qemu/hw/riscv/virt.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1837 lines
70 KiB
C
Raw Normal View History

/*
* QEMU RISC-V VirtIO Board
*
* Copyright (c) 2017 SiFive, Inc.
*
* RISC-V machine with 16550a UART and VirtIO MMIO
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qemu/guest-random.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "hw/qdev-properties.h"
#include "hw/char/serial.h"
#include "target/riscv/cpu.h"
#include "hw/core/sysbus-fdt.h"
#include "target/riscv/pmu.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/virt.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/numa.h"
#include "kvm/kvm_riscv.h"
#include "hw/firmware/smbios.h"
#include "hw/intc/riscv_aclint.h"
#include "hw/intc/riscv_aplic.h"
#include "hw/intc/sifive_plic.h"
#include "hw/misc/sifive_test.h"
#include "hw/platform-bus.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/tcg.h"
#include "sysemu/kvm.h"
#include "sysemu/tpm.h"
#include "sysemu/qtest.h"
#include "hw/pci/pci.h"
#include "hw/pci-host/gpex.h"
#include "hw/display/ramfb.h"
#include "hw/acpi/aml-build.h"
#include "qapi/qapi-visit-common.h"
#include "hw/virtio/virtio-iommu.h"
/* KVM AIA only supports APLIC MSI. APLIC Wired is always emulated by QEMU. */
static bool virt_use_kvm_aia(RISCVVirtState *s)
{
return kvm_irqchip_in_kernel() && s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC;
}
static bool virt_aclint_allowed(void)
{
return tcg_enabled() || qtest_enabled();
}
static const MemMapEntry virt_memmap[] = {
[VIRT_DEBUG] = { 0x0, 0x100 },
[VIRT_MROM] = { 0x1000, 0xf000 },
[VIRT_TEST] = { 0x100000, 0x1000 },
[VIRT_RTC] = { 0x101000, 0x1000 },
[VIRT_CLINT] = { 0x2000000, 0x10000 },
[VIRT_ACLINT_SSWI] = { 0x2F00000, 0x4000 },
[VIRT_PCIE_PIO] = { 0x3000000, 0x10000 },
[VIRT_PLATFORM_BUS] = { 0x4000000, 0x2000000 },
[VIRT_PLIC] = { 0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
[VIRT_APLIC_M] = { 0xc000000, APLIC_SIZE(VIRT_CPUS_MAX) },
[VIRT_APLIC_S] = { 0xd000000, APLIC_SIZE(VIRT_CPUS_MAX) },
[VIRT_UART0] = { 0x10000000, 0x100 },
[VIRT_VIRTIO] = { 0x10001000, 0x1000 },
[VIRT_FW_CFG] = { 0x10100000, 0x18 },
[VIRT_FLASH] = { 0x20000000, 0x4000000 },
[VIRT_IMSIC_M] = { 0x24000000, VIRT_IMSIC_MAX_SIZE },
[VIRT_IMSIC_S] = { 0x28000000, VIRT_IMSIC_MAX_SIZE },
[VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 },
[VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 },
[VIRT_DRAM] = { 0x80000000, 0x0 },
};
/* PCIe high mmio is fixed for RV32 */
#define VIRT32_HIGH_PCIE_MMIO_BASE 0x300000000ULL
#define VIRT32_HIGH_PCIE_MMIO_SIZE (4 * GiB)
/* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
#define VIRT64_HIGH_PCIE_MMIO_SIZE (16 * GiB)
static MemMapEntry virt_high_pcie_memmap;
#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
const char *name,
const char *alias_prop_name)
{
/*
* Create a single flash device. We use the same parameters as
* the flash devices on the ARM virt board.
*/
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 18:29:22 +03:00
object_property_add_child(OBJECT(s), name, OBJECT(dev));
object_property_add_alias(OBJECT(s), alias_prop_name,
qom: Drop parameter @errp of object_property_add() & friends The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
2020-05-05 18:29:22 +03:00
OBJECT(dev), "drive");
return PFLASH_CFI01(dev);
}
static void virt_flash_create(RISCVVirtState *s)
{
s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
}
static void virt_flash_map1(PFlashCFI01 *flash,
hwaddr base, hwaddr size,
MemoryRegion *sysmem)
{
DeviceState *dev = DEVICE(flash);
assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(sysmem, base,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
0));
}
static void virt_flash_map(RISCVVirtState *s,
MemoryRegion *sysmem)
{
hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
virt_flash_map1(s->flash[0], flashbase, flashsize,
sysmem);
virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
sysmem);
}
static void create_pcie_irq_map(RISCVVirtState *s, void *fdt, char *nodename,
uint32_t irqchip_phandle)
{
int pin, dev;
uint32_t irq_map_stride = 0;
uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS *
FDT_MAX_INT_MAP_WIDTH] = {};
uint32_t *irq_map = full_irq_map;
/* This code creates a standard swizzle of interrupts such that
* each device's first interrupt is based on it's PCI_SLOT number.
* (See pci_swizzle_map_irq_fn())
*
* We only need one entry per interrupt in the table (not one per
* possible slot) seeing the interrupt-map-mask will allow the table
* to wrap to any number of devices.
*/
for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
int devfn = dev * 0x8;
for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
int i = 0;
/* Fill PCI address cells */
irq_map[i] = cpu_to_be32(devfn << 8);
i += FDT_PCI_ADDR_CELLS;
/* Fill PCI Interrupt cells */
irq_map[i] = cpu_to_be32(pin + 1);
i += FDT_PCI_INT_CELLS;
/* Fill interrupt controller phandle and cells */
irq_map[i++] = cpu_to_be32(irqchip_phandle);
irq_map[i++] = cpu_to_be32(irq_nr);
if (s->aia_type != VIRT_AIA_TYPE_NONE) {
irq_map[i++] = cpu_to_be32(0x4);
}
if (!irq_map_stride) {
irq_map_stride = i;
}
irq_map += irq_map_stride;
}
}
qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map,
GPEX_NUM_IRQS * GPEX_NUM_IRQS *
irq_map_stride * sizeof(uint32_t));
qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
0x1800, 0, 0, 0x7);
}
static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
char *clust_name, uint32_t *phandle,
uint32_t *intc_phandles)
{
int cpu;
uint32_t cpu_phandle;
MachineState *ms = MACHINE(s);
bool is_32_bit = riscv_is_32bit(&s->soc[0]);
uint8_t satp_mode_max;
for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
RISCVCPU *cpu_ptr = &s->soc[socket].harts[cpu];
g_autofree char *cpu_name = NULL;
g_autofree char *core_name = NULL;
g_autofree char *intc_name = NULL;
g_autofree char *sv_name = NULL;
cpu_phandle = (*phandle)++;
cpu_name = g_strdup_printf("/cpus/cpu@%d",
s->soc[socket].hartid_base + cpu);
qemu_fdt_add_subnode(ms->fdt, cpu_name);
hw/riscv/virt.c: skip 'mmu-type' FDT if satp mode not set The absence of a satp mode in riscv_host_cpu_init() is causing the following error: $ ./qemu/build/qemu-system-riscv64 -machine virt,accel=kvm \ -m 2G -smp 1 -nographic -snapshot \ -kernel ./guest_imgs/Image \ -initrd ./guest_imgs/rootfs_kvm_riscv64.img \ -append "earlycon=sbi root=/dev/ram rw" \ -cpu host ** ERROR:../target/riscv/cpu.c:320:satp_mode_str: code should not be reached Bail out! ERROR:../target/riscv/cpu.c:320:satp_mode_str: code should not be reached Aborted The error is triggered from create_fdt_socket_cpus() in hw/riscv/virt.c. It's trying to get satp_mode_str for a NULL cpu->cfg.satp_mode.map. For this KVM cpu we would need to inherit the satp supported modes from the RISC-V host. At this moment this is not possible because the KVM driver does not support it. And even when it does we can't just let this broken for every other older kernel. Since mmu-type is not a required node, according to [1], skip the 'mmu-type' FDT node if there's no satp_mode set. We'll revisit this logic when we can get satp information from KVM. [1] https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/riscv/cpus.yaml Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Message-Id: <20230706101738.460804-3-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-06 13:17:20 +03:00
if (cpu_ptr->cfg.satp_mode.supported != 0) {
satp_mode_max = satp_mode_max_from_map(cpu_ptr->cfg.satp_mode.map);
sv_name = g_strdup_printf("riscv,%s",
satp_mode_str(satp_mode_max, is_32_bit));
qemu_fdt_setprop_string(ms->fdt, cpu_name, "mmu-type", sv_name);
}
