qemu/target/hexagon/translate.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1249 lines
39 KiB
C
Raw Normal View History

/*
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#define QEMU_GENERATE
#include "qemu/osdep.h"
#include "cpu.h"
#include "tcg/tcg-op.h"
#include "tcg/tcg-op-gvec.h"
#include "exec/helper-gen.h"
#include "exec/helper-proto.h"
#include "exec/translation-block.h"
#include "exec/cpu_ldst.h"
#include "exec/log.h"
#include "internal.h"
#include "attribs.h"
#include "insn.h"
#include "decode.h"
#include "translate.h"
#include "genptr.h"
#include "printinsn.h"
#define HELPER_H "helper.h"
#include "exec/helper-info.c.inc"
#undef HELPER_H
#include "analyze_funcs_generated.c.inc"
typedef void (*AnalyzeInsn)(DisasContext *ctx);
static const AnalyzeInsn opcode_analyze[XX_LAST_OPCODE] = {
#define OPCODE(X) [X] = analyze_##X
#include "opcodes_def_generated.h.inc"
#undef OPCODE
};
TCGv hex_gpr[TOTAL_PER_THREAD_REGS];
TCGv hex_pred[NUM_PREGS];
TCGv hex_slot_cancelled;
TCGv hex_new_value_usr;
TCGv hex_reg_written[TOTAL_PER_THREAD_REGS];
TCGv hex_store_addr[STORES_MAX];
TCGv hex_store_width[STORES_MAX];
TCGv hex_store_val32[STORES_MAX];
TCGv_i64 hex_store_val64[STORES_MAX];
TCGv hex_llsc_addr;
TCGv hex_llsc_val;
TCGv_i64 hex_llsc_val_i64;
TCGv hex_vstore_addr[VSTORES_MAX];
TCGv hex_vstore_size[VSTORES_MAX];
TCGv hex_vstore_pending[VSTORES_MAX];
static const char * const hexagon_prednames[] = {
"p0", "p1", "p2", "p3"
};
intptr_t ctx_future_vreg_off(DisasContext *ctx, int regnum,
int num, bool alloc_ok)
{
intptr_t offset;
if (!ctx->need_commit) {
return offsetof(CPUHexagonState, VRegs[regnum]);
}
/* See if it is already allocated */
for (int i = 0; i < ctx->future_vregs_idx; i++) {
if (ctx->future_vregs_num[i] == regnum) {
return offsetof(CPUHexagonState, future_VRegs[i]);
}
}
g_assert(alloc_ok);
offset = offsetof(CPUHexagonState, future_VRegs[ctx->future_vregs_idx]);
for (int i = 0; i < num; i++) {
ctx->future_vregs_num[ctx->future_vregs_idx + i] = regnum++;
}
ctx->future_vregs_idx += num;
g_assert(ctx->future_vregs_idx <= VECTOR_TEMPS_MAX);
return offset;
}
intptr_t ctx_tmp_vreg_off(DisasContext *ctx, int regnum,
int num, bool alloc_ok)
{
intptr_t offset;
/* See if it is already allocated */
for (int i = 0; i < ctx->tmp_vregs_idx; i++) {
if (ctx->tmp_vregs_num[i] == regnum) {
return offsetof(CPUHexagonState, tmp_VRegs[i]);
}
}
g_assert(alloc_ok);
offset = offsetof(CPUHexagonState, tmp_VRegs[ctx->tmp_vregs_idx]);
for (int i = 0; i < num; i++) {
ctx->tmp_vregs_num[ctx->tmp_vregs_idx + i] = regnum++;
}
ctx->tmp_vregs_idx += num;
g_assert(ctx->tmp_vregs_idx <= VECTOR_TEMPS_MAX);
return offset;
}
static void gen_exception_raw(int excp)
{
gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp));
}
static void gen_exec_counters(DisasContext *ctx)
{
tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_PKT_CNT],
hex_gpr[HEX_REG_QEMU_PKT_CNT], ctx->num_packets);
tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_INSN_CNT],
hex_gpr[HEX_REG_QEMU_INSN_CNT], ctx->num_insns);
tcg_gen_addi_tl(hex_gpr[HEX_REG_QEMU_HVX_CNT],
hex_gpr[HEX_REG_QEMU_HVX_CNT], ctx->num_hvx_insns);
}
static bool use_goto_tb(DisasContext *ctx, target_ulong dest)
{
return translator_use_goto_tb(&ctx->base, dest);
}
Hexagon (translate.c): avoid redundant PC updates on COF When there is a conditional change of flow or an endloop instruction, we preload HEX_REG_PC with ctx->next_PC at gen_start_packet(). Nonetheless, we still generate TCG code to do this update again at gen_goto_tb() when the condition for the COF is not met, thus producing redundant instructions. This can be seen with the following packet: 0x004002e4: 0x5c20d000 { if (!P0) jump:t PC+0 } Which generates this TCG code: ---- 004002e4 -> mov_i32 pc,$0x4002e8 and_i32 loc9,p0,$0x1 mov_i32 branch_taken,loc9 add_i32 pkt_cnt,pkt_cnt,$0x2 add_i32 insn_cnt,insn_cnt,$0x2 brcond_i32 branch_taken,$0x0,ne,$L1 goto_tb $0x0 mov_i32 pc,$0x4002e4 exit_tb $0x7fb0c36e5200 set_label $L1 goto_tb $0x1 -> mov_i32 pc,$0x4002e8 exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 Note that even after optimizations, the redundant PC update is still present: ---- 004002e4 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff mov_i32 branch_taken,$0x1 sync: 0 dead: 0 1 pref=0xffff add_i32 pkt_cnt,pkt_cnt,$0x2 sync: 0 dead: 0 1 pref=0xffff add_i32 insn_cnt,insn_cnt,$0x2 sync: 0 dead: 0 1 2 pref=0xffff goto_tb $0x1 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 With this patch, the second redundant update is properly discarded. Note that we need the additional "move_to_pc" flag instead of just avoiding the update whenever `dest == ctx->next_PC`, as that could potentially skip updates from a COF with met condition, whose ctx->branch_dest just happens to be equal to ctx->next_PC. Signed-off-by: Matheus Tavares Bernardino <quic_mathbern@quicinc.com> Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Anton Johansson <anjo@rev.ng> Reviewed-by: Taylor Simpson <tsimpson@quicinc.com> Message-Id: <fc059153c3f0526d97b7f13450c02b276b0908e1.1679519341.git.quic_mathbern@quicinc.com>
2023-03-23 00:17:10 +03:00
static void gen_goto_tb(DisasContext *ctx, int idx, target_ulong dest, bool
move_to_pc)
{
if (use_goto_tb(ctx, dest)) {
tcg_gen_goto_tb(idx);
