns->moff + nvme_m2b(ns, lba);
}
static inline bool nvme_ns_ext(NvmeNamespace *ns)
{
return !!NVME_ID_NS_FLBAS_EXTENDED(ns->id_ns.flbas);
}
static inline NvmeZoneState nvme_get_zone_state(NvmeZone *zone)
{
return zone->d.zs >> 4;
}
static inline void nvme_set_zone_state(NvmeZone *zone, NvmeZoneState state)
{
zone->d.zs = state << 4;
}
static inline uint64_t nvme_zone_rd_boundary(NvmeNamespace *ns, NvmeZone *zone)
{
return zone->d.zslba + ns->zone_size;
}
static inline uint64_t nvme_zone_wr_boundary(NvmeZone *zone)
{
return zone->d.zslba + zone->d.zcap;
}
static inline bool nvme_wp_is_valid(NvmeZone *zone)
{
uint8_t st = nvme_get_zone_state(zone);
return st != NVME_ZONE_STATE_FULL &&
st != NVME_ZONE_STATE_READ_ONLY &&
st != NVME_ZONE_STATE_OFFLINE;
}
static inline uint8_t *nvme_get_zd_extension(NvmeNamespace *ns,
uint32_t zone_idx)
{
return &ns->zd_extensions[zone_idx * ns->params.zd_extension_size];
}
static inline void nvme_aor_inc_open(NvmeNamespace *ns)
{
assert(ns->nr_open_zones >= 0);
if (ns->params.max_open_zones) {
ns->nr_open_zones++;
assert(ns->nr_open_zones <= ns->params.max_open_zones);
}
}
static inline void nvme_aor_dec_open(NvmeNamespace *ns)
{
if (ns->params.max_open_zones) {
assert(ns->nr_open_zones > 0);
ns->nr_open_zones--;
}
assert(ns->nr_open_zones >= 0);
}
static inline void nvme_aor_inc_active(NvmeNamespace *ns)
{
assert(ns->nr_active_zones >= 0);
if (ns->params.max_active_zones) {
ns->nr_active_zones++;
assert(ns->nr_active_zones <= ns->params.max_active_zones);
}
}
static inline void nvme_aor_dec_active(NvmeNamespace *ns)
{
if (ns->params.max_active_zones) {
assert(ns->nr_active_zones > 0);
ns->nr_active_zones--;
assert(ns->nr_active_zones >= ns->nr_open_zones);
}
assert(ns->nr_active_zones >= 0);
}
static inline void nvme_fdp_stat_inc(uint64_t *a, uint64_t b)
{
uint64_t ret = *a + b;
*a = ret < *a ? UINT64_MAX : ret;
}
void nvme_ns_init_format(NvmeNamespace *ns);
int nvme_ns_setup(NvmeNamespace *ns, Error **errp);
void nvme_ns_drain(NvmeNamespace *ns);
void nvme_ns_shutdown(NvmeNamespace *ns);
void nvme_ns_cleanup(NvmeNamespace *ns);
typedef struct NvmeAsyncEvent {
QTAILQ_ENTRY(NvmeAsyncEvent) entry;
NvmeAerResult result;
} NvmeAsyncEvent;
enum {
NVME_SG_ALLOC = 1 << 0,
NVME_SG_DMA = 1 << 1,
};
typedef struct NvmeSg {
int flags;
union {
QEMUSGList qsg;
QEMUIOVector iov;
};
} NvmeSg;
typedef enum NvmeTxDirection {
NVME_TX_DIRECTION_TO_DEVICE = 0,
NVME_TX_DIRECTION_FROM_DEVICE = 1,
} NvmeTxDirection;
typedef struct NvmeRequest {
struct NvmeSQueue *sq;
struct NvmeNamespace *ns;
BlockAIOCB *aiocb;
uint16_t status;
void *opaque;
NvmeCqe cqe;
NvmeCmd cmd;
BlockAcctCookie acct;
NvmeSg sg;
bool atomic_write;
QTAILQ_ENTRY(NvmeRequest)entry;
} NvmeRequest;
typedef struct NvmeBounceContext {
NvmeRequest *req;
struct {
QEMUIOVector iov;
uint8_t *bounce;
} data, mdata;
} NvmeBounceContext;
static inline const char *nvme_adm_opc_str(uint8_t opc)
{
switch (opc) {
case NVME_ADM_CMD_DELETE_SQ: return "NVME_ADM_CMD_DELETE_SQ";
case NVME_ADM_CMD_CREATE_SQ: return "NVME_ADM_CMD_CREATE_SQ";
case NVME_ADM_CMD_GET_LOG_PAGE: return "NVME_ADM_CMD_GET_LOG_PAGE";
case NVME_ADM_CMD_DELETE_CQ: return "NVME_ADM_CMD_DELETE_CQ";
case NVME_ADM_CMD_CREATE_CQ: return "NVME_ADM_CMD_CREATE_CQ";