target/riscv: support new isa extension detection devicetree properties A few months ago I submitted a patch to various lists, deprecating "riscv,isa" with a lengthy commit message [0] that is now commit aeb71e42caae ("dt-bindings: riscv: deprecate riscv,isa") in the Linux kernel tree. Primarily, the goal was to replace "riscv,isa" with a new set of properties that allowed for strictly defining the meaning of various extensions, where "riscv,isa" was tied to whatever definitions inflicted upon us by the ISA manual, which have seen some variance over time. Two new properties were introduced: "riscv,isa-base" and "riscv,isa-extensions". The former is a simple string to communicate the base ISA implemented by a hart and the latter an array of strings used to communicate the set of ISA extensions supported, per the definitions of each substring in extensions.yaml [1]. A beneficial side effect was also the ability to define vendor extensions in a more "official" way, as the ISA manual and other RVI specifications only covered the format for vendor extensions in the ISA string, but not the meaning of vendor extensions, for obvious reasons. Add support for setting these two new properties in the devicetrees for the various devicetree platforms supported by QEMU for RISC-V. The Linux kernel already supports parsing ISA extensions from these new properties, and documenting them in the dt-binding is a requirement for new extension detection being added to the kernel. A side effect of the implementation is that the meaning for elements in "riscv,isa" and in "riscv,isa-extensions" are now tied together as they are constructed from the same source. The same applies to the ISA string provided in ACPI tables, but there does not appear to be any strict definitions of meanings in ACPI land either. Link: https://lore.kernel.org/qemu-riscv/20230702-eats-scorebook-c951f170d29f@spud/ [0] Link: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/devicetree/bindings/riscv/extensions.yaml [1] Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Signed-off-by: Conor Dooley <conor.dooley@microchip.com> Reviewed-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Message-ID: <20240124-unvarying-foothold-9dde2aaf95d4@spud> [ Changes by AF: - Rebase on recent changes ] Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2024-01-24 15:55:50 +03:00
riscv_isa_write_fdt(cpu_ptr, ms->fdt, cpu_name);
if (cpu_ptr->cfg.ext_zicbom) {
qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cbom-block-size",
cpu_ptr->cfg.cbom_blocksize);
}
if (cpu_ptr->cfg.ext_zicboz) {
qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cboz-block-size",
cpu_ptr->cfg.cboz_blocksize);
}
if (cpu_ptr->cfg.ext_zicbop) {
qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cbop-block-size",
cpu_ptr->cfg.cbop_blocksize);
}
qemu_fdt_setprop_string(ms->fdt, cpu_name, "compatible", "riscv");
qemu_fdt_setprop_string(ms->fdt, cpu_name, "status", "okay");
qemu_fdt_setprop_cell(ms->fdt, cpu_name, "reg",
s->soc[socket].hartid_base + cpu);
qemu_fdt_setprop_string(ms->fdt, cpu_name, "device_type", "cpu");
riscv_socket_fdt_write_id(ms, cpu_name, socket);
qemu_fdt_setprop_cell(ms->fdt, cpu_name, "phandle", cpu_phandle);
intc_phandles[cpu] = (*phandle)++;
intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
qemu_fdt_add_subnode(ms->fdt, intc_name);
qemu_fdt_setprop_cell(ms->fdt, intc_name, "phandle",
intc_phandles[cpu]);
qemu_fdt_setprop_string(ms->fdt, intc_name, "compatible",
"riscv,cpu-intc");
qemu_fdt_setprop(ms->fdt, intc_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, intc_name, "#interrupt-cells", 1);
core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
qemu_fdt_add_subnode(ms->fdt, core_name);
qemu_fdt_setprop_cell(ms->fdt, core_name, "cpu", cpu_phandle);
}
}
static void create_fdt_socket_memory(RISCVVirtState *s,
const MemMapEntry *memmap, int socket)
{
g_autofree char *mem_name = NULL;
uint64_t addr, size;
MachineState *ms = MACHINE(s);
addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(ms, socket);
size = riscv_socket_mem_size(ms, socket);
mem_name = g_strdup_printf("/memory@%lx", (long)addr);
qemu_fdt_add_subnode(ms->fdt, mem_name);
qemu_fdt_setprop_cells(ms->fdt, mem_name, "reg",
addr >> 32, addr, size >> 32, size);
qemu_fdt_setprop_string(ms->fdt, mem_name, "device_type", "memory");
riscv_socket_fdt_write_id(ms, mem_name, socket);
}
static void create_fdt_socket_clint(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *intc_phandles)
{
int cpu;
g_autofree char *clint_name = NULL;
g_autofree uint32_t *clint_cells = NULL;
unsigned long clint_addr;
MachineState *ms = MACHINE(s);
static const char * const clint_compat[2] = {
"sifive,clint0", "riscv,clint0"
};
clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
}
clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
qemu_fdt_add_subnode(ms->fdt, clint_name);
qemu_fdt_setprop_string_array(ms->fdt, clint_name, "compatible",
(char **)&clint_compat,
ARRAY_SIZE(clint_compat));
qemu_fdt_setprop_cells(ms->fdt, clint_name, "reg",
0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
qemu_fdt_setprop(ms->fdt, clint_name, "interrupts-extended",
clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
riscv_socket_fdt_write_id(ms, clint_name, socket);
}
static void create_fdt_socket_aclint(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *intc_phandles)
{
int cpu;
char *name;
unsigned long addr, size;
uint32_t aclint_cells_size;
g_autofree uint32_t *aclint_mswi_cells = NULL;
g_autofree uint32_t *aclint_sswi_cells = NULL;
g_autofree uint32_t *aclint_mtimer_cells = NULL;
MachineState *ms = MACHINE(s);
aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
}
aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
name = g_strdup_printf("/soc/mswi@%lx", addr);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible",
"riscv,aclint-mswi");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
aclint_mswi_cells, aclint_cells_size);
qemu_fdt_setprop(ms->fdt, name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells", 0);
riscv_socket_fdt_write_id(ms, name, socket);
g_free(name);
}
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
addr = memmap[VIRT_CLINT].base +
(RISCV_ACLINT_DEFAULT_MTIMER_SIZE * socket);
size = RISCV_ACLINT_DEFAULT_MTIMER_SIZE;
} else {
addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
(memmap[VIRT_CLINT].size * socket);
size = memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE;
}
name = g_strdup_printf("/soc/mtimer@%lx", addr);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible",
"riscv,aclint-mtimer");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
0x0, size - RISCV_ACLINT_DEFAULT_MTIME,
0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
0x0, RISCV_ACLINT_DEFAULT_MTIME);
qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
aclint_mtimer_cells, aclint_cells_size);
riscv_socket_fdt_write_id(ms, name, socket);
g_free(name);
if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
addr = memmap[VIRT_ACLINT_SSWI].base +
(memmap[VIRT_ACLINT_SSWI].size * socket);
name = g_strdup_printf("/soc/sswi@%lx", addr);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible",
"riscv,aclint-sswi");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
aclint_sswi_cells, aclint_cells_size);
qemu_fdt_setprop(ms->fdt, name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells", 0);
riscv_socket_fdt_write_id(ms, name, socket);
g_free(name);
}
}
static void create_fdt_socket_plic(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *phandle, uint32_t *intc_phandles,
uint32_t *plic_phandles)
{
int cpu;
g_autofree char *plic_name = NULL;
g_autofree uint32_t *plic_cells;
unsigned long plic_addr;
MachineState *ms = MACHINE(s);
static const char * const plic_compat[2] = {
"sifive,plic-1.0.0", "riscv,plic0"
};
plic_phandles[socket] = (*phandle)++;
plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
qemu_fdt_add_subnode(ms->fdt, plic_name);
qemu_fdt_setprop_cell(ms->fdt, plic_name,
"#interrupt-cells", FDT_PLIC_INT_CELLS);
qemu_fdt_setprop_cell(ms->fdt, plic_name,
"#address-cells", FDT_PLIC_ADDR_CELLS);
qemu_fdt_setprop_string_array(ms->fdt, plic_name, "compatible",
(char **)&plic_compat,
ARRAY_SIZE(plic_compat));
qemu_fdt_setprop(ms->fdt, plic_name, "interrupt-controller", NULL, 0);
if (kvm_enabled()) {
plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
plic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
}
qemu_fdt_setprop(ms->fdt, plic_name, "interrupts-extended",
plic_cells,
s->soc[socket].num_harts * sizeof(uint32_t) * 2);
} else {
plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
}
qemu_fdt_setprop(ms->fdt, plic_name, "interrupts-extended",
plic_cells,
s->soc[socket].num_harts * sizeof(uint32_t) * 4);
}
qemu_fdt_setprop_cells(ms->fdt, plic_name, "reg",
0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
qemu_fdt_setprop_cell(ms->fdt, plic_name, "riscv,ndev",
VIRT_IRQCHIP_NUM_SOURCES - 1);
riscv_socket_fdt_write_id(ms, plic_name, socket);
qemu_fdt_setprop_cell(ms->fdt, plic_name, "phandle",
plic_phandles[socket]);
if (!socket) {
platform_bus_add_all_fdt_nodes(ms->fdt, plic_name,
memmap[VIRT_PLATFORM_BUS].base,
memmap[VIRT_PLATFORM_BUS].size,
VIRT_PLATFORM_BUS_IRQ);
}
}
uint32_t imsic_num_bits(uint32_t count)
{
uint32_t ret = 0;
while (BIT(ret) < count) {
ret++;
}
return ret;
}
static void create_fdt_one_imsic(RISCVVirtState *s, hwaddr base_addr,
uint32_t *intc_phandles, uint32_t msi_phandle,
bool m_mode, uint32_t imsic_guest_bits)
{
int cpu, socket;
g_autofree char *imsic_name = NULL;
MachineState *ms = MACHINE(s);
int socket_count = riscv_socket_count(ms);
uint32_t imsic_max_hart_per_socket, imsic_addr, imsic_size;
g_autofree uint32_t *imsic_cells = NULL;
g_autofree uint32_t *imsic_regs = NULL;
static const char * const imsic_compat[2] = {
"qemu,imsics", "riscv,imsics"
};
imsic_cells = g_new0(uint32_t, ms->smp.cpus * 2);
imsic_regs = g_new0(uint32_t, socket_count * 4);
for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
imsic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
imsic_cells[cpu * 2 + 1] = cpu_to_be32(m_mode ? IRQ_M_EXT : IRQ_S_EXT);
}
imsic_max_hart_per_socket = 0;
for (socket = 0; socket < socket_count; socket++) {
imsic_addr = base_addr + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
imsic_size = IMSIC_HART_SIZE(imsic_guest_bits) *
s->soc[socket].num_harts;
imsic_regs[socket * 4 + 0] = 0;
imsic_regs[socket * 4 + 1] = cpu_to_be32(imsic_addr);
imsic_regs[socket * 4 + 2] = 0;
imsic_regs[socket * 4 + 3] = cpu_to_be32(imsic_size);
if (imsic_max_hart_per_socket < s->soc[socket].num_harts) {
imsic_max_hart_per_socket = s->soc[socket].num_harts;
}
}
imsic_name = g_strdup_printf("/soc/interrupt-controller@%lx",
(unsigned long)base_addr);
qemu_fdt_add_subnode(ms->fdt, imsic_name);
qemu_fdt_setprop_string_array(ms->fdt, imsic_name, "compatible",
(char **)&imsic_compat,
ARRAY_SIZE(imsic_compat));
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "#interrupt-cells",
FDT_IMSIC_INT_CELLS);
qemu_fdt_setprop(ms->fdt, imsic_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop(ms->fdt, imsic_name, "msi-controller", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "#msi-cells", 0);
qemu_fdt_setprop(ms->fdt, imsic_name, "interrupts-extended",
imsic_cells, ms->smp.cpus * sizeof(uint32_t) * 2);
qemu_fdt_setprop(ms->fdt, imsic_name, "reg", imsic_regs,
socket_count * sizeof(uint32_t) * 4);
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,num-ids",
VIRT_IRQCHIP_NUM_MSIS);
if (imsic_guest_bits) {
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,guest-index-bits",
imsic_guest_bits);
}
if (socket_count > 1) {
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,hart-index-bits",
imsic_num_bits(imsic_max_hart_per_socket));
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,group-index-bits",
imsic_num_bits(socket_count));
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,group-index-shift",
IMSIC_MMIO_GROUP_MIN_SHIFT);
}
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "phandle", msi_phandle);
}
static void create_fdt_imsic(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t *phandle, uint32_t *intc_phandles,
uint32_t *msi_m_phandle, uint32_t *msi_s_phandle)
{
*msi_m_phandle = (*phandle)++;
*msi_s_phandle = (*phandle)++;
if (!kvm_enabled()) {
/* M-level IMSIC node */
create_fdt_one_imsic(s, memmap[VIRT_IMSIC_M].base, intc_phandles,
*msi_m_phandle, true, 0);
}
/* S-level IMSIC node */
create_fdt_one_imsic(s, memmap[VIRT_IMSIC_S].base, intc_phandles,
*msi_s_phandle, false,
imsic_num_bits(s->aia_guests + 1));
}
/* Caller must free string after use */
static char *fdt_get_aplic_nodename(unsigned long aplic_addr)
{
return g_strdup_printf("/soc/interrupt-controller@%lx", aplic_addr);
}
static void create_fdt_one_aplic(RISCVVirtState *s, int socket,
unsigned long aplic_addr, uint32_t aplic_size,
uint32_t msi_phandle,
uint32_t *intc_phandles,
uint32_t aplic_phandle,
uint32_t aplic_child_phandle,
bool m_mode, int num_harts)
{
int cpu;
g_autofree char *aplic_name = fdt_get_aplic_nodename(aplic_addr);
g_autofree uint32_t *aplic_cells = g_new0(uint32_t, num_harts * 2);
MachineState *ms = MACHINE(s);
static const char * const aplic_compat[2] = {
"qemu,aplic", "riscv,aplic"
};
for (cpu = 0; cpu < num_harts; cpu++) {
aplic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aplic_cells[cpu * 2 + 1] = cpu_to_be32(m_mode ? IRQ_M_EXT : IRQ_S_EXT);
}
qemu_fdt_add_subnode(ms->fdt, aplic_name);
qemu_fdt_setprop_string_array(ms->fdt, aplic_name, "compatible",
(char **)&aplic_compat,
ARRAY_SIZE(aplic_compat));
qemu_fdt_setprop_cell(ms->fdt, aplic_name, "#address-cells",
FDT_APLIC_ADDR_CELLS);
qemu_fdt_setprop_cell(ms->fdt, aplic_name,
"#interrupt-cells", FDT_APLIC_INT_CELLS);
qemu_fdt_setprop(ms->fdt, aplic_name, "interrupt-controller", NULL, 0);
if (s->aia_type == VIRT_AIA_TYPE_APLIC) {
qemu_fdt_setprop(ms->fdt, aplic_name, "interrupts-extended",
aplic_cells, num_harts * sizeof(uint32_t) * 2);
} else {
qemu_fdt_setprop_cell(ms->fdt, aplic_name, "msi-parent", msi_phandle);
}
qemu_fdt_setprop_cells(ms->fdt, aplic_name, "reg",
0x0, aplic_addr, 0x0, aplic_size);
qemu_fdt_setprop_cell(ms->fdt, aplic_name, "riscv,num-sources",
VIRT_IRQCHIP_NUM_SOURCES);
if (aplic_child_phandle) {
qemu_fdt_setprop_cell(ms->fdt, aplic_name, "riscv,children",
aplic_child_phandle);
qemu_fdt_setprop_cells(ms->fdt, aplic_name, "riscv,delegation",
aplic_child_phandle, 0x1,
VIRT_IRQCHIP_NUM_SOURCES);
}
riscv_socket_fdt_write_id(ms, aplic_name, socket);
qemu_fdt_setprop_cell(ms->fdt, aplic_name, "phandle", aplic_phandle);
}
static void create_fdt_socket_aplic(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t msi_m_phandle,
uint32_t msi_s_phandle,
uint32_t *phandle,
uint32_t *intc_phandles,
uint32_t *aplic_phandles,
int num_harts)
{
unsigned long aplic_addr;
MachineState *ms = MACHINE(s);
uint32_t aplic_m_phandle, aplic_s_phandle;
aplic_m_phandle = (*phandle)++;
aplic_s_phandle = (*phandle)++;
if (!kvm_enabled()) {
/* M-level APLIC node */
aplic_addr = memmap[VIRT_APLIC_M].base +
(memmap[VIRT_APLIC_M].size * socket);
create_fdt_one_aplic(s, socket, aplic_addr, memmap[VIRT_APLIC_M].size,
msi_m_phandle, intc_phandles,
aplic_m_phandle, aplic_s_phandle,
true, num_harts);
}
/* S-level APLIC node */
aplic_addr = memmap[VIRT_APLIC_S].base +
(memmap[VIRT_APLIC_S].size * socket);
create_fdt_one_aplic(s, socket, aplic_addr, memmap[VIRT_APLIC_S].size,
msi_s_phandle, intc_phandles,
aplic_s_phandle, 0,
false, num_harts);
if (!socket) {
g_autofree char *aplic_name = fdt_get_aplic_nodename(aplic_addr);
platform_bus_add_all_fdt_nodes(ms->fdt, aplic_name,
memmap[VIRT_PLATFORM_BUS].base,
memmap[VIRT_PLATFORM_BUS].size,
VIRT_PLATFORM_BUS_IRQ);
}
aplic_phandles[socket] = aplic_s_phandle;
}
static void create_fdt_pmu(RISCVVirtState *s)
{
g_autofree char *pmu_name = g_strdup_printf("/pmu");
MachineState *ms = MACHINE(s);
RISCVCPU hart = s->soc[0].harts[0];
qemu_fdt_add_subnode(ms->fdt, pmu_name);
qemu_fdt_setprop_string(ms->fdt, pmu_name, "compatible", "riscv,pmu");
riscv_pmu_generate_fdt_node(ms->fdt, hart.pmu_avail_ctrs, pmu_name);
}
static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t *phandle,
uint32_t *irq_mmio_phandle,
uint32_t *irq_pcie_phandle,
uint32_t *irq_virtio_phandle,
uint32_t *msi_pcie_phandle)
{
int socket, phandle_pos;
MachineState *ms = MACHINE(s);
uint32_t msi_m_phandle = 0, msi_s_phandle = 0;
uint32_t xplic_phandles[MAX_NODES];
g_autofree uint32_t *intc_phandles = NULL;
int socket_count = riscv_socket_count(ms);
qemu_fdt_add_subnode(ms->fdt, "/cpus");
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "timebase-frequency",
kvm_enabled() ?
