qemu/hw/riscv/virt.c
Sunil V L 4406ba2b5e hw/riscv/virt.c: Make block devices default to virtio
RISC-V virt is currently missing default type for block devices. Without
this being set, proper backend is not created when option like -cdrom
is used. So, make the virt board's default block device type be
IF_VIRTIO similar to other architectures.

We also need to set no_cdrom to avoid getting a default cdrom device.

Signed-off-by: Sunil V L <sunilvl@ventanamicro.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
Message-ID: <20240620064718.275427-1-sunilvl@ventanamicro.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2024-06-26 23:00:59 +10:00

1837 lines
70 KiB
C

/*
* QEMU RISC-V VirtIO Board
*
* Copyright (c) 2017 SiFive, Inc.
*
* RISC-V machine with 16550a UART and VirtIO MMIO
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qemu/guest-random.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "hw/qdev-properties.h"
#include "hw/char/serial.h"
#include "target/riscv/cpu.h"
#include "hw/core/sysbus-fdt.h"
#include "target/riscv/pmu.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/virt.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/numa.h"
#include "kvm/kvm_riscv.h"
#include "hw/firmware/smbios.h"
#include "hw/intc/riscv_aclint.h"
#include "hw/intc/riscv_aplic.h"
#include "hw/intc/sifive_plic.h"
#include "hw/misc/sifive_test.h"
#include "hw/platform-bus.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/tcg.h"
#include "sysemu/kvm.h"
#include "sysemu/tpm.h"
#include "sysemu/qtest.h"
#include "hw/pci/pci.h"
#include "hw/pci-host/gpex.h"
#include "hw/display/ramfb.h"
#include "hw/acpi/aml-build.h"
#include "qapi/qapi-visit-common.h"
#include "hw/virtio/virtio-iommu.h"
/* KVM AIA only supports APLIC MSI. APLIC Wired is always emulated by QEMU. */
static bool virt_use_kvm_aia(RISCVVirtState *s)
{
return kvm_irqchip_in_kernel() && s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC;
}
static bool virt_aclint_allowed(void)
{
return tcg_enabled() || qtest_enabled();
}
static const MemMapEntry virt_memmap[] = {
[VIRT_DEBUG] = { 0x0, 0x100 },
[VIRT_MROM] = { 0x1000, 0xf000 },
[VIRT_TEST] = { 0x100000, 0x1000 },
[VIRT_RTC] = { 0x101000, 0x1000 },
[VIRT_CLINT] = { 0x2000000, 0x10000 },
[VIRT_ACLINT_SSWI] = { 0x2F00000, 0x4000 },
[VIRT_PCIE_PIO] = { 0x3000000, 0x10000 },
[VIRT_PLATFORM_BUS] = { 0x4000000, 0x2000000 },
[VIRT_PLIC] = { 0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
[VIRT_APLIC_M] = { 0xc000000, APLIC_SIZE(VIRT_CPUS_MAX) },
[VIRT_APLIC_S] = { 0xd000000, APLIC_SIZE(VIRT_CPUS_MAX) },
[VIRT_UART0] = { 0x10000000, 0x100 },
[VIRT_VIRTIO] = { 0x10001000, 0x1000 },
[VIRT_FW_CFG] = { 0x10100000, 0x18 },
[VIRT_FLASH] = { 0x20000000, 0x4000000 },
[VIRT_IMSIC_M] = { 0x24000000, VIRT_IMSIC_MAX_SIZE },
[VIRT_IMSIC_S] = { 0x28000000, VIRT_IMSIC_MAX_SIZE },
[VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 },
[VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 },
[VIRT_DRAM] = { 0x80000000, 0x0 },
};
/* PCIe high mmio is fixed for RV32 */
#define VIRT32_HIGH_PCIE_MMIO_BASE 0x300000000ULL
#define VIRT32_HIGH_PCIE_MMIO_SIZE (4 * GiB)
/* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
#define VIRT64_HIGH_PCIE_MMIO_SIZE (16 * GiB)
static MemMapEntry virt_high_pcie_memmap;
#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
const char *name,
const char *alias_prop_name)
{
/*
* Create a single flash device. We use the same parameters as
* the flash devices on the ARM virt board.
*/
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
object_property_add_child(OBJECT(s), name, OBJECT(dev));
object_property_add_alias(OBJECT(s), alias_prop_name,
OBJECT(dev), "drive");
return PFLASH_CFI01(dev);
}
static void virt_flash_create(RISCVVirtState *s)
{
s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
}
static void virt_flash_map1(PFlashCFI01 *flash,
hwaddr base, hwaddr size,
MemoryRegion *sysmem)
{
DeviceState *dev = DEVICE(flash);
assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(sysmem, base,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
0));
}
static void virt_flash_map(RISCVVirtState *s,
MemoryRegion *sysmem)
{
hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
virt_flash_map1(s->flash[0], flashbase, flashsize,
sysmem);
virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
sysmem);
}
static void create_pcie_irq_map(RISCVVirtState *s, void *fdt, char *nodename,
uint32_t irqchip_phandle)
{
int pin, dev;
uint32_t irq_map_stride = 0;
uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS *
FDT_MAX_INT_MAP_WIDTH] = {};
uint32_t *irq_map = full_irq_map;
/* This code creates a standard swizzle of interrupts such that
* each device's first interrupt is based on it's PCI_SLOT number.
* (See pci_swizzle_map_irq_fn())
*
* We only need one entry per interrupt in the table (not one per
* possible slot) seeing the interrupt-map-mask will allow the table
* to wrap to any number of devices.