case NVME_ADM_CMD_IDENTIFY: return "NVME_ADM_CMD_IDENTIFY";
case NVME_ADM_CMD_ABORT: return "NVME_ADM_CMD_ABORT";
case NVME_ADM_CMD_SET_FEATURES: return "NVME_ADM_CMD_SET_FEATURES";
case NVME_ADM_CMD_GET_FEATURES: return "NVME_ADM_CMD_GET_FEATURES";
case NVME_ADM_CMD_ASYNC_EV_REQ: return "NVME_ADM_CMD_ASYNC_EV_REQ";
case NVME_ADM_CMD_NS_ATTACHMENT: return "NVME_ADM_CMD_NS_ATTACHMENT";
case NVME_ADM_CMD_DIRECTIVE_SEND: return "NVME_ADM_CMD_DIRECTIVE_SEND";
case NVME_ADM_CMD_VIRT_MNGMT: return "NVME_ADM_CMD_VIRT_MNGMT";
case NVME_ADM_CMD_DIRECTIVE_RECV: return "NVME_ADM_CMD_DIRECTIVE_RECV";
case NVME_ADM_CMD_DBBUF_CONFIG: return "NVME_ADM_CMD_DBBUF_CONFIG";
case NVME_ADM_CMD_FORMAT_NVM: return "NVME_ADM_CMD_FORMAT_NVM";
default: return "NVME_ADM_CMD_UNKNOWN";
}
}
static inline const char *nvme_io_opc_str(uint8_t opc)
{
switch (opc) {
case NVME_CMD_FLUSH: return "NVME_NVM_CMD_FLUSH";
case NVME_CMD_WRITE: return "NVME_NVM_CMD_WRITE";
case NVME_CMD_READ: return "NVME_NVM_CMD_READ";
case NVME_CMD_COMPARE: return "NVME_NVM_CMD_COMPARE";
case NVME_CMD_WRITE_ZEROES: return "NVME_NVM_CMD_WRITE_ZEROES";
case NVME_CMD_DSM: return "NVME_NVM_CMD_DSM";
case NVME_CMD_VERIFY: return "NVME_NVM_CMD_VERIFY";
case NVME_CMD_COPY: return "NVME_NVM_CMD_COPY";
case NVME_CMD_ZONE_MGMT_SEND: return "NVME_ZONED_CMD_MGMT_SEND";
case NVME_CMD_ZONE_MGMT_RECV: return "NVME_ZONED_CMD_MGMT_RECV";
case NVME_CMD_ZONE_APPEND: return "NVME_ZONED_CMD_ZONE_APPEND";
default: return "NVME_NVM_CMD_UNKNOWN";
}
}
typedef struct NvmeSQueue {
struct NvmeCtrl *ctrl;
uint16_t sqid;
uint16_t cqid;
uint32_t head;
uint32_t tail;
uint32_t size;
uint64_t dma_addr;
uint64_t db_addr;
uint64_t ei_addr;
QEMUBH *bh;
EventNotifier notifier;
bool ioeventfd_enabled;
NvmeRequest *io_req;
QTAILQ_HEAD(, NvmeRequest) req_list;
QTAILQ_HEAD(, NvmeRequest) out_req_list;
QTAILQ_ENTRY(NvmeSQueue) entry;
} NvmeSQueue;
typedef struct NvmeCQueue {
struct NvmeCtrl *ctrl;
uint8_t phase;
uint16_t cqid;
uint16_t irq_enabled;
uint32_t head;
uint32_t tail;
uint32_t vector;
uint32_t size;
uint64_t dma_addr;
uint64_t db_addr;
uint64_t ei_addr;
QEMUBH *bh;
EventNotifier notifier;
bool ioeventfd_enabled;
QTAILQ_HEAD(, NvmeSQueue) sq_list;
QTAILQ_HEAD(, NvmeRequest) req_list;
} NvmeCQueue;
#define TYPE_NVME "nvme"
#define NVME(obj) \
OBJECT_CHECK(NvmeCtrl, (obj), TYPE_NVME)
typedef struct NvmeParams {
char *serial;
uint32_t num_queues; /* deprecated since 5.1 */
uint32_t max_ioqpairs;
uint16_t msix_qsize;
uint16_t mqes;
uint32_t cmb_size_mb;
uint8_t aerl;
uint32_t aer_max_queued;
uint8_t mdts;
uint8_t vsl;
bool use_intel_id;
uint8_t zasl;
bool auto_transition_zones;
bool legacy_cmb;
bool ioeventfd;
uint16_t sriov_max_vfs;
uint16_t sriov_vq_flexible;
uint16_t sriov_vi_flexible;
uint32_t sriov_max_vq_per_vf;
uint32_t sriov_max_vi_per_vf;
bool msix_exclusive_bar;
struct {
bool mem;
} ctratt;
uint16_t atomic_awun;
uint16_t atomic_awupf;
bool atomic_dn;
} NvmeParams;
typedef struct NvmeCtrl {
PCIDevice parent_obj;
MemoryRegion bar0;
MemoryRegion iomem;
NvmeBar bar;
NvmeParams params;
NvmeBus bus;
uint16_t cntlid;
bool qs_created;
uint32_t page_size;
uint16_t page_bits;
uint16_t max_prp_ents;
uint32_t max_q_ents;
uint8_t outstanding_aers;