kvm_riscv_get_timebase_frequency(first_cpu) :
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", 0x1);
qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
intc_phandles = g_new0(uint32_t, ms->smp.cpus);
phandle_pos = ms->smp.cpus;
for (socket = (socket_count - 1); socket >= 0; socket--) {
g_autofree char *clust_name = NULL;
phandle_pos -= s->soc[socket].num_harts;
clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
qemu_fdt_add_subnode(ms->fdt, clust_name);
create_fdt_socket_cpus(s, socket, clust_name, phandle,
&intc_phandles[phandle_pos]);
create_fdt_socket_memory(s, memmap, socket);
if (virt_aclint_allowed() && s->have_aclint) {
create_fdt_socket_aclint(s, memmap, socket,
&intc_phandles[phandle_pos]);
} else if (tcg_enabled()) {
create_fdt_socket_clint(s, memmap, socket,
&intc_phandles[phandle_pos]);
}
}
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
create_fdt_imsic(s, memmap, phandle, intc_phandles,
&msi_m_phandle, &msi_s_phandle);
*msi_pcie_phandle = msi_s_phandle;
}
/* KVM AIA only has one APLIC instance */
2023-08-30 16:35:02 +03:00
if (kvm_enabled() && virt_use_kvm_aia(s)) {
create_fdt_socket_aplic(s, memmap, 0,
msi_m_phandle, msi_s_phandle, phandle,
&intc_phandles[0], xplic_phandles,
ms->smp.cpus);
} else {
phandle_pos = ms->smp.cpus;
for (socket = (socket_count - 1); socket >= 0; socket--) {
phandle_pos -= s->soc[socket].num_harts;
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
create_fdt_socket_plic(s, memmap, socket, phandle,
&intc_phandles[phandle_pos],
xplic_phandles);
} else {
create_fdt_socket_aplic(s, memmap, socket,
msi_m_phandle, msi_s_phandle, phandle,
&intc_phandles[phandle_pos],
xplic_phandles,
s->soc[socket].num_harts);
}
}
}
2023-08-30 16:35:02 +03:00
if (kvm_enabled() && virt_use_kvm_aia(s)) {
*irq_mmio_phandle = xplic_phandles[0];
*irq_virtio_phandle = xplic_phandles[0];
*irq_pcie_phandle = xplic_phandles[0];
} else {
for (socket = 0; socket < socket_count; socket++) {
if (socket == 0) {
*irq_mmio_phandle = xplic_phandles[socket];
*irq_virtio_phandle = xplic_phandles[socket];
*irq_pcie_phandle = xplic_phandles[socket];
}
if (socket == 1) {
*irq_virtio_phandle = xplic_phandles[socket];
*irq_pcie_phandle = xplic_phandles[socket];
}
if (socket == 2) {
*irq_pcie_phandle = xplic_phandles[socket];
}
}
}
riscv_socket_fdt_write_distance_matrix(ms);
}
static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_virtio_phandle)
{
int i;
MachineState *ms = MACHINE(s);
for (i = 0; i < VIRTIO_COUNT; i++) {
g_autofree char *name = g_strdup_printf("/soc/virtio_mmio@%lx",
(long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible", "virtio,mmio");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
0x0, memmap[VIRT_VIRTIO].size);
qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent",
irq_virtio_phandle);
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
qemu_fdt_setprop_cell(ms->fdt, name, "interrupts",
VIRTIO_IRQ + i);
} else {
qemu_fdt_setprop_cells(ms->fdt, name, "interrupts",
VIRTIO_IRQ + i, 0x4);
}
}
}
static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_pcie_phandle,
uint32_t msi_pcie_phandle)
{
g_autofree char *name = NULL;
MachineState *ms = MACHINE(s);
name = g_strdup_printf("/soc/pci@%lx",
(long) memmap[VIRT_PCIE_ECAM].base);
qemu_fdt_setprop_cell(ms->fdt, name, "#address-cells",
FDT_PCI_ADDR_CELLS);
qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells",
FDT_PCI_INT_CELLS);
qemu_fdt_setprop_cell(ms->fdt, name, "#size-cells", 0x2);
qemu_fdt_setprop_string(ms->fdt, name, "compatible",
"pci-host-ecam-generic");
qemu_fdt_setprop_string(ms->fdt, name, "device_type", "pci");
qemu_fdt_setprop_cell(ms->fdt, name, "linux,pci-domain", 0);
qemu_fdt_setprop_cells(ms->fdt, name, "bus-range", 0,
memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
qemu_fdt_setprop(ms->fdt, name, "dma-coherent", NULL, 0);
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
qemu_fdt_setprop_cell(ms->fdt, name, "msi-parent", msi_pcie_phandle);
}
qemu_fdt_setprop_cells(ms->fdt, name, "reg", 0,
memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
qemu_fdt_setprop_sized_cells(ms->fdt, name, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
1, FDT_PCI_RANGE_MMIO,
2, memmap[VIRT_PCIE_MMIO].base,
2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
1, FDT_PCI_RANGE_MMIO_64BIT,
2, virt_high_pcie_memmap.base,
2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
create_pcie_irq_map(s, ms->fdt, name, irq_pcie_phandle);
}
static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t *phandle)
{
char *name;
uint32_t test_phandle;
MachineState *ms = MACHINE(s);
test_phandle = (*phandle)++;
name = g_strdup_printf("/soc/test@%lx",
(long)memmap[VIRT_TEST].base);
qemu_fdt_add_subnode(ms->fdt, name);
{
static const char * const compat[3] = {
"sifive,test1", "sifive,test0", "syscon"
};
qemu_fdt_setprop_string_array(ms->fdt, name, "compatible",
(char **)&compat, ARRAY_SIZE(compat));
}
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
qemu_fdt_setprop_cell(ms->fdt, name, "phandle", test_phandle);
test_phandle = qemu_fdt_get_phandle(ms->fdt, name);
g_free(name);
2022-08-10 21:46:11 +03:00
name = g_strdup_printf("/reboot");
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible", "syscon-reboot");
qemu_fdt_setprop_cell(ms->fdt, name, "regmap", test_phandle);
qemu_fdt_setprop_cell(ms->fdt, name, "offset", 0x0);
qemu_fdt_setprop_cell(ms->fdt, name, "value", FINISHER_RESET);
g_free(name);
2022-08-10 21:46:11 +03:00
name = g_strdup_printf("/poweroff");
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible", "syscon-poweroff");
qemu_fdt_setprop_cell(ms->fdt, name, "regmap", test_phandle);
qemu_fdt_setprop_cell(ms->fdt, name, "offset", 0x0);
qemu_fdt_setprop_cell(ms->fdt, name, "value", FINISHER_PASS);
g_free(name);
}
static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_mmio_phandle)
{
g_autofree char *name = NULL;
MachineState *ms = MACHINE(s);
name = g_strdup_printf("/soc/serial@%lx", (long)memmap[VIRT_UART0].base);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible", "ns16550a");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, memmap[VIRT_UART0].base,
0x0, memmap[VIRT_UART0].size);
qemu_fdt_setprop_cell(ms->fdt, name, "clock-frequency", 3686400);
qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent", irq_mmio_phandle);
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
qemu_fdt_setprop_cell(ms->fdt, name, "interrupts", UART0_IRQ);
} else {
qemu_fdt_setprop_cells(ms->fdt, name, "interrupts", UART0_IRQ, 0x4);
}
qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", name);
}
static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_mmio_phandle)
{
g_autofree char *name = NULL;
MachineState *ms = MACHINE(s);
name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible",
"google,goldfish-rtc");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent",
irq_mmio_phandle);
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
qemu_fdt_setprop_cell(ms->fdt, name, "interrupts", RTC_IRQ);
} else {
qemu_fdt_setprop_cells(ms->fdt, name, "interrupts", RTC_IRQ, 0x4);
}
}
static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
{
MachineState *ms = MACHINE(s);
hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
g_autofree char *name = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(ms->fdt, name, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(ms->fdt, name, "bank-width", 4);
}
static void create_fdt_fw_cfg(RISCVVirtState *s, const MemMapEntry *memmap)
{
MachineState *ms = MACHINE(s);
hwaddr base = memmap[VIRT_FW_CFG].base;
hwaddr size = memmap[VIRT_FW_CFG].size;
g_autofree char *nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename,
"compatible", "qemu,fw-cfg-mmio");
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
}
static void create_fdt_virtio_iommu(RISCVVirtState *s, uint16_t bdf)
{
const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
void *fdt = MACHINE(s)->fdt;
uint32_t iommu_phandle;
g_autofree char *iommu_node = NULL;
g_autofree char *pci_node = NULL;
pci_node = g_strdup_printf("/soc/pci@%lx",
(long) virt_memmap[VIRT_PCIE_ECAM].base);
iommu_node = g_strdup_printf("%s/virtio_iommu@%x,%x", pci_node,
PCI_SLOT(bdf), PCI_FUNC(bdf));
iommu_phandle = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_add_subnode(fdt, iommu_node);
qemu_fdt_setprop(fdt, iommu_node, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(fdt, iommu_node, "reg",
1, bdf << 8, 1, 0, 1, 0,
1, 0, 1, 0);
qemu_fdt_setprop_cell(fdt, iommu_node, "#iommu-cells", 1);
qemu_fdt_setprop_cell(fdt, iommu_node, "phandle", iommu_phandle);
qemu_fdt_setprop_cells(fdt, pci_node, "iommu-map",
0, iommu_phandle, 0, bdf,
bdf + 1, iommu_phandle, bdf + 1, 0xffff - bdf);
}
hw/riscv/virt.c: do create_fdt() earlier, add finalize_fdt() Commit 49554856f0 fixed a problem, where TPM devices were not appearing in the FDT, by delaying the FDT creation up until virt_machine_done(). This create a side effect (see gitlab #1925) - devices that need access to the '/chosen' FDT node during realize() stopped working because, at that point, we don't have a FDT. This happens because our FDT creation is monolithic, but it doesn't need to be. We can add the needed FDT components for realize() time and, at the same time, do another FDT round where we account for dynamic sysbus devices. In other words, the problem fixed by 49554856f0 could also be fixed by postponing only create_fdt_sockets() and its dependencies, leaving everything else from create_fdt() to be done during init(). Split the FDT creation in two parts: - create_fdt(), now moved back to virt_machine_init(), will create FDT nodes that doesn't depend on additional (dynamic) devices from the sysbus; - a new finalize_fdt() step is added, where create_fdt_sockets() and friends is executed, accounting for the dynamic sysbus devices that were added during realize(). This will make both use cases happy: TPM devices are still working as intended, and devices such as 'guest-loader' have a FDT to work on during realize(). Fixes: 49554856f0 ("riscv: Generate devicetree only after machine initialization is complete") Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1925 Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20231110172559.73209-1-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-11-10 20:25:59 +03:00
static void finalize_fdt(RISCVVirtState *s)
{
uint32_t phandle = 1, irq_mmio_phandle = 1, msi_pcie_phandle = 1;
uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
hw/riscv/virt.c: do create_fdt() earlier, add finalize_fdt() Commit 49554856f0 fixed a problem, where TPM devices were not appearing in the FDT, by delaying the FDT creation up until virt_machine_done(). This create a side effect (see gitlab #1925) - devices that need access to the '/chosen' FDT node during realize() stopped working because, at that point, we don't have a FDT. This happens because our FDT creation is monolithic, but it doesn't need to be. We can add the needed FDT components for realize() time and, at the same time, do another FDT round where we account for dynamic sysbus devices. In other words, the problem fixed by 49554856f0 could also be fixed by postponing only create_fdt_sockets() and its dependencies, leaving everything else from create_fdt() to be done during init(). Split the FDT creation in two parts: - create_fdt(), now moved back to virt_machine_init(), will create FDT nodes that doesn't depend on additional (dynamic) devices from the sysbus; - a new finalize_fdt() step is added, where create_fdt_sockets() and friends is executed, accounting for the dynamic sysbus devices that were added during realize(). This will make both use cases happy: TPM devices are still working as intended, and devices such as 'guest-loader' have a FDT to work on during realize(). Fixes: 49554856f0 ("riscv: Generate devicetree only after machine initialization is complete") Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1925 Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20231110172559.73209-1-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-11-10 20:25:59 +03:00
create_fdt_sockets(s, virt_memmap, &phandle, &irq_mmio_phandle,
&irq_pcie_phandle, &irq_virtio_phandle,
&msi_pcie_phandle);
create_fdt_virtio(s, virt_memmap, irq_virtio_phandle);
create_fdt_pcie(s, virt_memmap, irq_pcie_phandle, msi_pcie_phandle);
create_fdt_reset(s, virt_memmap, &phandle);
create_fdt_uart(s, virt_memmap, irq_mmio_phandle);
create_fdt_rtc(s, virt_memmap, irq_mmio_phandle);
}
static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap)
{
MachineState *ms = MACHINE(s);
uint8_t rng_seed[32];
g_autofree char *name = NULL;
ms->fdt = create_device_tree(&s->fdt_size);
if (!ms->fdt) {
error_report("create_device_tree() failed");
exit(1);
}
qemu_fdt_setprop_string(ms->fdt, "/", "model", "riscv-virtio,qemu");
qemu_fdt_setprop_string(ms->fdt, "/", "compatible", "riscv-virtio");
qemu_fdt_setprop_cell(ms->fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_cell(ms->fdt, "/", "#address-cells", 0x2);
qemu_fdt_add_subnode(ms->fdt, "/soc");
qemu_fdt_setprop(ms->fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(ms->fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(ms->fdt, "/soc", "#size-cells", 0x2);
qemu_fdt_setprop_cell(ms->fdt, "/soc", "#address-cells", 0x2);
/*
* The "/soc/pci@..." node is needed for PCIE hotplugs
* that might happen before finalize_fdt().