*/
for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
int devfn = dev * 0x8;
for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
int i = 0;
/* Fill PCI address cells */
irq_map[i] = cpu_to_be32(devfn << 8);
i += FDT_PCI_ADDR_CELLS;
/* Fill PCI Interrupt cells */
irq_map[i] = cpu_to_be32(pin + 1);
i += FDT_PCI_INT_CELLS;
/* Fill interrupt controller phandle and cells */
irq_map[i++] = cpu_to_be32(irqchip_phandle);
irq_map[i++] = cpu_to_be32(irq_nr);
if (s->aia_type != VIRT_AIA_TYPE_NONE) {
irq_map[i++] = cpu_to_be32(0x4);
}
if (!irq_map_stride) {
irq_map_stride = i;
}
irq_map += irq_map_stride;
}
}
qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map,
GPEX_NUM_IRQS * GPEX_NUM_IRQS *
irq_map_stride * sizeof(uint32_t));
qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
0x1800, 0, 0, 0x7);
}
static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
char *clust_name, uint32_t *phandle,
uint32_t *intc_phandles)
{
int cpu;
uint32_t cpu_phandle;
MachineState *ms = MACHINE(s);
bool is_32_bit = riscv_is_32bit(&s->soc[0]);
uint8_t satp_mode_max;
for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
RISCVCPU *cpu_ptr = &s->soc[socket].harts[cpu];
g_autofree char *cpu_name = NULL;
g_autofree char *core_name = NULL;
g_autofree char *intc_name = NULL;
g_autofree char *sv_name = NULL;
cpu_phandle = (*phandle)++;
cpu_name = g_strdup_printf("/cpus/cpu@%d",
s->soc[socket].hartid_base + cpu);
qemu_fdt_add_subnode(ms->fdt, cpu_name);
if (cpu_ptr->cfg.satp_mode.supported != 0) {
satp_mode_max = satp_mode_max_from_map(cpu_ptr->cfg.satp_mode.map);
sv_name = g_strdup_printf("riscv,%s",
satp_mode_str(satp_mode_max, is_32_bit));
qemu_fdt_setprop_string(ms->fdt, cpu_name, "mmu-type", sv_name);
}
riscv_isa_write_fdt(cpu_ptr, ms->fdt, cpu_name);
if (cpu_ptr->cfg.ext_zicbom) {
qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cbom-block-size",
cpu_ptr->cfg.cbom_blocksize);
}
if (cpu_ptr->cfg.ext_zicboz) {
qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cboz-block-size",
cpu_ptr->cfg.cboz_blocksize);
}
if (cpu_ptr->cfg.ext_zicbop) {
qemu_fdt_setprop_cell(ms->fdt, cpu_name, "riscv,cbop-block-size",
cpu_ptr->cfg.cbop_blocksize);
}
qemu_fdt_setprop_string(ms->fdt, cpu_name, "compatible", "riscv");
qemu_fdt_setprop_string(ms->fdt, cpu_name, "status", "okay");
qemu_fdt_setprop_cell(ms->fdt, cpu_name, "reg",
s->soc[socket].hartid_base + cpu);
qemu_fdt_setprop_string(ms->fdt, cpu_name, "device_type", "cpu");
riscv_socket_fdt_write_id(ms, cpu_name, socket);
qemu_fdt_setprop_cell(ms->fdt, cpu_name, "phandle", cpu_phandle);
intc_phandles[cpu] = (*phandle)++;
intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
qemu_fdt_add_subnode(ms->fdt, intc_name);
qemu_fdt_setprop_cell(ms->fdt, intc_name, "phandle",
intc_phandles[cpu]);
qemu_fdt_setprop_string(ms->fdt, intc_name, "compatible",
"riscv,cpu-intc");
qemu_fdt_setprop(ms->fdt, intc_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, intc_name, "#interrupt-cells", 1);
core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
qemu_fdt_add_subnode(ms->fdt, core_name);
qemu_fdt_setprop_cell(ms->fdt, core_name, "cpu", cpu_phandle);
}
}
static void create_fdt_socket_memory(RISCVVirtState *s,
const MemMapEntry *memmap, int socket)
{
g_autofree char *mem_name = NULL;
uint64_t addr, size;
MachineState *ms = MACHINE(s);
addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(ms, socket);
size = riscv_socket_mem_size(ms, socket);
mem_name = g_strdup_printf("/memory@%lx", (long)addr);
qemu_fdt_add_subnode(ms->fdt, mem_name);
qemu_fdt_setprop_cells(ms->fdt, mem_name, "reg",
addr >> 32, addr, size >> 32, size);
qemu_fdt_setprop_string(ms->fdt, mem_name, "device_type", "memory");
riscv_socket_fdt_write_id(ms, mem_name, socket);
}
static void create_fdt_socket_clint(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *intc_phandles)
{
int cpu;
g_autofree char *clint_name = NULL;
g_autofree uint32_t *clint_cells = NULL;
unsigned long clint_addr;
MachineState *ms = MACHINE(s);
static const char * const clint_compat[2] = {
"sifive,clint0", "riscv,clint0"
};
clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
}
clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
qemu_fdt_add_subnode(ms->fdt, clint_name);
qemu_fdt_setprop_string_array(ms->fdt, clint_name, "compatible",
(char **)&clint_compat,
ARRAY_SIZE(clint_compat));
qemu_fdt_setprop_cells(ms->fdt, clint_name, "reg",
0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
qemu_fdt_setprop(ms->fdt, clint_name, "interrupts-extended",
clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
riscv_socket_fdt_write_id(ms, clint_name, socket);
}
static void create_fdt_socket_aclint(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *intc_phandles)
{
int cpu;
char *name;
unsigned long addr, size;
uint32_t aclint_cells_size;
g_autofree uint32_t *aclint_mswi_cells = NULL;
g_autofree uint32_t *aclint_sswi_cells = NULL;
g_autofree uint32_t *aclint_mtimer_cells = NULL;
MachineState *ms = MACHINE(s);
aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
}
aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
name = g_strdup_printf("/soc/mswi@%lx", addr);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible",
"riscv,aclint-mswi");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
aclint_mswi_cells, aclint_cells_size);
qemu_fdt_setprop(ms->fdt, name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells", 0);
riscv_socket_fdt_write_id(ms, name, socket);
g_free(name);
}
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
addr = memmap[VIRT_CLINT].base +
(RISCV_ACLINT_DEFAULT_MTIMER_SIZE * socket);
size = RISCV_ACLINT_DEFAULT_MTIMER_SIZE;
} else {
addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
(memmap[VIRT_CLINT].size * socket);
size = memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE;
}
name = g_strdup_printf("/soc/mtimer@%lx", addr);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible",
"riscv,aclint-mtimer");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
0x0, size - RISCV_ACLINT_DEFAULT_MTIME,
0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
0x0, RISCV_ACLINT_DEFAULT_MTIME);
qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
aclint_mtimer_cells, aclint_cells_size);
riscv_socket_fdt_write_id(ms, name, socket);
g_free(name);
if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
addr = memmap[VIRT_ACLINT_SSWI].base +
(memmap[VIRT_ACLINT_SSWI].size * socket);
name = g_strdup_printf("/soc/sswi@%lx", addr);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible",
"riscv,aclint-sswi");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