uint32_t irq_status;
int cq_pending;
uint64_t host_timestamp; /* Timestamp sent by the host */
uint64_t timestamp_set_qemu_clock_ms; /* QEMU clock time */
uint64_t starttime_ms;
uint16_t temperature;
uint8_t smart_critical_warning;
hw/nvme: Make max_ioqpairs and msix_qsize configurable in runtime The NVMe device defines two properties: max_ioqpairs, msix_qsize. Having them as constants is problematic for SR-IOV support. SR-IOV introduces virtual resources (queues, interrupts) that can be assigned to PF and its dependent VFs. Each device, following a reset, should work with the configured number of queues. A single constant is no longer sufficient to hold the whole state. This patch tries to solve the problem by introducing additional variables in NvmeCtrl’s state. The variables for, e.g., managing queues are therefore organized as: - n->params.max_ioqpairs – no changes, constant set by the user - n->(mutable_state) – (not a part of this patch) user-configurable, specifies number of queues available _after_ reset - n->conf_ioqpairs - (new) used in all the places instead of the ‘old’ n->params.max_ioqpairs; initialized in realize() and updated during reset() to reflect user’s changes to the mutable state Since the number of available i/o queues and interrupts can change in runtime, buffers for sq/cqs and the MSIX-related structures are allocated big enough to handle the limits, to completely avoid the complicated reallocation. A helper function (nvme_update_msixcap_ts) updates the corresponding capability register, to signal configuration changes. Signed-off-by: Łukasz Gieryk <lukasz.gieryk@linux.intel.com> Reviewed-by: Klaus Jensen <k.jensen@samsung.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2022-05-09 17:16:13 +03:00
uint32_t conf_msix_qsize;
uint32_t conf_ioqpairs;
uint64_t dbbuf_dbs;
uint64_t dbbuf_eis;
bool dbbuf_enabled;
struct {
MemoryRegion mem;
uint8_t *buf;
bool cmse;
hwaddr cba;
} cmb;
struct {
HostMemoryBackend *dev;
bool cmse;
hwaddr cba;
} pmr;
uint8_t aer_mask;
NvmeRequest **aer_reqs;
QTAILQ_HEAD(, NvmeAsyncEvent) aer_queue;
int aer_queued;
uint32_t dmrsl;
/* Namespace ID is started with 1 so bitmap should be 1-based */
#define NVME_CHANGED_NSID_SIZE (NVME_MAX_NAMESPACES + 1)
DECLARE_BITMAP(changed_nsids, NVME_CHANGED_NSID_SIZE);
NvmeSubsystem *subsys;
NvmeNamespace namespace;
NvmeNamespace *namespaces[NVME_MAX_NAMESPACES + 1];
NvmeSQueue **sq;
NvmeCQueue **cq;
NvmeSQueue admin_sq;
NvmeCQueue admin_cq;
NvmeIdCtrl id_ctrl;
struct {
struct {
uint16_t temp_thresh_hi;
uint16_t temp_thresh_low;
};
uint32_t async_config;
NvmeHostBehaviorSupport hbs;
} features;
NvmePriCtrlCap pri_ctrl_cap;
uint32_t nr_sec_ctrls;
NvmeSecCtrlEntry *sec_ctrl_list;
struct {
uint16_t vqrfap;
uint16_t virfap;
} next_pri_ctrl_cap; /* These override pri_ctrl_cap after reset */
uint32_t dn; /* Disable Normal */
NvmeAtomic atomic;
} NvmeCtrl;
typedef enum NvmeResetType {
NVME_RESET_FUNCTION = 0,
NVME_RESET_CONTROLLER = 1,
} NvmeResetType;
static inline NvmeNamespace *nvme_ns(NvmeCtrl *n, uint32_t nsid)
{
if (!nsid || nsid > NVME_MAX_NAMESPACES) {
return NULL;
}
return n->namespaces[nsid];
}
static inline NvmeCQueue *nvme_cq(NvmeRequest *req)
{
NvmeSQueue *sq = req->sq;