*/
name = g_strdup_printf("/soc/pci@%lx", (long) memmap[VIRT_PCIE_ECAM].base);
qemu_fdt_add_subnode(ms->fdt, name);
hw/riscv/virt.c: do create_fdt() earlier, add finalize_fdt() Commit 49554856f0 fixed a problem, where TPM devices were not appearing in the FDT, by delaying the FDT creation up until virt_machine_done(). This create a side effect (see gitlab #1925) - devices that need access to the '/chosen' FDT node during realize() stopped working because, at that point, we don't have a FDT. This happens because our FDT creation is monolithic, but it doesn't need to be. We can add the needed FDT components for realize() time and, at the same time, do another FDT round where we account for dynamic sysbus devices. In other words, the problem fixed by 49554856f0 could also be fixed by postponing only create_fdt_sockets() and its dependencies, leaving everything else from create_fdt() to be done during init(). Split the FDT creation in two parts: - create_fdt(), now moved back to virt_machine_init(), will create FDT nodes that doesn't depend on additional (dynamic) devices from the sysbus; - a new finalize_fdt() step is added, where create_fdt_sockets() and friends is executed, accounting for the dynamic sysbus devices that were added during realize(). This will make both use cases happy: TPM devices are still working as intended, and devices such as 'guest-loader' have a FDT to work on during realize(). Fixes: 49554856f0 ("riscv: Generate devicetree only after machine initialization is complete") Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1925 Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20231110172559.73209-1-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-11-10 20:25:59 +03:00
qemu_fdt_add_subnode(ms->fdt, "/chosen");
/* Pass seed to RNG */
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
qemu_fdt_setprop(ms->fdt, "/chosen", "rng-seed",
rng_seed, sizeof(rng_seed));
hw/riscv/virt.c: do create_fdt() earlier, add finalize_fdt() Commit 49554856f0 fixed a problem, where TPM devices were not appearing in the FDT, by delaying the FDT creation up until virt_machine_done(). This create a side effect (see gitlab #1925) - devices that need access to the '/chosen' FDT node during realize() stopped working because, at that point, we don't have a FDT. This happens because our FDT creation is monolithic, but it doesn't need to be. We can add the needed FDT components for realize() time and, at the same time, do another FDT round where we account for dynamic sysbus devices. In other words, the problem fixed by 49554856f0 could also be fixed by postponing only create_fdt_sockets() and its dependencies, leaving everything else from create_fdt() to be done during init(). Split the FDT creation in two parts: - create_fdt(), now moved back to virt_machine_init(), will create FDT nodes that doesn't depend on additional (dynamic) devices from the sysbus; - a new finalize_fdt() step is added, where create_fdt_sockets() and friends is executed, accounting for the dynamic sysbus devices that were added during realize(). This will make both use cases happy: TPM devices are still working as intended, and devices such as 'guest-loader' have a FDT to work on during realize(). Fixes: 49554856f0 ("riscv: Generate devicetree only after machine initialization is complete") Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1925 Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20231110172559.73209-1-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-11-10 20:25:59 +03:00
create_fdt_flash(s, memmap);
create_fdt_fw_cfg(s, memmap);
create_fdt_pmu(s);
}
static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
DeviceState *irqchip,
RISCVVirtState *s)
{
DeviceState *dev;
MemoryRegion *ecam_alias, *ecam_reg;
MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
hwaddr ecam_base = s->memmap[VIRT_PCIE_ECAM].base;
hwaddr ecam_size = s->memmap[VIRT_PCIE_ECAM].size;
hwaddr mmio_base = s->memmap[VIRT_PCIE_MMIO].base;
hwaddr mmio_size = s->memmap[VIRT_PCIE_MMIO].size;
hwaddr high_mmio_base = virt_high_pcie_memmap.base;
hwaddr high_mmio_size = virt_high_pcie_memmap.size;
hwaddr pio_base = s->memmap[VIRT_PCIE_PIO].base;
hwaddr pio_size = s->memmap[VIRT_PCIE_PIO].size;
qemu_irq irq;
int i;
qdev: Convert uses of qdev_create() with Coccinelle This is the transformation explained in the commit before previous. Takes care of just one pattern that needs conversion. More to come in this series. Coccinelle script: @ depends on !(file in "hw/arm/highbank.c")@ expression bus, type_name, dev, expr; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr; identifier DOWN; @@ - dev = DOWN(qdev_create(bus, type_name)); + dev = DOWN(qdev_new(type_name)); ... when != dev = expr - qdev_init_nofail(DEVICE(dev)); + qdev_realize_and_unref(DEVICE(dev), bus, &error_fatal); @@ expression bus, type_name, expr; identifier dev; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr, errp; symbol true; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); @@ expression bus, type_name, expr, errp; identifier dev; symbol true; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); The first rule exempts hw/arm/highbank.c, because it matches along two control flow paths there, with different @type_name. Covered by the next commit's manual conversions. Missing #include "qapi/error.h" added manually. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-10-armbru@redhat.com> [Conflicts in hw/misc/empty_slot.c and hw/sparc/leon3.c resolved]
2020-06-10 08:31:58 +03:00
dev = qdev_new(TYPE_GPEX_HOST);
/* Set GPEX object properties for the virt machine */
object_property_set_uint(OBJECT(GPEX_HOST(dev)), PCI_HOST_ECAM_BASE,
ecam_base, NULL);
object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_ECAM_SIZE,
ecam_size, NULL);
object_property_set_uint(OBJECT(GPEX_HOST(dev)),
PCI_HOST_BELOW_4G_MMIO_BASE,
mmio_base, NULL);
object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_BELOW_4G_MMIO_SIZE,
mmio_size, NULL);
object_property_set_uint(OBJECT(GPEX_HOST(dev)),
PCI_HOST_ABOVE_4G_MMIO_BASE,
high_mmio_base, NULL);
object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_ABOVE_4G_MMIO_SIZE,
high_mmio_size, NULL);
object_property_set_uint(OBJECT(GPEX_HOST(dev)), PCI_HOST_PIO_BASE,
pio_base, NULL);
object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_PIO_SIZE,
pio_size, NULL);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, ecam_size);
memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, mmio_base, mmio_size);
memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
/* Map high MMIO space */
high_mmio_alias = g_new0(MemoryRegion, 1);
memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
mmio_reg, high_mmio_base, high_mmio_size);
memory_region_add_subregion(get_system_memory(), high_mmio_base,
high_mmio_alias);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
irq = qdev_get_gpio_in(irqchip, PCIE_IRQ + i);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
}
GPEX_HOST(dev)->gpex_cfg.bus = PCI_HOST_BRIDGE(GPEX_HOST(dev))->bus;
return dev;
}
static FWCfgState *create_fw_cfg(const MachineState *ms)
{
hwaddr base = virt_memmap[VIRT_FW_CFG].base;
FWCfgState *fw_cfg;
fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
&address_space_memory);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
return fw_cfg;
}
static DeviceState *virt_create_plic(const MemMapEntry *memmap, int socket,
int base_hartid, int hart_count)
{
DeviceState *ret;
g_autofree char *plic_hart_config = NULL;
/* Per-socket PLIC hart topology configuration string */
plic_hart_config = riscv_plic_hart_config_string(hart_count);
/* Per-socket PLIC */
ret = sifive_plic_create(
memmap[VIRT_PLIC].base + socket * memmap[VIRT_PLIC].size,
plic_hart_config, hart_count, base_hartid,
VIRT_IRQCHIP_NUM_SOURCES,
((1U << VIRT_IRQCHIP_NUM_PRIO_BITS) - 1),
VIRT_PLIC_PRIORITY_BASE,
VIRT_PLIC_PENDING_BASE,