qemu_fdt_setprop(ms->fdt, name, "interrupts-extended",
aclint_sswi_cells, aclint_cells_size);
qemu_fdt_setprop(ms->fdt, name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells", 0);
riscv_socket_fdt_write_id(ms, name, socket);
g_free(name);
}
}
static void create_fdt_socket_plic(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *phandle, uint32_t *intc_phandles,
uint32_t *plic_phandles)
{
int cpu;
g_autofree char *plic_name = NULL;
g_autofree uint32_t *plic_cells;
unsigned long plic_addr;
MachineState *ms = MACHINE(s);
static const char * const plic_compat[2] = {
"sifive,plic-1.0.0", "riscv,plic0"
};
plic_phandles[socket] = (*phandle)++;
plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
qemu_fdt_add_subnode(ms->fdt, plic_name);
qemu_fdt_setprop_cell(ms->fdt, plic_name,
"#interrupt-cells", FDT_PLIC_INT_CELLS);
qemu_fdt_setprop_cell(ms->fdt, plic_name,
"#address-cells", FDT_PLIC_ADDR_CELLS);
qemu_fdt_setprop_string_array(ms->fdt, plic_name, "compatible",
(char **)&plic_compat,
ARRAY_SIZE(plic_compat));
qemu_fdt_setprop(ms->fdt, plic_name, "interrupt-controller", NULL, 0);
if (kvm_enabled()) {
plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
plic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
}
qemu_fdt_setprop(ms->fdt, plic_name, "interrupts-extended",
plic_cells,
s->soc[socket].num_harts * sizeof(uint32_t) * 2);
} else {
plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
}
qemu_fdt_setprop(ms->fdt, plic_name, "interrupts-extended",
plic_cells,
s->soc[socket].num_harts * sizeof(uint32_t) * 4);
}
qemu_fdt_setprop_cells(ms->fdt, plic_name, "reg",
0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
qemu_fdt_setprop_cell(ms->fdt, plic_name, "riscv,ndev",
VIRT_IRQCHIP_NUM_SOURCES - 1);
riscv_socket_fdt_write_id(ms, plic_name, socket);
qemu_fdt_setprop_cell(ms->fdt, plic_name, "phandle",
plic_phandles[socket]);
if (!socket) {
platform_bus_add_all_fdt_nodes(ms->fdt, plic_name,
memmap[VIRT_PLATFORM_BUS].base,
memmap[VIRT_PLATFORM_BUS].size,
VIRT_PLATFORM_BUS_IRQ);
}
}
uint32_t imsic_num_bits(uint32_t count)
{
uint32_t ret = 0;
while (BIT(ret) < count) {
ret++;
}
return ret;
}
static void create_fdt_one_imsic(RISCVVirtState *s, hwaddr base_addr,
uint32_t *intc_phandles, uint32_t msi_phandle,
bool m_mode, uint32_t imsic_guest_bits)
{
int cpu, socket;
g_autofree char *imsic_name = NULL;
MachineState *ms = MACHINE(s);
int socket_count = riscv_socket_count(ms);
uint32_t imsic_max_hart_per_socket, imsic_addr, imsic_size;
g_autofree uint32_t *imsic_cells = NULL;
g_autofree uint32_t *imsic_regs = NULL;
static const char * const imsic_compat[2] = {
"qemu,imsics", "riscv,imsics"
};
imsic_cells = g_new0(uint32_t, ms->smp.cpus * 2);
imsic_regs = g_new0(uint32_t, socket_count * 4);
for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
imsic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
imsic_cells[cpu * 2 + 1] = cpu_to_be32(m_mode ? IRQ_M_EXT : IRQ_S_EXT);
}
imsic_max_hart_per_socket = 0;
for (socket = 0; socket < socket_count; socket++) {
imsic_addr = base_addr + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
imsic_size = IMSIC_HART_SIZE(imsic_guest_bits) *
s->soc[socket].num_harts;
imsic_regs[socket * 4 + 0] = 0;
imsic_regs[socket * 4 + 1] = cpu_to_be32(imsic_addr);
imsic_regs[socket * 4 + 2] = 0;
imsic_regs[socket * 4 + 3] = cpu_to_be32(imsic_size);
if (imsic_max_hart_per_socket < s->soc[socket].num_harts) {
imsic_max_hart_per_socket = s->soc[socket].num_harts;
}
}
imsic_name = g_strdup_printf("/soc/interrupt-controller@%lx",
(unsigned long)base_addr);
qemu_fdt_add_subnode(ms->fdt, imsic_name);
qemu_fdt_setprop_string_array(ms->fdt, imsic_name, "compatible",
(char **)&imsic_compat,
ARRAY_SIZE(imsic_compat));
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "#interrupt-cells",
FDT_IMSIC_INT_CELLS);
qemu_fdt_setprop(ms->fdt, imsic_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop(ms->fdt, imsic_name, "msi-controller", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "#msi-cells", 0);
qemu_fdt_setprop(ms->fdt, imsic_name, "interrupts-extended",
imsic_cells, ms->smp.cpus * sizeof(uint32_t) * 2);
qemu_fdt_setprop(ms->fdt, imsic_name, "reg", imsic_regs,
socket_count * sizeof(uint32_t) * 4);
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,num-ids",
VIRT_IRQCHIP_NUM_MSIS);
if (imsic_guest_bits) {
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,guest-index-bits",
imsic_guest_bits);
}
if (socket_count > 1) {
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,hart-index-bits",
imsic_num_bits(imsic_max_hart_per_socket));
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,group-index-bits",
imsic_num_bits(socket_count));
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "riscv,group-index-shift",
IMSIC_MMIO_GROUP_MIN_SHIFT);
}
qemu_fdt_setprop_cell(ms->fdt, imsic_name, "phandle", msi_phandle);
}
static void create_fdt_imsic(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t *phandle, uint32_t *intc_phandles,
uint32_t *msi_m_phandle, uint32_t *msi_s_phandle)
{
*msi_m_phandle = (*phandle)++;
*msi_s_phandle = (*phandle)++;
if (!kvm_enabled()) {
/* M-level IMSIC node */
create_fdt_one_imsic(s, memmap[VIRT_IMSIC_M].base, intc_phandles,
*msi_m_phandle, true, 0);
}
/* S-level IMSIC node */
create_fdt_one_imsic(s, memmap[VIRT_IMSIC_S].base, intc_phandles,
*msi_s_phandle, false,
imsic_num_bits(s->aia_guests + 1));
}
/* Caller must free string after use */
static char *fdt_get_aplic_nodename(unsigned long aplic_addr)
{
return g_strdup_printf("/soc/interrupt-controller@%lx", aplic_addr);
}
static void create_fdt_one_aplic(RISCVVirtState *s, int socket,
unsigned long aplic_addr, uint32_t aplic_size,
uint32_t msi_phandle,
uint32_t *intc_phandles,
uint32_t aplic_phandle,
uint32_t aplic_child_phandle,
bool m_mode, int num_harts)
{
int cpu;
g_autofree char *aplic_name = fdt_get_aplic_nodename(aplic_addr);
g_autofree uint32_t *aplic_cells = g_new0(uint32_t, num_harts * 2);
MachineState *ms = MACHINE(s);
static const char * const aplic_compat[2] = {
"qemu,aplic", "riscv,aplic"
};
for (cpu = 0; cpu < num_harts; cpu++) {
aplic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aplic_cells[cpu * 2 + 1] = cpu_to_be32(m_mode ? IRQ_M_EXT : IRQ_S_EXT);
}
qemu_fdt_add_subnode(ms->fdt, aplic_name);
qemu_fdt_setprop_string_array(ms->fdt, aplic_name, "compatible",
(char **)&aplic_compat,
ARRAY_SIZE(aplic_compat));
qemu_fdt_setprop_cell(ms->fdt, aplic_name, "#address-cells",
FDT_APLIC_ADDR_CELLS);
qemu_fdt_setprop_cell(ms->fdt, aplic_name,
"#interrupt-cells", FDT_APLIC_INT_CELLS);