NvmeCtrl *n = sq->ctrl;
return n->cq[sq->cqid];
}
static inline NvmeCtrl *nvme_ctrl(NvmeRequest *req)
{
NvmeSQueue *sq = req->sq;
return sq->ctrl;
}
static inline uint16_t nvme_cid(NvmeRequest *req)
{
if (!req) {
return 0xffff;
}
return le16_to_cpu(req->cqe.cid);
}
static inline NvmeSecCtrlEntry *nvme_sctrl(NvmeCtrl *n)
{
PCIDevice *pci_dev = &n->parent_obj;
NvmeCtrl *pf = NVME(pcie_sriov_get_pf(pci_dev));
if (pci_is_vf(pci_dev)) {
return &pf->sec_ctrl_list[pcie_sriov_vf_number(pci_dev)];
}
return NULL;
}
static inline NvmeSecCtrlEntry *nvme_sctrl_for_cntlid(NvmeCtrl *n,
uint16_t cntlid)
{
NvmeSecCtrlEntry *list = n->sec_ctrl_list;
uint8_t i;
for (i = 0; i < n->nr_sec_ctrls; i++) {
if (le16_to_cpu(list[i].scid) == cntlid) {
return &list[i];
}
}
return NULL;
}
hw/block/nvme: fix handling of private namespaces Prior to this patch, if a private nvme-ns device (that is, a namespace that is not linked to a subsystem) is wired up to an nvme-subsys linked nvme controller device, the device fails to verify that the namespace id is unique within the subsystem. NVM Express v1.4b, Section 6.1.6 ("NSID and Namespace Usage") states that because the device supports Namespace Management, "NSIDs *shall* be unique within the NVM subsystem". Additionally, prior to this patch, private namespaces are not known to the subsystem and the namespace is considered exclusive to the controller with which it is initially wired up to. However, this is not the definition of a private namespace; per Section 1.6.33 ("private namespace"), a private namespace is just a namespace that does not support multipath I/O or namespace sharing, which means "that it is only able to be attached to one controller at a time". Fix this by always allocating namespaces in the subsystem (if one is linked to the controller), regardless of the shared/private status of the namespace. Whether or not the namespace is shareable is controlled by a new `shared` nvme-ns parameter. Finally, this fix allows the nvme-ns `subsys` parameter to be removed, since the `shared` parameter now serves the purpose of attaching the namespace to all controllers in the subsystem upon device realization. It is invalid to have an nvme-ns namespace device with a linked subsystem without the parent nvme controller device also being linked to one and since the nvme-ns devices will unconditionally be "attached" (in QEMU terms that is) to an nvme controller device through an NvmeBus, the nvme-ns namespace device can always get a reference to the subsystem of the controller it is explicitly (using 'bus=' parameter) or implicitly attaching to. Fixes: e570768566b3 ("hw/block/nvme: support for shared namespace in subsystem") Cc: Minwoo Im <minwoo.im.dev@gmail.com> Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Reviewed-by: Gollu Appalanaidu <anaidu.gollu@samsung.com> Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2021-03-23 14:43:24 +03:00
void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns);
uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req);
uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req);
void nvme_rw_complete_cb(void *opaque, int ret);
uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd);
#endif /* HW_NVME_NVME_H */