Hexagon (translate.c): avoid redundant PC updates on COF When there is a conditional change of flow or an endloop instruction, we preload HEX_REG_PC with ctx->next_PC at gen_start_packet(). Nonetheless, we still generate TCG code to do this update again at gen_goto_tb() when the condition for the COF is not met, thus producing redundant instructions. This can be seen with the following packet: 0x004002e4: 0x5c20d000 { if (!P0) jump:t PC+0 } Which generates this TCG code: ---- 004002e4 -> mov_i32 pc,$0x4002e8 and_i32 loc9,p0,$0x1 mov_i32 branch_taken,loc9 add_i32 pkt_cnt,pkt_cnt,$0x2 add_i32 insn_cnt,insn_cnt,$0x2 brcond_i32 branch_taken,$0x0,ne,$L1 goto_tb $0x0 mov_i32 pc,$0x4002e4 exit_tb $0x7fb0c36e5200 set_label $L1 goto_tb $0x1 -> mov_i32 pc,$0x4002e8 exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 Note that even after optimizations, the redundant PC update is still present: ---- 004002e4 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff mov_i32 branch_taken,$0x1 sync: 0 dead: 0 1 pref=0xffff add_i32 pkt_cnt,pkt_cnt,$0x2 sync: 0 dead: 0 1 pref=0xffff add_i32 insn_cnt,insn_cnt,$0x2 sync: 0 dead: 0 1 2 pref=0xffff goto_tb $0x1 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 With this patch, the second redundant update is properly discarded. Note that we need the additional "move_to_pc" flag instead of just avoiding the update whenever `dest == ctx->next_PC`, as that could potentially skip updates from a COF with met condition, whose ctx->branch_dest just happens to be equal to ctx->next_PC. Signed-off-by: Matheus Tavares Bernardino <quic_mathbern@quicinc.com> Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Anton Johansson <anjo@rev.ng> Reviewed-by: Taylor Simpson <tsimpson@quicinc.com> Message-Id: <fc059153c3f0526d97b7f13450c02b276b0908e1.1679519341.git.quic_mathbern@quicinc.com>
2023-03-23 00:17:10 +03:00
if (move_to_pc) {
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
}
tcg_gen_exit_tb(ctx->base.tb, idx);
} else {
Hexagon (translate.c): avoid redundant PC updates on COF When there is a conditional change of flow or an endloop instruction, we preload HEX_REG_PC with ctx->next_PC at gen_start_packet(). Nonetheless, we still generate TCG code to do this update again at gen_goto_tb() when the condition for the COF is not met, thus producing redundant instructions. This can be seen with the following packet: 0x004002e4: 0x5c20d000 { if (!P0) jump:t PC+0 } Which generates this TCG code: ---- 004002e4 -> mov_i32 pc,$0x4002e8 and_i32 loc9,p0,$0x1 mov_i32 branch_taken,loc9 add_i32 pkt_cnt,pkt_cnt,$0x2 add_i32 insn_cnt,insn_cnt,$0x2 brcond_i32 branch_taken,$0x0,ne,$L1 goto_tb $0x0 mov_i32 pc,$0x4002e4 exit_tb $0x7fb0c36e5200 set_label $L1 goto_tb $0x1 -> mov_i32 pc,$0x4002e8 exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 Note that even after optimizations, the redundant PC update is still present: ---- 004002e4 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff mov_i32 branch_taken,$0x1 sync: 0 dead: 0 1 pref=0xffff add_i32 pkt_cnt,pkt_cnt,$0x2 sync: 0 dead: 0 1 pref=0xffff add_i32 insn_cnt,insn_cnt,$0x2 sync: 0 dead: 0 1 2 pref=0xffff goto_tb $0x1 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 With this patch, the second redundant update is properly discarded. Note that we need the additional "move_to_pc" flag instead of just avoiding the update whenever `dest == ctx->next_PC`, as that could potentially skip updates from a COF with met condition, whose ctx->branch_dest just happens to be equal to ctx->next_PC. Signed-off-by: Matheus Tavares Bernardino <quic_mathbern@quicinc.com> Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Anton Johansson <anjo@rev.ng> Reviewed-by: Taylor Simpson <tsimpson@quicinc.com> Message-Id: <fc059153c3f0526d97b7f13450c02b276b0908e1.1679519341.git.quic_mathbern@quicinc.com>
2023-03-23 00:17:10 +03:00
if (move_to_pc) {
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], dest);
}
tcg_gen_lookup_and_goto_ptr();
}
}
static void gen_end_tb(DisasContext *ctx)
{
Packet *pkt = ctx->pkt;
gen_exec_counters(ctx);
if (ctx->branch_cond != TCG_COND_NEVER) {
if (ctx->branch_cond != TCG_COND_ALWAYS) {
TCGLabel *skip = gen_new_label();
tcg_gen_brcondi_tl(ctx->branch_cond, ctx->branch_taken, 0, skip);
Hexagon (translate.c): avoid redundant PC updates on COF When there is a conditional change of flow or an endloop instruction, we preload HEX_REG_PC with ctx->next_PC at gen_start_packet(). Nonetheless, we still generate TCG code to do this update again at gen_goto_tb() when the condition for the COF is not met, thus producing redundant instructions. This can be seen with the following packet: 0x004002e4: 0x5c20d000 { if (!P0) jump:t PC+0 } Which generates this TCG code: ---- 004002e4 -> mov_i32 pc,$0x4002e8 and_i32 loc9,p0,$0x1 mov_i32 branch_taken,loc9 add_i32 pkt_cnt,pkt_cnt,$0x2 add_i32 insn_cnt,insn_cnt,$0x2 brcond_i32 branch_taken,$0x0,ne,$L1 goto_tb $0x0 mov_i32 pc,$0x4002e4 exit_tb $0x7fb0c36e5200 set_label $L1 goto_tb $0x1 -> mov_i32 pc,$0x4002e8 exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 Note that even after optimizations, the redundant PC update is still present: ---- 004002e4 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff mov_i32 branch_taken,$0x1 sync: 0 dead: 0 1 pref=0xffff add_i32 pkt_cnt,pkt_cnt,$0x2 sync: 0 dead: 0 1 pref=0xffff add_i32 insn_cnt,insn_cnt,$0x2 sync: 0 dead: 0 1 2 pref=0xffff goto_tb $0x1 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 With this patch, the second redundant update is properly discarded. Note that we need the additional "move_to_pc" flag instead of just avoiding the update whenever `dest == ctx->next_PC`, as that could potentially skip updates from a COF with met condition, whose ctx->branch_dest just happens to be equal to ctx->next_PC. Signed-off-by: Matheus Tavares Bernardino <quic_mathbern@quicinc.com> Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Anton Johansson <anjo@rev.ng> Reviewed-by: Taylor Simpson <tsimpson@quicinc.com> Message-Id: <fc059153c3f0526d97b7f13450c02b276b0908e1.1679519341.git.quic_mathbern@quicinc.com>
2023-03-23 00:17:10 +03:00
gen_goto_tb(ctx, 0, ctx->branch_dest, true);
gen_set_label(skip);