qemu_fdt_setprop(ms->fdt, aplic_name, "interrupt-controller", NULL, 0);
if (s->aia_type == VIRT_AIA_TYPE_APLIC) {
qemu_fdt_setprop(ms->fdt, aplic_name, "interrupts-extended",
aplic_cells, num_harts * sizeof(uint32_t) * 2);
} else {
qemu_fdt_setprop_cell(ms->fdt, aplic_name, "msi-parent", msi_phandle);
}
qemu_fdt_setprop_cells(ms->fdt, aplic_name, "reg",
0x0, aplic_addr, 0x0, aplic_size);
qemu_fdt_setprop_cell(ms->fdt, aplic_name, "riscv,num-sources",
VIRT_IRQCHIP_NUM_SOURCES);
if (aplic_child_phandle) {
qemu_fdt_setprop_cell(ms->fdt, aplic_name, "riscv,children",
aplic_child_phandle);
qemu_fdt_setprop_cells(ms->fdt, aplic_name, "riscv,delegation",
aplic_child_phandle, 0x1,
VIRT_IRQCHIP_NUM_SOURCES);
}
riscv_socket_fdt_write_id(ms, aplic_name, socket);
qemu_fdt_setprop_cell(ms->fdt, aplic_name, "phandle", aplic_phandle);
}
static void create_fdt_socket_aplic(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t msi_m_phandle,
uint32_t msi_s_phandle,
uint32_t *phandle,
uint32_t *intc_phandles,
uint32_t *aplic_phandles,
int num_harts)
{
unsigned long aplic_addr;
MachineState *ms = MACHINE(s);
uint32_t aplic_m_phandle, aplic_s_phandle;
aplic_m_phandle = (*phandle)++;
aplic_s_phandle = (*phandle)++;
if (!kvm_enabled()) {
/* M-level APLIC node */
aplic_addr = memmap[VIRT_APLIC_M].base +
(memmap[VIRT_APLIC_M].size * socket);
create_fdt_one_aplic(s, socket, aplic_addr, memmap[VIRT_APLIC_M].size,
msi_m_phandle, intc_phandles,
aplic_m_phandle, aplic_s_phandle,
true, num_harts);
}
/* S-level APLIC node */
aplic_addr = memmap[VIRT_APLIC_S].base +
(memmap[VIRT_APLIC_S].size * socket);
create_fdt_one_aplic(s, socket, aplic_addr, memmap[VIRT_APLIC_S].size,
msi_s_phandle, intc_phandles,
aplic_s_phandle, 0,
false, num_harts);
if (!socket) {
g_autofree char *aplic_name = fdt_get_aplic_nodename(aplic_addr);
platform_bus_add_all_fdt_nodes(ms->fdt, aplic_name,
memmap[VIRT_PLATFORM_BUS].base,
memmap[VIRT_PLATFORM_BUS].size,
VIRT_PLATFORM_BUS_IRQ);
}
aplic_phandles[socket] = aplic_s_phandle;
}
static void create_fdt_pmu(RISCVVirtState *s)
{
g_autofree char *pmu_name = g_strdup_printf("/pmu");
MachineState *ms = MACHINE(s);
RISCVCPU hart = s->soc[0].harts[0];
qemu_fdt_add_subnode(ms->fdt, pmu_name);
qemu_fdt_setprop_string(ms->fdt, pmu_name, "compatible", "riscv,pmu");
riscv_pmu_generate_fdt_node(ms->fdt, hart.pmu_avail_ctrs, pmu_name);
}
static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t *phandle,
uint32_t *irq_mmio_phandle,
uint32_t *irq_pcie_phandle,
uint32_t *irq_virtio_phandle,
uint32_t *msi_pcie_phandle)
{
int socket, phandle_pos;
MachineState *ms = MACHINE(s);
uint32_t msi_m_phandle = 0, msi_s_phandle = 0;
uint32_t xplic_phandles[MAX_NODES];
g_autofree uint32_t *intc_phandles = NULL;
int socket_count = riscv_socket_count(ms);
qemu_fdt_add_subnode(ms->fdt, "/cpus");
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "timebase-frequency",
kvm_enabled() ?
kvm_riscv_get_timebase_frequency(first_cpu) :
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", 0x1);
qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
intc_phandles = g_new0(uint32_t, ms->smp.cpus);
phandle_pos = ms->smp.cpus;
for (socket = (socket_count - 1); socket >= 0; socket--) {
g_autofree char *clust_name = NULL;
phandle_pos -= s->soc[socket].num_harts;
clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
qemu_fdt_add_subnode(ms->fdt, clust_name);
create_fdt_socket_cpus(s, socket, clust_name, phandle,
&intc_phandles[phandle_pos]);
create_fdt_socket_memory(s, memmap, socket);
if (virt_aclint_allowed() && s->have_aclint) {
create_fdt_socket_aclint(s, memmap, socket,
&intc_phandles[phandle_pos]);
} else if (tcg_enabled()) {
create_fdt_socket_clint(s, memmap, socket,
&intc_phandles[phandle_pos]);
}
}
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
create_fdt_imsic(s, memmap, phandle, intc_phandles,
&msi_m_phandle, &msi_s_phandle);
*msi_pcie_phandle = msi_s_phandle;
}
/* KVM AIA only has one APLIC instance */
if (kvm_enabled() && virt_use_kvm_aia(s)) {
create_fdt_socket_aplic(s, memmap, 0,
msi_m_phandle, msi_s_phandle, phandle,
&intc_phandles[0], xplic_phandles,
ms->smp.cpus);
} else {
phandle_pos = ms->smp.cpus;
for (socket = (socket_count - 1); socket >= 0; socket--) {
phandle_pos -= s->soc[socket].num_harts;
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
create_fdt_socket_plic(s, memmap, socket, phandle,
&intc_phandles[phandle_pos],
xplic_phandles);
} else {
create_fdt_socket_aplic(s, memmap, socket,
msi_m_phandle, msi_s_phandle, phandle,
&intc_phandles[phandle_pos],
xplic_phandles,
s->soc[socket].num_harts);
}
}
}
if (kvm_enabled() && virt_use_kvm_aia(s)) {
*irq_mmio_phandle = xplic_phandles[0];
*irq_virtio_phandle = xplic_phandles[0];
*irq_pcie_phandle = xplic_phandles[0];
} else {
for (socket = 0; socket < socket_count; socket++) {
if (socket == 0) {
*irq_mmio_phandle = xplic_phandles[socket];
*irq_virtio_phandle = xplic_phandles[socket];
*irq_pcie_phandle = xplic_phandles[socket];
}
if (socket == 1) {
*irq_virtio_phandle = xplic_phandles[socket];
*irq_pcie_phandle = xplic_phandles[socket];
}
if (socket == 2) {
*irq_pcie_phandle = xplic_phandles[socket];
}
}
}
riscv_socket_fdt_write_distance_matrix(ms);
}
static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_virtio_phandle)
{
int i;
MachineState *ms = MACHINE(s);
for (i = 0; i < VIRTIO_COUNT; i++) {
g_autofree char *name = g_strdup_printf("/soc/virtio_mmio@%lx",
(long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible", "virtio,mmio");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
0x0, memmap[VIRT_VIRTIO].size);
qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent",
irq_virtio_phandle);
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
qemu_fdt_setprop_cell(ms->fdt, name, "interrupts",
VIRTIO_IRQ + i);
} else {
qemu_fdt_setprop_cells(ms->fdt, name, "interrupts",
VIRTIO_IRQ + i, 0x4);
}
}
}
static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_pcie_phandle,
uint32_t msi_pcie_phandle)
{
g_autofree char *name = NULL;
MachineState *ms = MACHINE(s);
name = g_strdup_printf("/soc/pci@%lx",
(long) memmap[VIRT_PCIE_ECAM].base);
qemu_fdt_setprop_cell(ms->fdt, name, "#address-cells",
FDT_PCI_ADDR_CELLS);
qemu_fdt_setprop_cell(ms->fdt, name, "#interrupt-cells",
FDT_PCI_INT_CELLS);
qemu_fdt_setprop_cell(ms->fdt, name, "#size-cells", 0x2);
qemu_fdt_setprop_string(ms->fdt, name, "compatible",
"pci-host-ecam-generic");
qemu_fdt_setprop_string(ms->fdt, name, "device_type", "pci");
qemu_fdt_setprop_cell(ms->fdt, name, "linux,pci-domain", 0);
qemu_fdt_setprop_cells(ms->fdt, name, "bus-range", 0,
memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
qemu_fdt_setprop(ms->fdt, name, "dma-coherent", NULL, 0);
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
qemu_fdt_setprop_cell(ms->fdt, name, "msi-parent", msi_pcie_phandle);
}
qemu_fdt_setprop_cells(ms->fdt, name, "reg", 0,
memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
qemu_fdt_setprop_sized_cells(ms->fdt, name, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
1, FDT_PCI_RANGE_MMIO,
2, memmap[VIRT_PCIE_MMIO].base,
2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
1, FDT_PCI_RANGE_MMIO_64BIT,
2, virt_high_pcie_memmap.base,
2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
create_pcie_irq_map(s, ms->fdt, name, irq_pcie_phandle);
}
static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t *phandle)
{
char *name;
uint32_t test_phandle;
MachineState *ms = MACHINE(s);
test_phandle = (*phandle)++;
name = g_strdup_printf("/soc/test@%lx",
(long)memmap[VIRT_TEST].base);
qemu_fdt_add_subnode(ms->fdt, name);
{
static const char * const compat[3] = {
"sifive,test1", "sifive,test0", "syscon"
};
qemu_fdt_setprop_string_array(ms->fdt, name, "compatible",
(char **)&compat, ARRAY_SIZE(compat));
}
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
qemu_fdt_setprop_cell(ms->fdt, name, "phandle", test_phandle);
test_phandle = qemu_fdt_get_phandle(ms->fdt, name);
g_free(name);
name = g_strdup_printf("/reboot");
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible", "syscon-reboot");
qemu_fdt_setprop_cell(ms->fdt, name, "regmap", test_phandle);
qemu_fdt_setprop_cell(ms->fdt, name, "offset", 0x0);
qemu_fdt_setprop_cell(ms->fdt, name, "value", FINISHER_RESET);
g_free(name);
name = g_strdup_printf("/poweroff");
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible", "syscon-poweroff");
qemu_fdt_setprop_cell(ms->fdt, name, "regmap", test_phandle);
qemu_fdt_setprop_cell(ms->fdt, name, "offset", 0x0);
qemu_fdt_setprop_cell(ms->fdt, name, "value", FINISHER_PASS);
g_free(name);
}
static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_mmio_phandle)
{
g_autofree char *name = NULL;
MachineState *ms = MACHINE(s);
name = g_strdup_printf("/soc/serial@%lx", (long)memmap[VIRT_UART0].base);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible", "ns16550a");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, memmap[VIRT_UART0].base,
0x0, memmap[VIRT_UART0].size);
qemu_fdt_setprop_cell(ms->fdt, name, "clock-frequency", 3686400);
qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent", irq_mmio_phandle);
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
qemu_fdt_setprop_cell(ms->fdt, name, "interrupts", UART0_IRQ);
} else {
qemu_fdt_setprop_cells(ms->fdt, name, "interrupts", UART0_IRQ, 0x4);
}
qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", name);
}
static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_mmio_phandle)
{
g_autofree char *name = NULL;
MachineState *ms = MACHINE(s);
name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible",
"google,goldfish-rtc");
qemu_fdt_setprop_cells(ms->fdt, name, "reg",
0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
qemu_fdt_setprop_cell(ms->fdt, name, "interrupt-parent",
irq_mmio_phandle);
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
qemu_fdt_setprop_cell(ms->fdt, name, "interrupts", RTC_IRQ);
} else {
qemu_fdt_setprop_cells(ms->fdt, name, "interrupts", RTC_IRQ, 0x4);
}
}
static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
{
MachineState *ms = MACHINE(s);
hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
g_autofree char *name = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_setprop_string(ms->fdt, name, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(ms->fdt, name, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(ms->fdt, name, "bank-width", 4);
}
static void create_fdt_fw_cfg(RISCVVirtState *s, const MemMapEntry *memmap)
{
MachineState *ms = MACHINE(s);
hwaddr base = memmap[VIRT_FW_CFG].base;
hwaddr size = memmap[VIRT_FW_CFG].size;
g_autofree char *nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename,
"compatible", "qemu,fw-cfg-mmio");
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
}
static void create_fdt_virtio_iommu(RISCVVirtState *s, uint16_t bdf)
{
const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
void *fdt = MACHINE(s)->fdt;
uint32_t iommu_phandle;
g_autofree char *iommu_node = NULL;
g_autofree char *pci_node = NULL;
pci_node = g_strdup_printf("/soc/pci@%lx",
(long) virt_memmap[VIRT_PCIE_ECAM].base);
iommu_node = g_strdup_printf("%s/virtio_iommu@%x,%x", pci_node,
PCI_SLOT(bdf), PCI_FUNC(bdf));
iommu_phandle = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_add_subnode(fdt, iommu_node);
qemu_fdt_setprop(fdt, iommu_node, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(fdt, iommu_node, "reg",
1, bdf << 8, 1, 0, 1, 0,
1, 0, 1, 0);
qemu_fdt_setprop_cell(fdt, iommu_node, "#iommu-cells", 1);
qemu_fdt_setprop_cell(fdt, iommu_node, "phandle", iommu_phandle);
qemu_fdt_setprop_cells(fdt, pci_node, "iommu-map",
0, iommu_phandle, 0, bdf,
bdf + 1, iommu_phandle, bdf + 1, 0xffff - bdf);
}
static void finalize_fdt(RISCVVirtState *s)
{
uint32_t phandle = 1, irq_mmio_phandle = 1, msi_pcie_phandle = 1;
uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
create_fdt_sockets(s, virt_memmap, &phandle, &irq_mmio_phandle,
&irq_pcie_phandle, &irq_virtio_phandle,
&msi_pcie_phandle);
create_fdt_virtio(s, virt_memmap, irq_virtio_phandle);
create_fdt_pcie(s, virt_memmap, irq_pcie_phandle, msi_pcie_phandle);
create_fdt_reset(s, virt_memmap, &phandle);
create_fdt_uart(s, virt_memmap, irq_mmio_phandle);
create_fdt_rtc(s, virt_memmap, irq_mmio_phandle);
}
static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap)
{
MachineState *ms = MACHINE(s);
uint8_t rng_seed[32];
g_autofree char *name = NULL;
ms->fdt = create_device_tree(&s->fdt_size);
if (!ms->fdt) {
error_report("create_device_tree() failed");
exit(1);
}
qemu_fdt_setprop_string(ms->fdt, "/", "model", "riscv-virtio,qemu");
qemu_fdt_setprop_string(ms->fdt, "/", "compatible", "riscv-virtio");
qemu_fdt_setprop_cell(ms->fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_cell(ms->fdt, "/", "#address-cells", 0x2);
qemu_fdt_add_subnode(ms->fdt, "/soc");
qemu_fdt_setprop(ms->fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(ms->fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(ms->fdt, "/soc", "#size-cells", 0x2);
qemu_fdt_setprop_cell(ms->fdt, "/soc", "#address-cells", 0x2);
/*
* The "/soc/pci@..." node is needed for PCIE hotplugs
* that might happen before finalize_fdt().