VIRT_PLIC_ENABLE_BASE,
VIRT_PLIC_ENABLE_STRIDE,
VIRT_PLIC_CONTEXT_BASE,
VIRT_PLIC_CONTEXT_STRIDE,
memmap[VIRT_PLIC].size);
return ret;
}
static DeviceState *virt_create_aia(RISCVVirtAIAType aia_type, int aia_guests,
const MemMapEntry *memmap, int socket,
int base_hartid, int hart_count)
{
int i;
hwaddr addr;
uint32_t guest_bits;
DeviceState *aplic_s = NULL;
DeviceState *aplic_m = NULL;
bool msimode = aia_type == VIRT_AIA_TYPE_APLIC_IMSIC;
if (msimode) {
if (!kvm_enabled()) {
/* Per-socket M-level IMSICs */
addr = memmap[VIRT_IMSIC_M].base +
socket * VIRT_IMSIC_GROUP_MAX_SIZE;
for (i = 0; i < hart_count; i++) {
riscv_imsic_create(addr + i * IMSIC_HART_SIZE(0),
base_hartid + i, true, 1,
VIRT_IRQCHIP_NUM_MSIS);
}
}
/* Per-socket S-level IMSICs */
guest_bits = imsic_num_bits(aia_guests + 1);
addr = memmap[VIRT_IMSIC_S].base + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
for (i = 0; i < hart_count; i++) {
riscv_imsic_create(addr + i * IMSIC_HART_SIZE(guest_bits),
base_hartid + i, false, 1 + aia_guests,
VIRT_IRQCHIP_NUM_MSIS);
}
}
if (!kvm_enabled()) {
/* Per-socket M-level APLIC */
aplic_m = riscv_aplic_create(memmap[VIRT_APLIC_M].base +
socket * memmap[VIRT_APLIC_M].size,
memmap[VIRT_APLIC_M].size,
(msimode) ? 0 : base_hartid,
(msimode) ? 0 : hart_count,
VIRT_IRQCHIP_NUM_SOURCES,
VIRT_IRQCHIP_NUM_PRIO_BITS,
msimode, true, NULL);
}
/* Per-socket S-level APLIC */
aplic_s = riscv_aplic_create(memmap[VIRT_APLIC_S].base +
socket * memmap[VIRT_APLIC_S].size,
memmap[VIRT_APLIC_S].size,
(msimode) ? 0 : base_hartid,
(msimode) ? 0 : hart_count,
VIRT_IRQCHIP_NUM_SOURCES,
VIRT_IRQCHIP_NUM_PRIO_BITS,
msimode, false, aplic_m);
return kvm_enabled() ? aplic_s : aplic_m;
}
static void create_platform_bus(RISCVVirtState *s, DeviceState *irqchip)
{
DeviceState *dev;
SysBusDevice *sysbus;
const MemMapEntry *memmap = virt_memmap;
int i;
MemoryRegion *sysmem = get_system_memory();
dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
qdev_prop_set_uint32(dev, "num_irqs", VIRT_PLATFORM_BUS_NUM_IRQS);
qdev_prop_set_uint32(dev, "mmio_size", memmap[VIRT_PLATFORM_BUS].size);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
s->platform_bus_dev = dev;
sysbus = SYS_BUS_DEVICE(dev);
for (i = 0; i < VIRT_PLATFORM_BUS_NUM_IRQS; i++) {
int irq = VIRT_PLATFORM_BUS_IRQ + i;
sysbus_connect_irq(sysbus, i, qdev_get_gpio_in(irqchip, irq));
}
memory_region_add_subregion(sysmem,
memmap[VIRT_PLATFORM_BUS].base,
sysbus_mmio_get_region(sysbus, 0));
}
static void virt_build_smbios(RISCVVirtState *s)
{
MachineClass *mc = MACHINE_GET_CLASS(s);
MachineState *ms = MACHINE(s);
uint8_t *smbios_tables, *smbios_anchor;
size_t smbios_tables_len, smbios_anchor_len;
struct smbios_phys_mem_area mem_array;
const char *product = "QEMU Virtual Machine";
if (kvm_enabled()) {
product = "KVM Virtual Machine";
}
smbios_set_defaults("QEMU", product, mc->name);
if (riscv_is_32bit(&s->soc[0])) {
smbios_set_default_processor_family(0x200);
} else {
smbios_set_default_processor_family(0x201);
}
/* build the array of physical mem area from base_memmap */
mem_array.address = s->memmap[VIRT_DRAM].base;
mem_array.length = ms->ram_size;
smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64,
&mem_array, 1,
&smbios_tables, &smbios_tables_len,
&smbios_anchor, &smbios_anchor_len,
&error_fatal);
if (smbios_anchor) {
fw_cfg_add_file(s->fw_cfg, "etc/smbios/smbios-tables",
smbios_tables, smbios_tables_len);
fw_cfg_add_file(s->fw_cfg, "etc/smbios/smbios-anchor",
smbios_anchor, smbios_anchor_len);
}
}
static void virt_machine_done(Notifier *notifier, void *data)
{
RISCVVirtState *s = container_of(notifier, RISCVVirtState,
machine_done);
const MemMapEntry *memmap = virt_memmap;
MachineState *machine = MACHINE(s);
target_ulong start_addr = memmap[VIRT_DRAM].base;
target_ulong firmware_end_addr, kernel_start_addr;
const char *firmware_name = riscv_default_firmware_name(&s->soc[0]);
uint64_t fdt_load_addr;
hw/riscv: virt: Assume M-mode FW in pflash0 only when "-bios none" Currently, virt machine supports two pflash instances each with 32MB size. However, the first pflash is always assumed to contain M-mode firmware and reset vector is set to this if enabled. Hence, for S-mode payloads like EDK2, only one pflash instance is available for use. This means both code and NV variables of EDK2 will need to use the same pflash. The OS distros keep the EDK2 FW code as readonly. When non-volatile variables also need to share the same pflash, it is not possible to keep it as readonly since variables need write access. To resolve this issue, the code and NV variables need to be separated. But in that case we need an extra flash. Hence, modify the convention for non-KVM guests such that, pflash0 will contain the M-mode FW only when "-bios none" option is used. Otherwise, pflash0 will contain the S-mode payload FW. This enables both pflash instances available for EDK2 use. When KVM is enabled, pflash0 is always assumed to contain the S-mode payload firmware only. Example usage: 1) pflash0 containing M-mode FW qemu-system-riscv64 -bios none -pflash <mmode_fw> -machine virt or qemu-system-riscv64 -bios none \ -drive file=<mmode_fw>,if=pflash,format=raw,unit=0 -machine virt 2) pflash0 containing S-mode payload like EDK2 qemu-system-riscv64 -pflash <smode_fw_code> -pflash <smode_vars> -machine virt or qemu-system-riscv64 -bios <opensbi_fw> \ -pflash <smode_fw_code> \ -pflash <smode_vars> \ -machine virt or qemu-system-riscv64 -bios <opensbi_fw> \ -drive file=<smode_fw_code>,if=pflash,format=raw,unit=0,readonly=on \ -drive file=<smode_fw_vars>,if=pflash,format=raw,unit=1 \ -machine virt Signed-off-by: Sunil V L <sunilvl@ventanamicro.com> Reported-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Tested-by: Andrea Bolognani <abologna@redhat.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20230601045910.18646-2-sunilvl@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-06-01 07:59:08 +03:00
uint64_t kernel_entry = 0;
BlockBackend *pflash_blk0;
hw/riscv/virt.c: do create_fdt() earlier, add finalize_fdt() Commit 49554856f0 fixed a problem, where TPM devices were not appearing in the FDT, by delaying the FDT creation up until virt_machine_done(). This create a side effect (see gitlab #1925) - devices that need access to the '/chosen' FDT node during realize() stopped working because, at that point, we don't have a FDT. This happens because our FDT creation is monolithic, but it doesn't need to be. We can add the needed FDT components for realize() time and, at the same time, do another FDT round where we account for dynamic sysbus devices. In other words, the problem fixed by 49554856f0 could also be fixed by postponing only create_fdt_sockets() and its dependencies, leaving everything else from create_fdt() to be done during init(). Split the FDT creation in two parts: - create_fdt(), now moved back to virt_machine_init(), will create FDT nodes that doesn't depend on additional (dynamic) devices from the sysbus; - a new finalize_fdt() step is added, where create_fdt_sockets() and friends is executed, accounting for the dynamic sysbus devices that were added during realize(). This will make both use cases happy: TPM devices are still working as intended, and devices such as 'guest-loader' have a FDT to work on during realize(). Fixes: 49554856f0 ("riscv: Generate devicetree only after machine initialization is complete") Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1925 Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20231110172559.73209-1-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-11-10 20:25:59 +03:00
/*
* An user provided dtb must include everything, including
* dynamic sysbus devices. Our FDT needs to be finalized.
*/
if (machine->dtb == NULL) {
finalize_fdt(s);
}
/*
* Only direct boot kernel is currently supported for KVM VM,
* so the "-bios" parameter is not supported when KVM is enabled.