Hexagon (translate.c): avoid redundant PC updates on COF When there is a conditional change of flow or an endloop instruction, we preload HEX_REG_PC with ctx->next_PC at gen_start_packet(). Nonetheless, we still generate TCG code to do this update again at gen_goto_tb() when the condition for the COF is not met, thus producing redundant instructions. This can be seen with the following packet: 0x004002e4: 0x5c20d000 { if (!P0) jump:t PC+0 } Which generates this TCG code: ---- 004002e4 -> mov_i32 pc,$0x4002e8 and_i32 loc9,p0,$0x1 mov_i32 branch_taken,loc9 add_i32 pkt_cnt,pkt_cnt,$0x2 add_i32 insn_cnt,insn_cnt,$0x2 brcond_i32 branch_taken,$0x0,ne,$L1 goto_tb $0x0 mov_i32 pc,$0x4002e4 exit_tb $0x7fb0c36e5200 set_label $L1 goto_tb $0x1 -> mov_i32 pc,$0x4002e8 exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 Note that even after optimizations, the redundant PC update is still present: ---- 004002e4 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff mov_i32 branch_taken,$0x1 sync: 0 dead: 0 1 pref=0xffff add_i32 pkt_cnt,pkt_cnt,$0x2 sync: 0 dead: 0 1 pref=0xffff add_i32 insn_cnt,insn_cnt,$0x2 sync: 0 dead: 0 1 2 pref=0xffff goto_tb $0x1 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 With this patch, the second redundant update is properly discarded. Note that we need the additional "move_to_pc" flag instead of just avoiding the update whenever `dest == ctx->next_PC`, as that could potentially skip updates from a COF with met condition, whose ctx->branch_dest just happens to be equal to ctx->next_PC. Signed-off-by: Matheus Tavares Bernardino <quic_mathbern@quicinc.com> Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Anton Johansson <anjo@rev.ng> Reviewed-by: Taylor Simpson <tsimpson@quicinc.com> Message-Id: <fc059153c3f0526d97b7f13450c02b276b0908e1.1679519341.git.quic_mathbern@quicinc.com>
2023-03-23 00:17:10 +03:00
gen_goto_tb(ctx, 1, ctx->next_PC, false);
} else {
Hexagon (translate.c): avoid redundant PC updates on COF When there is a conditional change of flow or an endloop instruction, we preload HEX_REG_PC with ctx->next_PC at gen_start_packet(). Nonetheless, we still generate TCG code to do this update again at gen_goto_tb() when the condition for the COF is not met, thus producing redundant instructions. This can be seen with the following packet: 0x004002e4: 0x5c20d000 { if (!P0) jump:t PC+0 } Which generates this TCG code: ---- 004002e4 -> mov_i32 pc,$0x4002e8 and_i32 loc9,p0,$0x1 mov_i32 branch_taken,loc9 add_i32 pkt_cnt,pkt_cnt,$0x2 add_i32 insn_cnt,insn_cnt,$0x2 brcond_i32 branch_taken,$0x0,ne,$L1 goto_tb $0x0 mov_i32 pc,$0x4002e4 exit_tb $0x7fb0c36e5200 set_label $L1 goto_tb $0x1 -> mov_i32 pc,$0x4002e8 exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 Note that even after optimizations, the redundant PC update is still present: ---- 004002e4 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff mov_i32 branch_taken,$0x1 sync: 0 dead: 0 1 pref=0xffff add_i32 pkt_cnt,pkt_cnt,$0x2 sync: 0 dead: 0 1 pref=0xffff add_i32 insn_cnt,insn_cnt,$0x2 sync: 0 dead: 0 1 2 pref=0xffff goto_tb $0x1 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 With this patch, the second redundant update is properly discarded. Note that we need the additional "move_to_pc" flag instead of just avoiding the update whenever `dest == ctx->next_PC`, as that could potentially skip updates from a COF with met condition, whose ctx->branch_dest just happens to be equal to ctx->next_PC. Signed-off-by: Matheus Tavares Bernardino <quic_mathbern@quicinc.com> Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Anton Johansson <anjo@rev.ng> Reviewed-by: Taylor Simpson <tsimpson@quicinc.com> Message-Id: <fc059153c3f0526d97b7f13450c02b276b0908e1.1679519341.git.quic_mathbern@quicinc.com>
2023-03-23 00:17:10 +03:00
gen_goto_tb(ctx, 0, ctx->branch_dest, true);
}
} else if (ctx->is_tight_loop &&
pkt->insn[pkt->num_insns - 1].opcode == J2_endloop0) {
/*
* When we're in a tight loop, we defer the endloop0 processing
* to take advantage of direct block chaining
*/
TCGLabel *skip = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_LEU, hex_gpr[HEX_REG_LC0], 1, skip);
tcg_gen_subi_tl(hex_gpr[HEX_REG_LC0], hex_gpr[HEX_REG_LC0], 1);
Hexagon (translate.c): avoid redundant PC updates on COF When there is a conditional change of flow or an endloop instruction, we preload HEX_REG_PC with ctx->next_PC at gen_start_packet(). Nonetheless, we still generate TCG code to do this update again at gen_goto_tb() when the condition for the COF is not met, thus producing redundant instructions. This can be seen with the following packet: 0x004002e4: 0x5c20d000 { if (!P0) jump:t PC+0 } Which generates this TCG code: ---- 004002e4 -> mov_i32 pc,$0x4002e8 and_i32 loc9,p0,$0x1 mov_i32 branch_taken,loc9 add_i32 pkt_cnt,pkt_cnt,$0x2 add_i32 insn_cnt,insn_cnt,$0x2 brcond_i32 branch_taken,$0x0,ne,$L1 goto_tb $0x0 mov_i32 pc,$0x4002e4 exit_tb $0x7fb0c36e5200 set_label $L1 goto_tb $0x1 -> mov_i32 pc,$0x4002e8 exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 Note that even after optimizations, the redundant PC update is still present: ---- 004002e4 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff mov_i32 branch_taken,$0x1 sync: 0 dead: 0 1 pref=0xffff add_i32 pkt_cnt,pkt_cnt,$0x2 sync: 0 dead: 0 1 pref=0xffff add_i32 insn_cnt,insn_cnt,$0x2 sync: 0 dead: 0 1 2 pref=0xffff goto_tb $0x1 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 With this patch, the second redundant update is properly discarded. Note that we need the additional "move_to_pc" flag instead of just avoiding the update whenever `dest == ctx->next_PC`, as that could potentially skip updates from a COF with met condition, whose ctx->branch_dest just happens to be equal to ctx->next_PC. Signed-off-by: Matheus Tavares Bernardino <quic_mathbern@quicinc.com> Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Anton Johansson <anjo@rev.ng> Reviewed-by: Taylor Simpson <tsimpson@quicinc.com> Message-Id: <fc059153c3f0526d97b7f13450c02b276b0908e1.1679519341.git.quic_mathbern@quicinc.com>
2023-03-23 00:17:10 +03:00
gen_goto_tb(ctx, 0, ctx->base.tb->pc, true);
gen_set_label(skip);
Hexagon (translate.c): avoid redundant PC updates on COF When there is a conditional change of flow or an endloop instruction, we preload HEX_REG_PC with ctx->next_PC at gen_start_packet(). Nonetheless, we still generate TCG code to do this update again at gen_goto_tb() when the condition for the COF is not met, thus producing redundant instructions. This can be seen with the following packet: 0x004002e4: 0x5c20d000 { if (!P0) jump:t PC+0 } Which generates this TCG code: ---- 004002e4 -> mov_i32 pc,$0x4002e8 and_i32 loc9,p0,$0x1 mov_i32 branch_taken,loc9 add_i32 pkt_cnt,pkt_cnt,$0x2 add_i32 insn_cnt,insn_cnt,$0x2 brcond_i32 branch_taken,$0x0,ne,$L1 goto_tb $0x0 mov_i32 pc,$0x4002e4 exit_tb $0x7fb0c36e5200 set_label $L1 goto_tb $0x1 -> mov_i32 pc,$0x4002e8 exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 Note that even after optimizations, the redundant PC update is still present: ---- 004002e4 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff mov_i32 branch_taken,$0x1 sync: 0 dead: 0 1 pref=0xffff add_i32 pkt_cnt,pkt_cnt,$0x2 sync: 0 dead: 0 1 pref=0xffff add_i32 insn_cnt,insn_cnt,$0x2 sync: 0 dead: 0 1 2 pref=0xffff goto_tb $0x1 -> mov_i32 pc,$0x4002e8 sync: 0 dead: 0 1 pref=0xffff exit_tb $0x7fb0c36e5201 set_label $L0 exit_tb $0x7fb0c36e5203 With this patch, the second redundant update is properly discarded. Note that we need the additional "move_to_pc" flag instead of just avoiding the update whenever `dest == ctx->next_PC`, as that could potentially skip updates from a COF with met condition, whose ctx->branch_dest just happens to be equal to ctx->next_PC. Signed-off-by: Matheus Tavares Bernardino <quic_mathbern@quicinc.com> Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Anton Johansson <anjo@rev.ng> Reviewed-by: Taylor Simpson <tsimpson@quicinc.com> Message-Id: <fc059153c3f0526d97b7f13450c02b276b0908e1.1679519341.git.quic_mathbern@quicinc.com>
2023-03-23 00:17:10 +03:00
gen_goto_tb(ctx, 1, ctx->next_PC, false);
} else {
tcg_gen_lookup_and_goto_ptr();
}
ctx->base.is_jmp = DISAS_NORETURN;
}
static void gen_exception_end_tb(DisasContext *ctx, int excp)
{
gen_exec_counters(ctx);
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->next_PC);
gen_exception_raw(excp);
ctx->base.is_jmp = DISAS_NORETURN;
}
#define PACKET_BUFFER_LEN 1028
static void print_pkt(Packet *pkt)
{
GString *buf = g_string_sized_new(PACKET_BUFFER_LEN);
snprint_a_pkt_debug(buf, pkt);
HEX_DEBUG_LOG("%s", buf->str);
g_string_free(buf, true);
}
#define HEX_DEBUG_PRINT_PKT(pkt) \
do { \
if (HEX_DEBUG) { \
print_pkt(pkt); \
} \
} while (0)
static int read_packet_words(CPUHexagonState *env, DisasContext *ctx,
uint32_t words[])
{
bool found_end = false;
int nwords, max_words;
memset(words, 0, PACKET_WORDS_MAX * sizeof(uint32_t));
for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
words[nwords] =
translator_ldl(env, &ctx->base,
ctx->base.pc_next + nwords * sizeof(uint32_t));
found_end = is_packet_end(words[nwords]);
}
if (!found_end) {
/* Read too many words without finding the end */
return 0;
}
/* Check for page boundary crossing */
max_words = -(ctx->base.pc_next | TARGET_PAGE_MASK) / sizeof(uint32_t);
if (nwords > max_words) {
/* We can only cross a page boundary at the beginning of a TB */
g_assert(ctx->base.num_insns == 1);
}
HEX_DEBUG_LOG("decode_packet: pc = 0x%x\n", ctx->base.pc_next);
HEX_DEBUG_LOG(" words = { ");
for (int i = 0; i < nwords; i++) {
HEX_DEBUG_LOG("0x%x, ", words[i]);
}
HEX_DEBUG_LOG("}\n");
return nwords;
}
static bool check_for_attrib(Packet *pkt, int attrib)
{
for (int i = 0; i < pkt->num_insns; i++) {
if (GET_ATTRIB(pkt->insn[i].opcode, attrib)) {
return true;
}
}
return false;
}
static bool need_slot_cancelled(Packet *pkt)
{
/* We only need slot_cancelled for conditional store instructions */
for (int i = 0; i < pkt->num_insns; i++) {
uint16_t opcode = pkt->insn[i].opcode;
if (GET_ATTRIB(opcode, A_CONDEXEC) &&
GET_ATTRIB(opcode, A_SCALAR_STORE)) {
return true;
}
}
return false;
}
static bool need_next_PC(DisasContext *ctx)
{
Packet *pkt = ctx->pkt;
/* Check for conditional control flow or HW loop end */
for (int i = 0; i < pkt->num_insns; i++) {
uint16_t opcode = pkt->insn[i].opcode;
if (GET_ATTRIB(opcode, A_CONDEXEC) && GET_ATTRIB(opcode, A_COF)) {
return true;
}
if (GET_ATTRIB(opcode, A_HWLOOP0_END) ||
GET_ATTRIB(opcode, A_HWLOOP1_END)) {
return true;
}
}
return false;
}
/*
* The opcode_analyze functions mark most of the writes in a packet
* However, there are some implicit writes marked as attributes
* of the applicable instructions.
*/
static void mark_implicit_reg_write(DisasContext *ctx, int attrib, int rnum)
{
uint16_t opcode = ctx->insn->opcode;
if (GET_ATTRIB(opcode, attrib)) {
/*
* USR is used to set overflow and FP exceptions,
* so treat it as conditional
*/
bool is_predicated = GET_ATTRIB(opcode, A_CONDEXEC) ||
rnum == HEX_REG_USR;
/* LC0/LC1 is conditionally written by endloop instructions */
if ((rnum == HEX_REG_LC0 || rnum == HEX_REG_LC1) &&
(opcode == J2_endloop0 ||
opcode == J2_endloop1 ||
opcode == J2_endloop01)) {
is_predicated = true;
}
ctx_log_reg_write(ctx, rnum, is_predicated);
}
}
static void mark_implicit_reg_writes(DisasContext *ctx)
{
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_FP, HEX_REG_FP);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SP, HEX_REG_SP);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LR, HEX_REG_LR);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC0, HEX_REG_LC0);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA0, HEX_REG_SA0);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_LC1, HEX_REG_LC1);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_SA1, HEX_REG_SA1);
mark_implicit_reg_write(ctx, A_IMPLICIT_WRITES_USR, HEX_REG_USR);
mark_implicit_reg_write(ctx, A_FPOP, HEX_REG_USR);
}
static void mark_implicit_pred_write(DisasContext *ctx, int attrib, int pnum)
{
if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
ctx_log_pred_write(ctx, pnum);
}
}
static void mark_implicit_pred_writes(DisasContext *ctx)
{
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P0, 0);
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P1, 1);
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P2, 2);
mark_implicit_pred_write(ctx, A_IMPLICIT_WRITES_P3, 3);
}
static bool pkt_raises_exception(Packet *pkt)
{
if (check_for_attrib(pkt, A_LOAD) ||
check_for_attrib(pkt, A_STORE)) {
return true;
}
return false;
}
static bool need_commit(DisasContext *ctx)
{
Packet *pkt = ctx->pkt;
/*
* If the short-circuit property is set to false, we'll always do the commit
*/
if (!ctx->short_circuit) {
return true;
}
if (pkt_raises_exception(pkt)) {
return true;
}
/* Registers with immutability flags require new_value */
for (int i = 0; i < ctx->reg_log_idx; i++) {
int rnum = ctx->reg_log[i];
if (reg_immut_masks[rnum]) {
return true;
}
}
/* Floating point instructions are hard-coded to use new_value */
if (check_for_attrib(pkt, A_FPOP)) {
return true;
}
if (pkt->num_insns == 1) {
if (pkt->pkt_has_hvx) {
/*
* The HVX instructions with generated helpers use
* pass-by-reference, so they need the read/write overlap
* check below.