*/
name = g_strdup_printf("/soc/pci@%lx", (long) memmap[VIRT_PCIE_ECAM].base);
qemu_fdt_add_subnode(ms->fdt, name);
qemu_fdt_add_subnode(ms->fdt, "/chosen");
/* Pass seed to RNG */
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
qemu_fdt_setprop(ms->fdt, "/chosen", "rng-seed",
rng_seed, sizeof(rng_seed));
create_fdt_flash(s, memmap);
create_fdt_fw_cfg(s, memmap);
create_fdt_pmu(s);
}
static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
DeviceState *irqchip,
RISCVVirtState *s)
{
DeviceState *dev;
MemoryRegion *ecam_alias, *ecam_reg;
MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
hwaddr ecam_base = s->memmap[VIRT_PCIE_ECAM].base;
hwaddr ecam_size = s->memmap[VIRT_PCIE_ECAM].size;
hwaddr mmio_base = s->memmap[VIRT_PCIE_MMIO].base;
hwaddr mmio_size = s->memmap[VIRT_PCIE_MMIO].size;
hwaddr high_mmio_base = virt_high_pcie_memmap.base;
hwaddr high_mmio_size = virt_high_pcie_memmap.size;
hwaddr pio_base = s->memmap[VIRT_PCIE_PIO].base;
hwaddr pio_size = s->memmap[VIRT_PCIE_PIO].size;
qemu_irq irq;
int i;
dev = qdev_new(TYPE_GPEX_HOST);
/* Set GPEX object properties for the virt machine */
object_property_set_uint(OBJECT(GPEX_HOST(dev)), PCI_HOST_ECAM_BASE,
ecam_base, NULL);
object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_ECAM_SIZE,
ecam_size, NULL);
object_property_set_uint(OBJECT(GPEX_HOST(dev)),
PCI_HOST_BELOW_4G_MMIO_BASE,
mmio_base, NULL);
object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_BELOW_4G_MMIO_SIZE,
mmio_size, NULL);
object_property_set_uint(OBJECT(GPEX_HOST(dev)),
PCI_HOST_ABOVE_4G_MMIO_BASE,
high_mmio_base, NULL);
object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_ABOVE_4G_MMIO_SIZE,
high_mmio_size, NULL);
object_property_set_uint(OBJECT(GPEX_HOST(dev)), PCI_HOST_PIO_BASE,
pio_base, NULL);
object_property_set_int(OBJECT(GPEX_HOST(dev)), PCI_HOST_PIO_SIZE,
pio_size, NULL);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, ecam_size);
memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, mmio_base, mmio_size);
memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
/* Map high MMIO space */
high_mmio_alias = g_new0(MemoryRegion, 1);
memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
mmio_reg, high_mmio_base, high_mmio_size);
memory_region_add_subregion(get_system_memory(), high_mmio_base,
high_mmio_alias);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
irq = qdev_get_gpio_in(irqchip, PCIE_IRQ + i);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
}
GPEX_HOST(dev)->gpex_cfg.bus = PCI_HOST_BRIDGE(GPEX_HOST(dev))->bus;
return dev;
}
static FWCfgState *create_fw_cfg(const MachineState *ms)
{
hwaddr base = virt_memmap[VIRT_FW_CFG].base;
FWCfgState *fw_cfg;
fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
&address_space_memory);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
return fw_cfg;
}
static DeviceState *virt_create_plic(const MemMapEntry *memmap, int socket,
int base_hartid, int hart_count)
{
DeviceState *ret;
g_autofree char *plic_hart_config = NULL;
/* Per-socket PLIC hart topology configuration string */
plic_hart_config = riscv_plic_hart_config_string(hart_count);
/* Per-socket PLIC */
ret = sifive_plic_create(
memmap[VIRT_PLIC].base + socket * memmap[VIRT_PLIC].size,
plic_hart_config, hart_count, base_hartid,
VIRT_IRQCHIP_NUM_SOURCES,
((1U << VIRT_IRQCHIP_NUM_PRIO_BITS) - 1),
VIRT_PLIC_PRIORITY_BASE,
VIRT_PLIC_PENDING_BASE,
VIRT_PLIC_ENABLE_BASE,
VIRT_PLIC_ENABLE_STRIDE,
VIRT_PLIC_CONTEXT_BASE,
VIRT_PLIC_CONTEXT_STRIDE,
memmap[VIRT_PLIC].size);
return ret;
}
static DeviceState *virt_create_aia(RISCVVirtAIAType aia_type, int aia_guests,
const MemMapEntry *memmap, int socket,
int base_hartid, int hart_count)
{
int i;
hwaddr addr;
uint32_t guest_bits;
DeviceState *aplic_s = NULL;
DeviceState *aplic_m = NULL;
bool msimode = aia_type == VIRT_AIA_TYPE_APLIC_IMSIC;
if (msimode) {
if (!kvm_enabled()) {
/* Per-socket M-level IMSICs */
addr = memmap[VIRT_IMSIC_M].base +
socket * VIRT_IMSIC_GROUP_MAX_SIZE;
for (i = 0; i < hart_count; i++) {
riscv_imsic_create(addr + i * IMSIC_HART_SIZE(0),
base_hartid + i, true, 1,
VIRT_IRQCHIP_NUM_MSIS);
}
}
/* Per-socket S-level IMSICs */
guest_bits = imsic_num_bits(aia_guests + 1);
addr = memmap[VIRT_IMSIC_S].base + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
for (i = 0; i < hart_count; i++) {
riscv_imsic_create(addr + i * IMSIC_HART_SIZE(guest_bits),
base_hartid + i, false, 1 + aia_guests,
VIRT_IRQCHIP_NUM_MSIS);
}
}
if (!kvm_enabled()) {
/* Per-socket M-level APLIC */
aplic_m = riscv_aplic_create(memmap[VIRT_APLIC_M].base +
socket * memmap[VIRT_APLIC_M].size,
memmap[VIRT_APLIC_M].size,
(msimode) ? 0 : base_hartid,
(msimode) ? 0 : hart_count,
VIRT_IRQCHIP_NUM_SOURCES,
VIRT_IRQCHIP_NUM_PRIO_BITS,
msimode, true, NULL);
}
/* Per-socket S-level APLIC */
aplic_s = riscv_aplic_create(memmap[VIRT_APLIC_S].base +
socket * memmap[VIRT_APLIC_S].size,
memmap[VIRT_APLIC_S].size,
(msimode) ? 0 : base_hartid,
(msimode) ? 0 : hart_count,
VIRT_IRQCHIP_NUM_SOURCES,
VIRT_IRQCHIP_NUM_PRIO_BITS,
msimode, false, aplic_m);
return kvm_enabled() ? aplic_s : aplic_m;
}
static void create_platform_bus(RISCVVirtState *s, DeviceState *irqchip)
{
DeviceState *dev;
SysBusDevice *sysbus;
const MemMapEntry *memmap = virt_memmap;
int i;
MemoryRegion *sysmem = get_system_memory();
dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
qdev_prop_set_uint32(dev, "num_irqs", VIRT_PLATFORM_BUS_NUM_IRQS);
qdev_prop_set_uint32(dev, "mmio_size", memmap[VIRT_PLATFORM_BUS].size);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
s->platform_bus_dev = dev;
sysbus = SYS_BUS_DEVICE(dev);
for (i = 0; i < VIRT_PLATFORM_BUS_NUM_IRQS; i++) {
int irq = VIRT_PLATFORM_BUS_IRQ + i;
sysbus_connect_irq(sysbus, i, qdev_get_gpio_in(irqchip, irq));
}
memory_region_add_subregion(sysmem,
memmap[VIRT_PLATFORM_BUS].base,
sysbus_mmio_get_region(sysbus, 0));
}
static void virt_build_smbios(RISCVVirtState *s)
{
MachineClass *mc = MACHINE_GET_CLASS(s);
MachineState *ms = MACHINE(s);
uint8_t *smbios_tables, *smbios_anchor;
size_t smbios_tables_len, smbios_anchor_len;
struct smbios_phys_mem_area mem_array;
const char *product = "QEMU Virtual Machine";
if (kvm_enabled()) {
product = "KVM Virtual Machine";
}
smbios_set_defaults("QEMU", product, mc->name);
if (riscv_is_32bit(&s->soc[0])) {
smbios_set_default_processor_family(0x200);
} else {
smbios_set_default_processor_family(0x201);
}
/* build the array of physical mem area from base_memmap */
mem_array.address = s->memmap[VIRT_DRAM].base;
mem_array.length = ms->ram_size;
smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64,
&mem_array, 1,
&smbios_tables, &smbios_tables_len,
&smbios_anchor, &smbios_anchor_len,
&error_fatal);
if (smbios_anchor) {
fw_cfg_add_file(s->fw_cfg, "etc/smbios/smbios-tables",
smbios_tables, smbios_tables_len);
fw_cfg_add_file(s->fw_cfg, "etc/smbios/smbios-anchor",
smbios_anchor, smbios_anchor_len);
}
}
static void virt_machine_done(Notifier *notifier, void *data)
{
RISCVVirtState *s = container_of(notifier, RISCVVirtState,
machine_done);
const MemMapEntry *memmap = virt_memmap;
MachineState *machine = MACHINE(s);
target_ulong start_addr = memmap[VIRT_DRAM].base;
target_ulong firmware_end_addr, kernel_start_addr;
const char *firmware_name = riscv_default_firmware_name(&s->soc[0]);
uint64_t fdt_load_addr;
uint64_t kernel_entry = 0;
BlockBackend *pflash_blk0;
/*
* An user provided dtb must include everything, including
* dynamic sysbus devices. Our FDT needs to be finalized.