*/
if (kvm_enabled()) {
if (machine->firmware) {
if (strcmp(machine->firmware, "none")) {
error_report("Machine mode firmware is not supported in "
"combination with KVM.");
exit(1);
}
} else {
machine->firmware = g_strdup("none");
}
}
firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
start_addr, NULL);
pflash_blk0 = pflash_cfi01_get_blk(s->flash[0]);
if (pflash_blk0) {
hw/riscv: virt: Assume M-mode FW in pflash0 only when "-bios none" Currently, virt machine supports two pflash instances each with 32MB size. However, the first pflash is always assumed to contain M-mode firmware and reset vector is set to this if enabled. Hence, for S-mode payloads like EDK2, only one pflash instance is available for use. This means both code and NV variables of EDK2 will need to use the same pflash. The OS distros keep the EDK2 FW code as readonly. When non-volatile variables also need to share the same pflash, it is not possible to keep it as readonly since variables need write access. To resolve this issue, the code and NV variables need to be separated. But in that case we need an extra flash. Hence, modify the convention for non-KVM guests such that, pflash0 will contain the M-mode FW only when "-bios none" option is used. Otherwise, pflash0 will contain the S-mode payload FW. This enables both pflash instances available for EDK2 use. When KVM is enabled, pflash0 is always assumed to contain the S-mode payload firmware only. Example usage: 1) pflash0 containing M-mode FW qemu-system-riscv64 -bios none -pflash <mmode_fw> -machine virt or qemu-system-riscv64 -bios none \ -drive file=<mmode_fw>,if=pflash,format=raw,unit=0 -machine virt 2) pflash0 containing S-mode payload like EDK2 qemu-system-riscv64 -pflash <smode_fw_code> -pflash <smode_vars> -machine virt or qemu-system-riscv64 -bios <opensbi_fw> \ -pflash <smode_fw_code> \ -pflash <smode_vars> \ -machine virt or qemu-system-riscv64 -bios <opensbi_fw> \ -drive file=<smode_fw_code>,if=pflash,format=raw,unit=0,readonly=on \ -drive file=<smode_fw_vars>,if=pflash,format=raw,unit=1 \ -machine virt Signed-off-by: Sunil V L <sunilvl@ventanamicro.com> Reported-by: Heinrich Schuchardt <xypron.glpk@gmx.de> Tested-by: Andrea Bolognani <abologna@redhat.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20230601045910.18646-2-sunilvl@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-06-01 07:59:08 +03:00
if (machine->firmware && !strcmp(machine->firmware, "none") &&
!kvm_enabled()) {
/*
* Pflash was supplied but bios is none and not KVM guest,
* let's overwrite the address we jump to after reset to
* the base of the flash.
*/
start_addr = virt_memmap[VIRT_FLASH].base;
} else {
/*
* Pflash was supplied but either KVM guest or bios is not none.
* In this case, base of the flash would contain S-mode payload.
*/
riscv_setup_firmware_boot(machine);
kernel_entry = virt_memmap[VIRT_FLASH].base;
}
}
if (machine->kernel_filename && !kernel_entry) {
kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
firmware_end_addr);
hw/riscv: handle 32 bit CPUs kernel_entry in riscv_load_kernel() Next patch will move all calls to riscv_load_initrd() to riscv_load_kernel(). Machines that want to load initrd will be able to do via an extra flag to riscv_load_kernel(). This change will expose a sign-extend behavior that is happening in load_elf_ram_sym() when running 32 bit guests [1]. This is currently obscured by the fact that riscv_load_initrd() is using the return of riscv_load_kernel(), defined as target_ulong, and this return type will crop the higher 32 bits that would be padded with 1s by the sign extension when running in 32 bit targets. The changes to be done will force riscv_load_initrd() to use an uint64_t instead, exposing it to the padding when dealing with 32 bit CPUs. There is a discussion about whether load_elf_ram_sym() should or should not sign extend the value returned by 'lowaddr'. What we can do is to prevent the behavior change that the next patch will end up doing. riscv_load_initrd() wasn't dealing with 64 bit kernel entries when running 32 bit CPUs, and we want to keep it that way. One way of doing it is to use target_ulong in 'kernel_entry' in riscv_load_kernel() and rely on the fact that this var will not be sign extended for 32 bit targets. Another way is to explictly clear the higher 32 bits when running 32 bit CPUs for all possibilities of kernel_entry. We opted for the later. This will allow us to be clear about the design choices made in the function, while also allowing us to add a small comment about what load_elf_ram_sym() is doing. With this change, the consolation patch can do its job without worrying about unintended behavioral changes. [1] https://lists.gnu.org/archive/html/qemu-devel/2023-01/msg02281.html Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20230206140022.2748401-2-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com> Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-02-06 17:00:20 +03:00
kernel_entry = riscv_load_kernel(machine, &s->soc[0],
kernel_start_addr, true, NULL);
}
fdt_load_addr = riscv_compute_fdt_addr(memmap[VIRT_DRAM].base,
hw/riscv: change riscv_compute_fdt_addr() semantics As it is now, riscv_compute_fdt_addr() is receiving a dram_base, a mem_size (which is defaulted to MachineState::ram_size in all boards) and the FDT pointer. And it makes a very important assumption: the DRAM interval dram_base + mem_size is contiguous. This is indeed the case for most boards that use a FDT. The Icicle Kit board works with 2 distinct RAM banks that are separated by a gap. We have a lower bank with 1GiB size, a gap follows, then at 64GiB the high memory starts. MachineClass::default_ram_size for this board is set to 1.5Gb, and machine_init() is enforcing it as minimal RAM size, meaning that there we'll always have at least 512 MiB in the Hi RAM area. Using riscv_compute_fdt_addr() in this board is weird because not only the board has sparse RAM, and it's calling it using the base address of the Lo RAM area, but it's also using a mem_size that we have guarantees that it will go up to the Hi RAM. All the function assumptions doesn't work for this board. In fact, what makes the function works at all in this case is a coincidence. Commit 1a475d39ef54 introduced a 3GB boundary for the FDT, down from 4Gb, that is enforced if dram_base is lower than 3072 MiB. For the Icicle Kit board, memmap[MICROCHIP_PFSOC_DRAM_LO].base is 0x80000000 (2 Gb) and it has a 1Gb size, so it will fall in the conditions to put the FDT under a 3Gb address, which happens to be exactly at the end of DRAM_LO. If the base address of the Lo area started later than 3Gb this function would be unusable by the board. Changing any assumptions inside riscv_compute_fdt_addr() can also break it by accident as well. Let's change riscv_compute_fdt_addr() semantics to be appropriate to the Icicle Kit board and for future boards that might have sparse RAM topologies to worry about: - relieve the condition that the dram_base + mem_size area is contiguous, since this is already not the case today; - receive an extra 'dram_size' size attribute that refers to a contiguous RAM block that the board wants the FDT to reside on. Together with 'mem_size' and 'fdt', which are now now being consumed by a MachineState pointer, we're able to make clear assumptions based on the DRAM block and total mem_size available to ensure that the FDT will be put in a valid RAM address. Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20230201171212.1219375-4-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-02-01 20:12:12 +03:00
memmap[VIRT_DRAM].size,
machine);
riscv_load_fdt(fdt_load_addr, machine->fdt);
/* load the reset vector */
riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
virt_memmap[VIRT_MROM].base,
virt_memmap[VIRT_MROM].size, kernel_entry,
fdt_load_addr);
/*
* Only direct boot kernel is currently supported for KVM VM,
* So here setup kernel start address and fdt address.
* TODO:Support firmware loading and integrate to TCG start
*/
if (kvm_enabled()) {
riscv_setup_direct_kernel(kernel_entry, fdt_load_addr);
}
virt_build_smbios(s);
if (virt_is_acpi_enabled(s)) {
virt_acpi_setup(s);
}
}
static void virt_machine_init(MachineState *machine)
{
const MemMapEntry *memmap = virt_memmap;
RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
DeviceState *mmio_irqchip, *virtio_irqchip, *pcie_irqchip;
int i, base_hartid, hart_count;
int socket_count = riscv_socket_count(machine);
/* Check socket count limit */
if (VIRT_SOCKETS_MAX < socket_count) {
error_report("number of sockets/nodes should be less than %d",
VIRT_SOCKETS_MAX);
exit(1);
}
if (!virt_aclint_allowed() && s->have_aclint) {
error_report("'aclint' is only available with TCG acceleration");
exit(1);
}
/* Initialize sockets */
mmio_irqchip = virtio_irqchip = pcie_irqchip = NULL;
for (i = 0; i < socket_count; i++) {
g_autofree char *soc_name = g_strdup_printf("soc%d", i);
if (!riscv_socket_check_hartids(machine, i)) {
error_report("discontinuous hartids in socket%d", i);
exit(1);
}
base_hartid = riscv_socket_first_hartid(machine, i);
if (base_hartid < 0) {
error_report("can't find hartid base for socket%d", i);
exit(1);
}
hart_count = riscv_socket_hart_count(machine, i);
if (hart_count < 0) {
error_report("can't find hart count for socket%d", i);
exit(1);
}
object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
TYPE_RISCV_HART_ARRAY);
object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
machine->cpu_type, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
base_hartid, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
hart_count, &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
if (virt_aclint_allowed() && s->have_aclint) {
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
/* Per-socket ACLINT MTIMER */
riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
i * RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP,
RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
} else {
/* Per-socket ACLINT MSWI, MTIMER, and SSWI */
riscv_aclint_swi_create(memmap[VIRT_CLINT].base +
i * memmap[VIRT_CLINT].size,
base_hartid, hart_count, false);
riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
i * memmap[VIRT_CLINT].size +
RISCV_ACLINT_SWI_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP,
RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
riscv_aclint_swi_create(memmap[VIRT_ACLINT_SSWI].base +
i * memmap[VIRT_ACLINT_SSWI].size,
base_hartid, hart_count, true);
}
} else if (tcg_enabled()) {
/* Per-socket SiFive CLINT */
riscv_aclint_swi_create(
memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
base_hartid, hart_count, false);
riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
i * memmap[VIRT_CLINT].size + RISCV_ACLINT_SWI_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
}
/* Per-socket interrupt controller */
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
s->irqchip[i] = virt_create_plic(memmap, i,
base_hartid, hart_count);
} else {
s->irqchip[i] = virt_create_aia(s->aia_type, s->aia_guests,
memmap, i, base_hartid,
hart_count);
}
/* Try to use different IRQCHIP instance based device type */
if (i == 0) {
mmio_irqchip = s->irqchip[i];
virtio_irqchip = s->irqchip[i];
pcie_irqchip = s->irqchip[i];
}
if (i == 1) {
virtio_irqchip = s->irqchip[i];
pcie_irqchip = s->irqchip[i];
}
if (i == 2) {
pcie_irqchip = s->irqchip[i];
}
}
2023-08-30 16:35:02 +03:00
if (kvm_enabled() && virt_use_kvm_aia(s)) {
kvm_riscv_aia_create(machine, IMSIC_MMIO_GROUP_MIN_SHIFT,
VIRT_IRQCHIP_NUM_SOURCES, VIRT_IRQCHIP_NUM_MSIS,
memmap[VIRT_APLIC_S].base,
memmap[VIRT_IMSIC_S].base,
s->aia_guests);
}
if (riscv_is_32bit(&s->soc[0])) {
#if HOST_LONG_BITS == 64
/* limit RAM size in a 32-bit system */
if (machine->ram_size > 10 * GiB) {
machine->ram_size = 10 * GiB;
error_report("Limiting RAM size to 10 GiB");
}
#endif
virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
} else {
virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
virt_high_pcie_memmap.base =
ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
}
s->memmap = virt_memmap;
/* register system main memory (actual RAM) */
memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
machine->ram);
/* boot rom */
memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
memmap[VIRT_MROM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
mask_rom);
/*
* Init fw_cfg. Must be done before riscv_load_fdt, otherwise the
* device tree cannot be altered and we get FDT_ERR_NOSPACE.