* The HVX instructions with overrides are OK.
*/
if (!ctx->has_hvx_helper) {
return false;
}
} else {
return false;
}
}
/* Check for overlap between register reads and writes */
for (int i = 0; i < ctx->reg_log_idx; i++) {
int rnum = ctx->reg_log[i];
if (test_bit(rnum, ctx->regs_read)) {
return true;
}
}
/* Check for overlap between predicate reads and writes */
for (int i = 0; i < ctx->preg_log_idx; i++) {
int pnum = ctx->preg_log[i];
if (test_bit(pnum, ctx->pregs_read)) {
return true;
}
}
/* Check for overlap between HVX reads and writes */
for (int i = 0; i < ctx->vreg_log_idx; i++) {
int vnum = ctx->vreg_log[i];
if (test_bit(vnum, ctx->vregs_read)) {
return true;
}
}
if (!bitmap_empty(ctx->vregs_updated_tmp, NUM_VREGS)) {
int i = find_first_bit(ctx->vregs_updated_tmp, NUM_VREGS);
while (i < NUM_VREGS) {
if (test_bit(i, ctx->vregs_read)) {
return true;
}
i = find_next_bit(ctx->vregs_updated_tmp, NUM_VREGS, i + 1);
}
}
if (!bitmap_empty(ctx->vregs_select, NUM_VREGS)) {
int i = find_first_bit(ctx->vregs_select, NUM_VREGS);
while (i < NUM_VREGS) {
if (test_bit(i, ctx->vregs_read)) {
return true;
}
i = find_next_bit(ctx->vregs_select, NUM_VREGS, i + 1);
}
}
/* Check for overlap between HVX predicate reads and writes */
for (int i = 0; i < ctx->qreg_log_idx; i++) {
int qnum = ctx->qreg_log[i];
if (test_bit(qnum, ctx->qregs_read)) {
return true;
}
}
return false;
}
static void mark_implicit_pred_read(DisasContext *ctx, int attrib, int pnum)
{
if (GET_ATTRIB(ctx->insn->opcode, attrib)) {
ctx_log_pred_read(ctx, pnum);
}
}
static void mark_implicit_pred_reads(DisasContext *ctx)
{
mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P0, 0);
mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P1, 1);
mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 2);
mark_implicit_pred_read(ctx, A_IMPLICIT_READS_P3, 3);
}
static void analyze_packet(DisasContext *ctx)
{
Packet *pkt = ctx->pkt;
ctx->has_hvx_helper = false;
for (int i = 0; i < pkt->num_insns; i++) {
Insn *insn = &pkt->insn[i];
ctx->insn = insn;
if (opcode_analyze[insn->opcode]) {
opcode_analyze[insn->opcode](ctx);
}
mark_implicit_reg_writes(ctx);
mark_implicit_pred_writes(ctx);
mark_implicit_pred_reads(ctx);
}
ctx->need_commit = need_commit(ctx);
}
static void gen_start_packet(DisasContext *ctx)
{
Packet *pkt = ctx->pkt;
target_ulong next_PC = ctx->base.pc_next + pkt->encod_pkt_size_in_bytes;
int i;
/* Clear out the disassembly context */
ctx->next_PC = next_PC;
ctx->reg_log_idx = 0;
bitmap_zero(ctx->regs_written, TOTAL_PER_THREAD_REGS);
bitmap_zero(ctx->regs_read, TOTAL_PER_THREAD_REGS);
bitmap_zero(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
ctx->preg_log_idx = 0;
bitmap_zero(ctx->pregs_written, NUM_PREGS);
bitmap_zero(ctx->pregs_read, NUM_PREGS);
ctx->future_vregs_idx = 0;
ctx->tmp_vregs_idx = 0;
ctx->vreg_log_idx = 0;
bitmap_zero(ctx->vregs_updated_tmp, NUM_VREGS);
bitmap_zero(ctx->vregs_updated, NUM_VREGS);
bitmap_zero(ctx->vregs_select, NUM_VREGS);
bitmap_zero(ctx->predicated_future_vregs, NUM_VREGS);
bitmap_zero(ctx->predicated_tmp_vregs, NUM_VREGS);
bitmap_zero(ctx->vregs_read, NUM_VREGS);
bitmap_zero(ctx->qregs_read, NUM_QREGS);
ctx->qreg_log_idx = 0;
for (i = 0; i < STORES_MAX; i++) {
ctx->store_width[i] = 0;
}
ctx->s1_store_processed = false;
ctx->pre_commit = true;
for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
ctx->new_value[i] = NULL;
}
for (i = 0; i < NUM_PREGS; i++) {
ctx->new_pred_value[i] = NULL;
}
analyze_packet(ctx);
/*
* pregs_written is used both in the analyze phase as well as the code
* gen phase, so clear it again.