*/
if (machine->dtb == NULL) {
finalize_fdt(s);
}
/*
* Only direct boot kernel is currently supported for KVM VM,
* so the "-bios" parameter is not supported when KVM is enabled.
*/
if (kvm_enabled()) {
if (machine->firmware) {
if (strcmp(machine->firmware, "none")) {
error_report("Machine mode firmware is not supported in "
"combination with KVM.");
exit(1);
}
} else {
machine->firmware = g_strdup("none");
}
}
firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
start_addr, NULL);
pflash_blk0 = pflash_cfi01_get_blk(s->flash[0]);
if (pflash_blk0) {
if (machine->firmware && !strcmp(machine->firmware, "none") &&
!kvm_enabled()) {
/*
* Pflash was supplied but bios is none and not KVM guest,
* let's overwrite the address we jump to after reset to
* the base of the flash.
*/
start_addr = virt_memmap[VIRT_FLASH].base;
} else {
/*
* Pflash was supplied but either KVM guest or bios is not none.
* In this case, base of the flash would contain S-mode payload.
*/
riscv_setup_firmware_boot(machine);
kernel_entry = virt_memmap[VIRT_FLASH].base;
}
}
if (machine->kernel_filename && !kernel_entry) {
kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
firmware_end_addr);
kernel_entry = riscv_load_kernel(machine, &s->soc[0],
kernel_start_addr, true, NULL);
}
fdt_load_addr = riscv_compute_fdt_addr(memmap[VIRT_DRAM].base,
memmap[VIRT_DRAM].size,
machine);
riscv_load_fdt(fdt_load_addr, machine->fdt);
/* load the reset vector */
riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
virt_memmap[VIRT_MROM].base,
virt_memmap[VIRT_MROM].size, kernel_entry,
fdt_load_addr);
/*
* Only direct boot kernel is currently supported for KVM VM,
* So here setup kernel start address and fdt address.
* TODO:Support firmware loading and integrate to TCG start
*/
if (kvm_enabled()) {
riscv_setup_direct_kernel(kernel_entry, fdt_load_addr);
}
virt_build_smbios(s);
if (virt_is_acpi_enabled(s)) {
virt_acpi_setup(s);
}
}
static void virt_machine_init(MachineState *machine)
{
const MemMapEntry *memmap = virt_memmap;
RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
DeviceState *mmio_irqchip, *virtio_irqchip, *pcie_irqchip;
int i, base_hartid, hart_count;
int socket_count = riscv_socket_count(machine);
/* Check socket count limit */
if (VIRT_SOCKETS_MAX < socket_count) {
error_report("number of sockets/nodes should be less than %d",
VIRT_SOCKETS_MAX);
exit(1);
}
if (!virt_aclint_allowed() && s->have_aclint) {
error_report("'aclint' is only available with TCG acceleration");
exit(1);
}
/* Initialize sockets */
mmio_irqchip = virtio_irqchip = pcie_irqchip = NULL;
for (i = 0; i < socket_count; i++) {
g_autofree char *soc_name = g_strdup_printf("soc%d", i);
if (!riscv_socket_check_hartids(machine, i)) {
error_report("discontinuous hartids in socket%d", i);
exit(1);
}
base_hartid = riscv_socket_first_hartid(machine, i);
if (base_hartid < 0) {
error_report("can't find hartid base for socket%d", i);
exit(1);
}
hart_count = riscv_socket_hart_count(machine, i);
if (hart_count < 0) {
error_report("can't find hart count for socket%d", i);
exit(1);
}
object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
TYPE_RISCV_HART_ARRAY);
object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
machine->cpu_type, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
base_hartid, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
hart_count, &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
if (virt_aclint_allowed() && s->have_aclint) {
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
/* Per-socket ACLINT MTIMER */
riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
i * RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP,
RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
} else {
/* Per-socket ACLINT MSWI, MTIMER, and SSWI */
riscv_aclint_swi_create(memmap[VIRT_CLINT].base +
i * memmap[VIRT_CLINT].size,
base_hartid, hart_count, false);
riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
i * memmap[VIRT_CLINT].size +
RISCV_ACLINT_SWI_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP,
RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
riscv_aclint_swi_create(memmap[VIRT_ACLINT_SSWI].base +
i * memmap[VIRT_ACLINT_SSWI].size,
base_hartid, hart_count, true);
}
} else if (tcg_enabled()) {
/* Per-socket SiFive CLINT */
riscv_aclint_swi_create(
memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
base_hartid, hart_count, false);
riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
i * memmap[VIRT_CLINT].size + RISCV_ACLINT_SWI_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
}
/* Per-socket interrupt controller */
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
s->irqchip[i] = virt_create_plic(memmap, i,
base_hartid, hart_count);
} else {
s->irqchip[i] = virt_create_aia(s->aia_type, s->aia_guests,
memmap, i, base_hartid,
hart_count);
}
/* Try to use different IRQCHIP instance based device type */
if (i == 0) {
mmio_irqchip = s->irqchip[i];
virtio_irqchip = s->irqchip[i];
pcie_irqchip = s->irqchip[i];
}
if (i == 1) {
virtio_irqchip = s->irqchip[i];
pcie_irqchip = s->irqchip[i];
}
if (i == 2) {
pcie_irqchip = s->irqchip[i];
}
}
if (kvm_enabled() && virt_use_kvm_aia(s)) {
kvm_riscv_aia_create(machine, IMSIC_MMIO_GROUP_MIN_SHIFT,
VIRT_IRQCHIP_NUM_SOURCES, VIRT_IRQCHIP_NUM_MSIS,
memmap[VIRT_APLIC_S].base,
memmap[VIRT_IMSIC_S].base,
s->aia_guests);
}
if (riscv_is_32bit(&s->soc[0])) {
#if HOST_LONG_BITS == 64
/* limit RAM size in a 32-bit system */
if (machine->ram_size > 10 * GiB) {
machine->ram_size = 10 * GiB;
error_report("Limiting RAM size to 10 GiB");
}
#endif
virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
} else {
virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
virt_high_pcie_memmap.base =
ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
}
s->memmap = virt_memmap;
/* register system main memory (actual RAM) */
memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
machine->ram);
/* boot rom */
memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
memmap[VIRT_MROM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
mask_rom);
/*
* Init fw_cfg. Must be done before riscv_load_fdt, otherwise the
* device tree cannot be altered and we get FDT_ERR_NOSPACE.