*/
s->fw_cfg = create_fw_cfg(machine);
rom_set_fw(s->fw_cfg);
/* SiFive Test MMIO device */
sifive_test_create(memmap[VIRT_TEST].base);
/* VirtIO MMIO devices */
for (i = 0; i < VIRTIO_COUNT; i++) {
sysbus_create_simple("virtio-mmio",
memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
qdev_get_gpio_in(virtio_irqchip, VIRTIO_IRQ + i));
}
gpex_pcie_init(system_memory, pcie_irqchip, s);
create_platform_bus(s, mmio_irqchip);
serial_mm_init(system_memory, memmap[VIRT_UART0].base,
0, qdev_get_gpio_in(mmio_irqchip, UART0_IRQ), 399193,
serial_hd(0), DEVICE_LITTLE_ENDIAN);
sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
qdev_get_gpio_in(mmio_irqchip, RTC_IRQ));
for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
/* Map legacy -drive if=pflash to machine properties */
pflash_cfi01_legacy_drive(s->flash[i],
drive_get(IF_PFLASH, 0, i));
}
virt_flash_map(s, system_memory);
hw/riscv/virt.c: do create_fdt() earlier, add finalize_fdt() Commit 49554856f0 fixed a problem, where TPM devices were not appearing in the FDT, by delaying the FDT creation up until virt_machine_done(). This create a side effect (see gitlab #1925) - devices that need access to the '/chosen' FDT node during realize() stopped working because, at that point, we don't have a FDT. This happens because our FDT creation is monolithic, but it doesn't need to be. We can add the needed FDT components for realize() time and, at the same time, do another FDT round where we account for dynamic sysbus devices. In other words, the problem fixed by 49554856f0 could also be fixed by postponing only create_fdt_sockets() and its dependencies, leaving everything else from create_fdt() to be done during init(). Split the FDT creation in two parts: - create_fdt(), now moved back to virt_machine_init(), will create FDT nodes that doesn't depend on additional (dynamic) devices from the sysbus; - a new finalize_fdt() step is added, where create_fdt_sockets() and friends is executed, accounting for the dynamic sysbus devices that were added during realize(). This will make both use cases happy: TPM devices are still working as intended, and devices such as 'guest-loader' have a FDT to work on during realize(). Fixes: 49554856f0 ("riscv: Generate devicetree only after machine initialization is complete") Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1925 Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20231110172559.73209-1-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-11-10 20:25:59 +03:00
/* load/create device tree */
if (machine->dtb) {
machine->fdt = load_device_tree(machine->dtb, &s->fdt_size);
if (!machine->fdt) {
error_report("load_device_tree() failed");
exit(1);
}
} else {
create_fdt(s, memmap);
}
s->machine_done.notify = virt_machine_done;
qemu_add_machine_init_done_notifier(&s->machine_done);
}
static void virt_machine_instance_init(Object *obj)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
virt_flash_create(s);
s->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
s->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
s->acpi = ON_OFF_AUTO_AUTO;
}
static char *virt_get_aia_guests(Object *obj, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
return g_strdup_printf("%d", s->aia_guests);
}
static void virt_set_aia_guests(Object *obj, const char *val, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
s->aia_guests = atoi(val);
if (s->aia_guests < 0 || s->aia_guests > VIRT_IRQCHIP_MAX_GUESTS) {
error_setg(errp, "Invalid number of AIA IMSIC guests");
error_append_hint(errp, "Valid values be between 0 and %d.\n",
VIRT_IRQCHIP_MAX_GUESTS);
}
}
static char *virt_get_aia(Object *obj, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
const char *val;
switch (s->aia_type) {
case VIRT_AIA_TYPE_APLIC:
val = "aplic";
break;
case VIRT_AIA_TYPE_APLIC_IMSIC:
val = "aplic-imsic";
break;
default:
val = "none";
break;
};
return g_strdup(val);
}
static void virt_set_aia(Object *obj, const char *val, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
if (!strcmp(val, "none")) {
s->aia_type = VIRT_AIA_TYPE_NONE;
} else if (!strcmp(val, "aplic")) {
s->aia_type = VIRT_AIA_TYPE_APLIC;
} else if (!strcmp(val, "aplic-imsic")) {
s->aia_type = VIRT_AIA_TYPE_APLIC_IMSIC;
} else {
error_setg(errp, "Invalid AIA interrupt controller type");
error_append_hint(errp, "Valid values are none, aplic, and "
"aplic-imsic.\n");
}
}
static bool virt_get_aclint(Object *obj, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
return s->have_aclint;
}
static void virt_set_aclint(Object *obj, bool value, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
s->have_aclint = value;
}
bool virt_is_acpi_enabled(RISCVVirtState *s)
{
return s->acpi != ON_OFF_AUTO_OFF;
}
static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
OnOffAuto acpi = s->acpi;
visit_type_OnOffAuto(v, name, &acpi, errp);
}
static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
visit_type_OnOffAuto(v, name, &s->acpi, errp);
}
static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
DeviceState *dev)
{
MachineClass *mc = MACHINE_GET_CLASS(machine);
if (device_is_dynamic_sysbus(mc, dev) ||
object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
return HOTPLUG_HANDLER(machine);
}
return NULL;
}
static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(hotplug_dev);
if (s->platform_bus_dev) {
MachineClass *mc = MACHINE_GET_CLASS(s);
if (device_is_dynamic_sysbus(mc, dev)) {
platform_bus_link_device(PLATFORM_BUS_DEVICE(s->platform_bus_dev),
SYS_BUS_DEVICE(dev));
}
}
if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
create_fdt_virtio_iommu(s, pci_get_bdf(PCI_DEVICE(dev)));
}
}
static void virt_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
mc->desc = "RISC-V VirtIO board";
mc->init = virt_machine_init;
mc->max_cpus = VIRT_CPUS_MAX;
mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
mc->block_default_type = IF_VIRTIO;
mc->no_cdrom = 1;
mc->pci_allow_0_address = true;
mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
mc->numa_mem_supported = true;
/* platform instead of architectural choice */
mc->cpu_cluster_has_numa_boundary = true;
mc->default_ram_id = "riscv_virt_board.ram";
assert(!mc->get_hotplug_handler);
mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
hc->plug = virt_machine_device_plug_cb;
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
#ifdef CONFIG_TPM
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
#endif
object_class_property_add_bool(oc, "aclint", virt_get_aclint,
virt_set_aclint);
object_class_property_set_description(oc, "aclint",
"(TCG only) Set on/off to "
"enable/disable emulating "
"ACLINT devices");
object_class_property_add_str(oc, "aia", virt_get_aia,
virt_set_aia);
object_class_property_set_description(oc, "aia",
"Set type of AIA interrupt "
"controller. Valid values are "
"none, aplic, and aplic-imsic.");
object_class_property_add_str(oc, "aia-guests",
virt_get_aia_guests,
virt_set_aia_guests);
{
g_autofree char *str =
g_strdup_printf("Set number of guest MMIO pages for AIA IMSIC. "
"Valid value should be between 0 and %d.",
VIRT_IRQCHIP_MAX_GUESTS);
object_class_property_set_description(oc, "aia-guests", str);
}
object_class_property_add(oc, "acpi", "OnOffAuto",
virt_get_acpi, virt_set_acpi,
NULL, NULL);
object_class_property_set_description(oc, "acpi",
"Enable ACPI");
}
static const TypeInfo virt_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("virt"),
.parent = TYPE_MACHINE,
.class_init = virt_machine_class_init,
.instance_init = virt_machine_instance_init,
.instance_size = sizeof(RISCVVirtState),
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
},
};
static void virt_machine_init_register_types(void)
{
type_register_static(&virt_machine_typeinfo);
}
type_init(virt_machine_init_register_types)