*/
bitmap_zero(ctx->pregs_written, NUM_PREGS);
if (HEX_DEBUG) {
/* Handy place to set a breakpoint before the packet executes */
gen_helper_debug_start_packet(cpu_env);
}
/* Initialize the runtime state for packet semantics */
if (need_slot_cancelled(pkt)) {
tcg_gen_movi_tl(hex_slot_cancelled, 0);
}
ctx->branch_taken = NULL;
if (pkt->pkt_has_cof) {
ctx->branch_taken = tcg_temp_new();
if (pkt->pkt_has_multi_cof) {
tcg_gen_movi_tl(ctx->branch_taken, 0);
}
if (need_next_PC(ctx)) {
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], next_PC);
}
}
if (HEX_DEBUG) {
ctx->pred_written = tcg_temp_new();
tcg_gen_movi_tl(ctx->pred_written, 0);
}
/* Preload the predicated registers into get_result_gpr(ctx, i) */
if (ctx->need_commit &&
!bitmap_empty(ctx->predicated_regs, TOTAL_PER_THREAD_REGS)) {
int i = find_first_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS);
while (i < TOTAL_PER_THREAD_REGS) {
tcg_gen_mov_tl(get_result_gpr(ctx, i), hex_gpr[i]);
i = find_next_bit(ctx->predicated_regs, TOTAL_PER_THREAD_REGS,
i + 1);
}
}
/*
* Preload the predicated pred registers into ctx->new_pred_value[pred_num]
* Only endloop instructions conditionally write to pred registers
*/
if (ctx->need_commit && pkt->pkt_has_endloop) {
for (int i = 0; i < ctx->preg_log_idx; i++) {
int pred_num = ctx->preg_log[i];
ctx->new_pred_value[pred_num] = tcg_temp_new();
tcg_gen_mov_tl(ctx->new_pred_value[pred_num], hex_pred[pred_num]);
}
}
/* Preload the predicated HVX registers into future_VRegs and tmp_VRegs */
if (!bitmap_empty(ctx->predicated_future_vregs, NUM_VREGS)) {
int i = find_first_bit(ctx->predicated_future_vregs, NUM_VREGS);
while (i < NUM_VREGS) {
const intptr_t VdV_off =
ctx_future_vreg_off(ctx, i, 1, true);
intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
tcg_gen_gvec_mov(MO_64, VdV_off,
src_off,
sizeof(MMVector),
sizeof(MMVector));
i = find_next_bit(ctx->predicated_future_vregs, NUM_VREGS, i + 1);
}
}
if (!bitmap_empty(ctx->predicated_tmp_vregs, NUM_VREGS)) {
int i = find_first_bit(ctx->predicated_tmp_vregs, NUM_VREGS);
while (i < NUM_VREGS) {
const intptr_t VdV_off =
ctx_tmp_vreg_off(ctx, i, 1, true);
intptr_t src_off = offsetof(CPUHexagonState, VRegs[i]);
tcg_gen_gvec_mov(MO_64, VdV_off,
src_off,
sizeof(MMVector),
sizeof(MMVector));
i = find_next_bit(ctx->predicated_tmp_vregs, NUM_VREGS, i + 1);
}
}
}
bool is_gather_store_insn(DisasContext *ctx)
{
Packet *pkt = ctx->pkt;
Insn *insn = ctx->insn;
if (GET_ATTRIB(insn->opcode, A_CVI_NEW) &&
insn->new_value_producer_slot == 1) {
/* Look for gather instruction */
for (int i = 0; i < pkt->num_insns; i++) {
Insn *in = &pkt->insn[i];
if (GET_ATTRIB(in->opcode, A_CVI_GATHER) && in->slot == 1) {
return true;
}
}
}
return false;
}
static void mark_store_width(DisasContext *ctx)
{
uint16_t opcode = ctx->insn->opcode;
uint32_t slot = ctx->insn->slot;
uint8_t width = 0;
if (GET_ATTRIB(opcode, A_SCALAR_STORE)) {
if (GET_ATTRIB(opcode, A_MEMSIZE_0B)) {
return;
}
if (GET_ATTRIB(opcode, A_MEMSIZE_1B)) {
width |= 1;
}
if (GET_ATTRIB(opcode, A_MEMSIZE_2B)) {
width |= 2;
}
if (GET_ATTRIB(opcode, A_MEMSIZE_4B)) {
width |= 4;
}
if (GET_ATTRIB(opcode, A_MEMSIZE_8B)) {
width |= 8;
}
tcg_debug_assert(is_power_of_2(width));
ctx->store_width[slot] = width;
}
}
static void gen_insn(DisasContext *ctx)
{
if (ctx->insn->generate) {
ctx->insn->generate(ctx);
mark_store_width(ctx);
} else {
gen_exception_end_tb(ctx, HEX_EXCP_INVALID_OPCODE);
}
}
/*
* Helpers for generating the packet commit
*/
static void gen_reg_writes(DisasContext *ctx)
{
int i;
/* Early exit if not needed */
if (!ctx->need_commit) {
return;
}
for (i = 0; i < ctx->reg_log_idx; i++) {
int reg_num = ctx->reg_log[i];
tcg_gen_mov_tl(hex_gpr[reg_num], get_result_gpr(ctx, reg_num));
/*
* ctx->is_tight_loop is set when SA0 points to the beginning of the TB.
* If we write to SA0, we have to turn off tight loop handling.
*/
if (reg_num == HEX_REG_SA0) {
ctx->is_tight_loop = false;
}
}
}
static void gen_pred_writes(DisasContext *ctx)
{
/* Early exit if not needed or the log is empty */
if (!ctx->need_commit || !ctx->preg_log_idx) {
return;
}
for (int i = 0; i < ctx->preg_log_idx; i++) {
int pred_num = ctx->preg_log[i];
tcg_gen_mov_tl(hex_pred[pred_num], ctx->new_pred_value[pred_num]);
}
}
static void gen_check_store_width(DisasContext *ctx, int slot_num)
{
if (HEX_DEBUG) {
TCGv slot = tcg_constant_tl(slot_num);
TCGv check = tcg_constant_tl(ctx->store_width[slot_num]);
gen_helper_debug_check_store_width(cpu_env, slot, check);
}
}
static bool slot_is_predicated(Packet *pkt, int slot_num)
{
for (int i = 0; i < pkt->num_insns; i++) {
if (pkt->insn[i].slot == slot_num) {
return GET_ATTRIB(pkt->insn[i].opcode, A_CONDEXEC);
}
}
/* If we get to here, we didn't find an instruction in the requested slot */
g_assert_not_reached();
}
void process_store(DisasContext *ctx, int slot_num)
{
bool is_predicated = slot_is_predicated(ctx->pkt, slot_num);
TCGLabel *label_end = NULL;
/*
* We may have already processed this store
* See CHECK_NOSHUF in macros.h
*/
if (slot_num == 1 && ctx->s1_store_processed) {
return;
}
ctx->s1_store_processed = true;
if (is_predicated) {
TCGv cancelled = tcg_temp_new();
label_end = gen_new_label();
/* Don't do anything if the slot was cancelled */
tcg_gen_extract_tl(cancelled, hex_slot_cancelled, slot_num, 1);
tcg_gen_brcondi_tl(TCG_COND_NE, cancelled, 0, label_end);
}
{
TCGv address = tcg_temp_new();
tcg_gen_mov_tl(address, hex_store_addr[slot_num]);
/*
* If we know the width from the DisasContext, we can
* generate much cleaner code.
* Unfortunately, not all instructions execute the fSTORE
* macro during code generation. Anything that uses the
* generic helper will have this problem. Instructions
* that use fWRAP to generate proper TCG code will be OK.
*/
switch (ctx->store_width[slot_num]) {
case 1:
gen_check_store_width(ctx, slot_num);
tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
hex_store_addr[slot_num],
ctx->mem_idx, MO_UB);
break;
case 2:
gen_check_store_width(ctx, slot_num);
tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
hex_store_addr[slot_num],
ctx->mem_idx, MO_TEUW);
break;
case 4:
gen_check_store_width(ctx, slot_num);
tcg_gen_qemu_st_tl(hex_store_val32[slot_num],
hex_store_addr[slot_num],
ctx->mem_idx, MO_TEUL);
break;
case 8:
gen_check_store_width(ctx, slot_num);
tcg_gen_qemu_st_i64(hex_store_val64[slot_num],
hex_store_addr[slot_num],
ctx->mem_idx, MO_TEUQ);
break;
default:
{
/*
* If we get to here, we don't know the width at
* TCG generation time, we'll use a helper to
* avoid branching based on the width at runtime.
*/
TCGv slot = tcg_constant_tl(slot_num);
gen_helper_commit_store(cpu_env, slot);
}
}
}
if (is_predicated) {
gen_set_label(label_end);
}
}
static void process_store_log(DisasContext *ctx)
{
/*
* When a packet has two stores, the hardware processes
* slot 1 and then slot 0. This will be important when
* the memory accesses overlap.