*/
s->fw_cfg = create_fw_cfg(machine);
rom_set_fw(s->fw_cfg);
/* SiFive Test MMIO device */
sifive_test_create(memmap[VIRT_TEST].base);
/* VirtIO MMIO devices */
for (i = 0; i < VIRTIO_COUNT; i++) {
sysbus_create_simple("virtio-mmio",
memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
qdev_get_gpio_in(virtio_irqchip, VIRTIO_IRQ + i));
}
gpex_pcie_init(system_memory, pcie_irqchip, s);
create_platform_bus(s, mmio_irqchip);
serial_mm_init(system_memory, memmap[VIRT_UART0].base,
0, qdev_get_gpio_in(mmio_irqchip, UART0_IRQ), 399193,
serial_hd(0), DEVICE_LITTLE_ENDIAN);
sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
qdev_get_gpio_in(mmio_irqchip, RTC_IRQ));
for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
/* Map legacy -drive if=pflash to machine properties */
pflash_cfi01_legacy_drive(s->flash[i],
drive_get(IF_PFLASH, 0, i));
}
virt_flash_map(s, system_memory);
/* load/create device tree */
if (machine->dtb) {
machine->fdt = load_device_tree(machine->dtb, &s->fdt_size);
if (!machine->fdt) {
error_report("load_device_tree() failed");
exit(1);
}
} else {
create_fdt(s, memmap);
}
s->machine_done.notify = virt_machine_done;
qemu_add_machine_init_done_notifier(&s->machine_done);
}
static void virt_machine_instance_init(Object *obj)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
virt_flash_create(s);
s->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
s->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
s->acpi = ON_OFF_AUTO_AUTO;
}
static char *virt_get_aia_guests(Object *obj, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
return g_strdup_printf("%d", s->aia_guests);
}
static void virt_set_aia_guests(Object *obj, const char *val, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
s->aia_guests = atoi(val);
if (s->aia_guests < 0 || s->aia_guests > VIRT_IRQCHIP_MAX_GUESTS) {
error_setg(errp, "Invalid number of AIA IMSIC guests");
error_append_hint(errp, "Valid values be between 0 and %d.\n",
VIRT_IRQCHIP_MAX_GUESTS);
}
}
static char *virt_get_aia(Object *obj, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
const char *val;
switch (s->aia_type) {
case VIRT_AIA_TYPE_APLIC:
val = "aplic";
break;
case VIRT_AIA_TYPE_APLIC_IMSIC:
val = "aplic-imsic";
break;
default:
val = "none";
break;
};
return g_strdup(val);
}
static void virt_set_aia(Object *obj, const char *val, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
if (!strcmp(val, "none")) {
s->aia_type = VIRT_AIA_TYPE_NONE;
} else if (!strcmp(val, "aplic")) {
s->aia_type = VIRT_AIA_TYPE_APLIC;
} else if (!strcmp(val, "aplic-imsic")) {
s->aia_type = VIRT_AIA_TYPE_APLIC_IMSIC;
} else {
error_setg(errp, "Invalid AIA interrupt controller type");
error_append_hint(errp, "Valid values are none, aplic, and "
"aplic-imsic.\n");
}
}
static bool virt_get_aclint(Object *obj, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
return s->have_aclint;
}
static void virt_set_aclint(Object *obj, bool value, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
s->have_aclint = value;
}
bool virt_is_acpi_enabled(RISCVVirtState *s)
{
return s->acpi != ON_OFF_AUTO_OFF;
}
static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
OnOffAuto acpi = s->acpi;
visit_type_OnOffAuto(v, name, &acpi, errp);
}
static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
visit_type_OnOffAuto(v, name, &s->acpi, errp);
}
static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
DeviceState *dev)
{
MachineClass *mc = MACHINE_GET_CLASS(machine);
if (device_is_dynamic_sysbus(mc, dev) ||
object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
return HOTPLUG_HANDLER(machine);
}
return NULL;
}
static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(hotplug_dev);
if (s->platform_bus_dev) {
MachineClass *mc = MACHINE_GET_CLASS(s);
if (device_is_dynamic_sysbus(mc, dev)) {
platform_bus_link_device(PLATFORM_BUS_DEVICE(s->platform_bus_dev),
SYS_BUS_DEVICE(dev));
}
}
if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
create_fdt_virtio_iommu(s, pci_get_bdf(PCI_DEVICE(dev)));
}
}
static void virt_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
mc->desc = "RISC-V VirtIO board";
mc->init = virt_machine_init;
mc->max_cpus = VIRT_CPUS_MAX;
mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
mc->block_default_type = IF_VIRTIO;
mc->no_cdrom = 1;
mc->pci_allow_0_address = true;
mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
mc->numa_mem_supported = true;
/* platform instead of architectural choice */
mc->cpu_cluster_has_numa_boundary = true;
mc->default_ram_id = "riscv_virt_board.ram";
assert(!mc->get_hotplug_handler);
mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
hc->plug = virt_machine_device_plug_cb;
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
#ifdef CONFIG_TPM
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
#endif
object_class_property_add_bool(oc, "aclint", virt_get_aclint,
virt_set_aclint);
object_class_property_set_description(oc, "aclint",
"(TCG only) Set on/off to "
"enable/disable emulating "
"ACLINT devices");
object_class_property_add_str(oc, "aia", virt_get_aia,
virt_set_aia);
object_class_property_set_description(oc, "aia",
"Set type of AIA interrupt "
"controller. Valid values are "
"none, aplic, and aplic-imsic.");
object_class_property_add_str(oc, "aia-guests",
virt_get_aia_guests,
virt_set_aia_guests);
{
g_autofree char *str =
g_strdup_printf("Set number of guest MMIO pages for AIA IMSIC. "
"Valid value should be between 0 and %d.",
VIRT_IRQCHIP_MAX_GUESTS);
object_class_property_set_description(oc, "aia-guests", str);
}
object_class_property_add(oc, "acpi", "OnOffAuto",
virt_get_acpi, virt_set_acpi,
NULL, NULL);
object_class_property_set_description(oc, "acpi",
"Enable ACPI");
}
static const TypeInfo virt_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("virt"),
.parent = TYPE_MACHINE,
.class_init = virt_machine_class_init,
.instance_init = virt_machine_instance_init,
.instance_size = sizeof(RISCVVirtState),
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
},
};
static void virt_machine_init_register_types(void)
{
type_register_static(&virt_machine_typeinfo);
}
type_init(virt_machine_init_register_types)