*/
Packet *pkt = ctx->pkt;
if (pkt->pkt_has_store_s1) {
g_assert(!pkt->pkt_has_dczeroa);
process_store(ctx, 1);
}
if (pkt->pkt_has_store_s0) {
g_assert(!pkt->pkt_has_dczeroa);
process_store(ctx, 0);
}
}
/* Zero out a 32-bit cache line */
static void process_dczeroa(DisasContext *ctx)
{
if (ctx->pkt->pkt_has_dczeroa) {
/* Store 32 bytes of zero starting at (addr & ~0x1f) */
TCGv addr = tcg_temp_new();
TCGv_i64 zero = tcg_constant_i64(0);
tcg_gen_andi_tl(addr, ctx->dczero_addr, ~0x1f);
tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
tcg_gen_addi_tl(addr, addr, 8);
tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
tcg_gen_addi_tl(addr, addr, 8);
tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
tcg_gen_addi_tl(addr, addr, 8);
tcg_gen_qemu_st_i64(zero, addr, ctx->mem_idx, MO_UQ);
}
}
static bool pkt_has_hvx_store(Packet *pkt)
{
int i;
for (i = 0; i < pkt->num_insns; i++) {
int opcode = pkt->insn[i].opcode;
if (GET_ATTRIB(opcode, A_CVI) && GET_ATTRIB(opcode, A_STORE)) {
return true;
}
}
return false;
}
static void gen_commit_hvx(DisasContext *ctx)
{
int i;
/* Early exit if not needed */
if (!ctx->need_commit) {
g_assert(!pkt_has_hvx_store(ctx->pkt));
return;
}
/*
* for (i = 0; i < ctx->vreg_log_idx; i++) {
* int rnum = ctx->vreg_log[i];
* env->VRegs[rnum] = env->future_VRegs[rnum];
* }
*/
for (i = 0; i < ctx->vreg_log_idx; i++) {
int rnum = ctx->vreg_log[i];
intptr_t dstoff = offsetof(CPUHexagonState, VRegs[rnum]);
intptr_t srcoff = ctx_future_vreg_off(ctx, rnum, 1, false);
size_t size = sizeof(MMVector);
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
}
/*
* for (i = 0; i < ctx->qreg_log_idx; i++) {
* int rnum = ctx->qreg_log[i];
* env->QRegs[rnum] = env->future_QRegs[rnum];
* }
*/
for (i = 0; i < ctx->qreg_log_idx; i++) {
int rnum = ctx->qreg_log[i];
intptr_t dstoff = offsetof(CPUHexagonState, QRegs[rnum]);
intptr_t srcoff = offsetof(CPUHexagonState, future_QRegs[rnum]);
size_t size = sizeof(MMQReg);
tcg_gen_gvec_mov(MO_64, dstoff, srcoff, size, size);
}
if (pkt_has_hvx_store(ctx->pkt)) {
gen_helper_commit_hvx_stores(cpu_env);
}
}
static void update_exec_counters(DisasContext *ctx)
{
Packet *pkt = ctx->pkt;
int num_insns = pkt->num_insns;
int num_real_insns = 0;
int num_hvx_insns = 0;
for (int i = 0; i < num_insns; i++) {
if (!pkt->insn[i].is_endloop &&
!pkt->insn[i].part1 &&
!GET_ATTRIB(pkt->insn[i].opcode, A_IT_NOP)) {
num_real_insns++;
}
if (GET_ATTRIB(pkt->insn[i].opcode, A_CVI)) {
num_hvx_insns++;
}
}
ctx->num_packets++;
ctx->num_insns += num_real_insns;
ctx->num_hvx_insns += num_hvx_insns;
}
static void gen_commit_packet(DisasContext *ctx)
{
/*
* If there is more than one store in a packet, make sure they are all OK
* before proceeding with the rest of the packet commit.
*
* dczeroa has to be the only store operation in the packet, so we go
* ahead and process that first.
*
* When there is an HVX store, there can also be a scalar store in either
* slot 0 or slot1, so we create a mask for the helper to indicate what
* work to do.
*
* When there are two scalar stores, we probe the one in slot 0.
*
* Note that we don't call the probe helper for packets with only one
* store. Therefore, we call process_store_log before anything else
* involved in committing the packet.
*/
Packet *pkt = ctx->pkt;
bool has_store_s0 = pkt->pkt_has_store_s0;
bool has_store_s1 = (pkt->pkt_has_store_s1 && !ctx->s1_store_processed);
bool has_hvx_store = pkt_has_hvx_store(pkt);
if (pkt->pkt_has_dczeroa) {
/*
* The dczeroa will be the store in slot 0, check that we don't have
* a store in slot 1 or an HVX store.
*/
g_assert(!has_store_s1 && !has_hvx_store);
process_dczeroa(ctx);
} else if (has_hvx_store) {
if (!has_store_s0 && !has_store_s1) {
TCGv mem_idx = tcg_constant_tl(ctx->mem_idx);
gen_helper_probe_hvx_stores(cpu_env, mem_idx);
} else {
int mask = 0;
if (has_store_s0) {
mask =
FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST0, 1);
}
if (has_store_s1) {
mask =
FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, HAS_ST1, 1);
}
if (has_hvx_store) {
mask =
FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
HAS_HVX_STORES, 1);
}
if (has_store_s0 && slot_is_predicated(pkt, 0)) {
mask =
FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
S0_IS_PRED, 1);
}
if (has_store_s1 && slot_is_predicated(pkt, 1)) {
mask =
FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES,
S1_IS_PRED, 1);
}
mask = FIELD_DP32(mask, PROBE_PKT_SCALAR_HVX_STORES, MMU_IDX,
ctx->mem_idx);
gen_helper_probe_pkt_scalar_hvx_stores(cpu_env,
tcg_constant_tl(mask));
}
} else if (has_store_s0 && has_store_s1) {
/*
* process_store_log will execute the slot 1 store first,
* so we only have to probe the store in slot 0
*/
int args = 0;
args =
FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, MMU_IDX, ctx->mem_idx);
if (slot_is_predicated(pkt, 0)) {
args =
FIELD_DP32(args, PROBE_PKT_SCALAR_STORE_S0, IS_PREDICATED, 1);
}
TCGv args_tcgv = tcg_constant_tl(args);
gen_helper_probe_pkt_scalar_store_s0(cpu_env, args_tcgv);
}
process_store_log(ctx);
gen_reg_writes(ctx);
gen_pred_writes(ctx);
if (pkt->pkt_has_hvx) {
gen_commit_hvx(ctx);
}
update_exec_counters(ctx);
if (HEX_DEBUG) {
TCGv has_st0 =
tcg_constant_tl(pkt->pkt_has_store_s0 && !pkt->pkt_has_dczeroa);
TCGv has_st1 =
tcg_constant_tl(pkt->pkt_has_store_s1 && !pkt->pkt_has_dczeroa);
/* Handy place to set a breakpoint at the end of execution */
gen_helper_debug_commit_end(cpu_env, tcg_constant_tl(ctx->pkt->pc),
ctx->pred_written, has_st0, has_st1);
}
if (pkt->vhist_insn != NULL) {
ctx->pre_commit = false;
ctx->insn = pkt->vhist_insn;
pkt->vhist_insn->generate(ctx);
}
if (pkt->pkt_has_cof) {
gen_end_tb(ctx);
}
}
static void decode_and_translate_packet(CPUHexagonState *env, DisasContext *ctx)
{
uint32_t words[PACKET_WORDS_MAX];
int nwords;
Packet pkt;
int i;
nwords = read_packet_words(env, ctx, words);
if (!nwords) {
gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
return;
}
if (decode_packet(nwords, words, &pkt, false) > 0) {
pkt.pc = ctx->base.pc_next;
HEX_DEBUG_PRINT_PKT(&pkt);
ctx->pkt = &pkt;
gen_start_packet(ctx);
for (i = 0; i < pkt.num_insns; i++) {
ctx->insn = &pkt.insn[i];
gen_insn(ctx);
}
gen_commit_packet(ctx);
ctx->base.pc_next += pkt.encod_pkt_size_in_bytes;
} else {
gen_exception_end_tb(ctx, HEX_EXCP_INVALID_PACKET);
}
}
static void hexagon_tr_init_disas_context(DisasContextBase *dcbase,
CPUState *cs)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
HexagonCPU *hex_cpu = env_archcpu(cs->env_ptr);
uint32_t hex_flags = dcbase->tb->flags;
ctx->mem_idx = MMU_USER_IDX;
ctx->num_packets = 0;
ctx->num_insns = 0;
ctx->num_hvx_insns = 0;
ctx->branch_cond = TCG_COND_NEVER;
ctx->is_tight_loop = FIELD_EX32(hex_flags, TB_FLAGS, IS_TIGHT_LOOP);
ctx->short_circuit = hex_cpu->short_circuit;
}
static void hexagon_tr_tb_start(DisasContextBase *db, CPUState *cpu)
{
}
static void hexagon_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
tcg_gen_insn_start(ctx->base.pc_next);
}
static bool pkt_crosses_page(CPUHexagonState *env, DisasContext *ctx)
{
target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
bool found_end = false;
int nwords;
for (nwords = 0; !found_end && nwords < PACKET_WORDS_MAX; nwords++) {
uint32_t word = cpu_ldl_code(env,
ctx->base.pc_next + nwords * sizeof(uint32_t));
found_end = is_packet_end(word);
}
uint32_t next_ptr = ctx->base.pc_next + nwords * sizeof(uint32_t);
return found_end && next_ptr - page_start >= TARGET_PAGE_SIZE;
}
static void hexagon_tr_translate_packet(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
CPUHexagonState *env = cpu->env_ptr;
decode_and_translate_packet(env, ctx);
if (ctx->base.is_jmp == DISAS_NEXT) {
target_ulong page_start = ctx->base.pc_first & TARGET_PAGE_MASK;
target_ulong bytes_max = PACKET_WORDS_MAX * sizeof(target_ulong);
if (ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE ||
(ctx->base.pc_next - page_start >= TARGET_PAGE_SIZE - bytes_max &&
pkt_crosses_page(env, ctx))) {
ctx->base.is_jmp = DISAS_TOO_MANY;
}
/*
* The CPU log is used to compare against LLDB single stepping,
* so end the TLB after every packet.
*/
HexagonCPU *hex_cpu = env_archcpu(env);
if (hex_cpu->lldb_compat && qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
ctx->base.is_jmp = DISAS_TOO_MANY;
}
}
}
static void hexagon_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
{
DisasContext *ctx = container_of(dcbase, DisasContext, base);
switch (ctx->base.is_jmp) {
case DISAS_TOO_MANY:
gen_exec_counters(ctx);
tcg_gen_movi_tl(hex_gpr[HEX_REG_PC], ctx->base.pc_next);
tcg_gen_exit_tb(NULL, 0);
break;
case DISAS_NORETURN:
break;
default:
g_assert_not_reached();
}
}
static void hexagon_tr_disas_log(const DisasContextBase *dcbase,
CPUState *cpu, FILE *logfile)
{
fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first));
target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size);
}
static const TranslatorOps hexagon_tr_ops = {
.init_disas_context = hexagon_tr_init_disas_context,
.tb_start = hexagon_tr_tb_start,
.insn_start = hexagon_tr_insn_start,
.translate_insn = hexagon_tr_translate_packet,
.tb_stop = hexagon_tr_tb_stop,
.disas_log = hexagon_tr_disas_log,
};
void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
target_ulong pc, void *host_pc)
{
DisasContext ctx;
translator_loop(cs, tb, max_insns, pc, host_pc,
&hexagon_tr_ops, &ctx.base);
}
#define NAME_LEN 64
static char reg_written_names[TOTAL_PER_THREAD_REGS][NAME_LEN];
static char store_addr_names[STORES_MAX][NAME_LEN];
static char store_width_names[STORES_MAX][NAME_LEN];
static char store_val32_names[STORES_MAX][NAME_LEN];
static char store_val64_names[STORES_MAX][NAME_LEN];
static char vstore_addr_names[VSTORES_MAX][NAME_LEN];
static char vstore_size_names[VSTORES_MAX][NAME_LEN];
static char vstore_pending_names[VSTORES_MAX][NAME_LEN];
void hexagon_translate_init(void)
{
int i;
opcode_init();
for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
hex_gpr[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, gpr[i]),
hexagon_regnames[i]);
if (HEX_DEBUG) {
snprintf(reg_written_names[i], NAME_LEN, "reg_written_%s",
hexagon_regnames[i]);
hex_reg_written[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, reg_written[i]),
reg_written_names[i]);
}
}
hex_new_value_usr = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, new_value_usr), "new_value_usr");
for (i = 0; i < NUM_PREGS; i++) {
hex_pred[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, pred[i]),
hexagon_prednames[i]);
}
hex_slot_cancelled = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, slot_cancelled), "slot_cancelled");
hex_llsc_addr = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, llsc_addr), "llsc_addr");
hex_llsc_val = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, llsc_val), "llsc_val");
hex_llsc_val_i64 = tcg_global_mem_new_i64(cpu_env,
offsetof(CPUHexagonState, llsc_val_i64), "llsc_val_i64");
for (i = 0; i < STORES_MAX; i++) {
snprintf(store_addr_names[i], NAME_LEN, "store_addr_%d", i);
hex_store_addr[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, mem_log_stores[i].va),
store_addr_names[i]);
snprintf(store_width_names[i], NAME_LEN, "store_width_%d", i);
hex_store_width[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, mem_log_stores[i].width),
store_width_names[i]);
snprintf(store_val32_names[i], NAME_LEN, "store_val32_%d", i);
hex_store_val32[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, mem_log_stores[i].data32),
store_val32_names[i]);
snprintf(store_val64_names[i], NAME_LEN, "store_val64_%d", i);
hex_store_val64[i] = tcg_global_mem_new_i64(cpu_env,
offsetof(CPUHexagonState, mem_log_stores[i].data64),
store_val64_names[i]);
}
for (int i = 0; i < VSTORES_MAX; i++) {
snprintf(vstore_addr_names[i], NAME_LEN, "vstore_addr_%d", i);
hex_vstore_addr[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, vstore[i].va),
vstore_addr_names[i]);
snprintf(vstore_size_names[i], NAME_LEN, "vstore_size_%d", i);
hex_vstore_size[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, vstore[i].size),
vstore_size_names[i]);
snprintf(vstore_pending_names[i], NAME_LEN, "vstore_pending_%d", i);
hex_vstore_pending[i] = tcg_global_mem_new(cpu_env,
offsetof(CPUHexagonState, vstore_pending[i]),
vstore_pending_names[i]);
}
}