Bochs/bochs/cpu/paging.cc

1443 lines
50 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////
2005-04-14 20:44:40 +04:00
// $Id: paging.cc,v 1.59 2005-04-14 16:44:40 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// Notes from merge of x86-64 enhancements: (KPL)
// Looks like for x86-64/PAE=1/PTE with PSE=1, the
// CR4.PSE field is not consulted by the processor?
// Fix the PAE case to not update the page table tree entries
// until the final protection check? This is how it is on
// P6 for non-PAE anyways...
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if 0
// X86 Registers Which Affect Paging:
// ==================================
//
// CR0:
// bit 31: PG, Paging (386+)
// bit 16: WP, Write Protect (486+)
// 0: allow supervisor level writes into user level RO pages
// 1: inhibit supervisor level writes into user level RO pages
//
// CR3:
// bit 31..12: PDBR, Page Directory Base Register (386+)
// bit 4: PCD, Page level Cache Disable (486+)
// Controls caching of current page directory. Affects only the processor's
// internal caches (L1 and L2).
// This flag ignored if paging disabled (PG=0) or cache disabled (CD=1).
// Values:
// 0: Page Directory can be cached
// 1: Page Directory not cached
// bit 3: PWT, Page level Writes Transparent (486+)
// Controls write-through or write-back caching policy of current page
// directory. Affects only the processor's internal caches (L1 and L2).
// This flag ignored if paging disabled (PG=0) or cache disabled (CD=1).
// Values:
// 0: write-back caching enabled
// 1: write-through caching enabled
//
// CR4:
// bit 4: PSE, Page Size Extension (Pentium+)
// 0: 4KByte pages (typical)
// 1: 4MByte or 2MByte pages
// bit 5: PAE, Physical Address Extension (Pentium Pro+)
// 0: 32bit physical addresses
// 1: 36bit physical addresses
// bit 7: PGE, Page Global Enable (Pentium Pro+)
// The global page feature allows frequently used or shared pages
// to be marked as global (PDE or PTE bit 8). Global pages are
// not flushed from TLB on a task switch or write to CR3.
// Values:
// 0: disables global page feature
// 1: enables global page feature
//
// Page size extention and physical address size extention matrix
// ====================================================================
// CR0.PG CR4.PAE CR4.PSE PDE.PS | page size physical address size
// ====================================================================
// 0 X X X | - paging disabled
// 1 0 0 X | 4K 32bits
// 1 0 1 0 | 4K 32bits
// 1 0 1 1 | 4M 32bits
// 1 1 X 0 | 4K 36bits
// 1 1 X 1 | 2M 36bits
// Page Directory/Table Entry format when P=0:
// ===========================================
//
// 31.. 1: available
// 0: P=0
// Page Directory Entry format when P=1 (4-Kbyte Page Table):
// ==========================================================
//
// 31..12: page table base address
// 11.. 9: available
// 8: G (Pentium Pro+), 0=reserved otherwise
// 7: PS (Pentium+), 0=reserved otherwise
// 6: 0=reserved
// 5: A (386+)
// 4: PCD (486+), 0=reserved otherwise
// 3: PWT (486+), 0=reserved otherwise
// 2: U/S (386+)
// 1: R/W (386+)
// 0: P=1 (386+)
// Page Table Entry format when P=1 (4-Kbyte Page):
// ================================================
//
// 63..63: NX |
2004-10-21 22:20:40 +04:00
// 62..52: available | Long mode
// 51..32: page base address |
// 31..12: page base address
// 11.. 9: available
// 8: G (Pentium Pro+), 0=reserved otherwise
2004-10-21 22:20:40 +04:00
// 7: PAT
// 6: D (386+)
// 5: A (386+)
// 4: PCD (486+), 0=reserved otherwise
// 3: PWT (486+), 0=reserved otherwise
// 2: U/S (386+)
// 1: R/W (386+)
// 0: P=1 (386+)
// Page Directory/Table Entry Fields Defined:
// ==========================================
2004-10-21 22:20:40 +04:00
// NX: No Execute
// This bit controls the ability to execute code from all physical
// pages mapped by the table entry.
// 0: Code can be executed from the mapped physical pages
// 1: Code cannot be executed
// The NX bit can only be set when the no-execute page-protection
// feature is enabled by setting EFER.NXE=1, If EFER.NXE=0, the
// NX bit is treated as reserved. In this case, #PF occurs if the
// NX bit is not cleared to zero.
//
// G: Global flag
// Indiciates a global page when set. When a page is marked
// global and the PGE flag in CR4 is set, the page table or
// directory entry for the page is not invalidated in the TLB
// when CR3 is loaded or a task switch occurs. Only software
// clears and sets this flag. For page directory entries that
// point to page tables, this flag is ignored and the global
// characteristics of a page are set in the page table entries.
//
// PS: Page Size flag
// Only used in page directory entries. When PS=0, the page
// size is 4KBytes and the page directory entry points to a
// page table. When PS=1, the page size is 4MBytes for
// normal 32-bit addressing and 2MBytes if extended physical
2004-10-21 22:20:40 +04:00
// addressing.
//
// PAT: Page-Attribute Table
// This bit is only present in the lowest level of the page
// translation hierarchy. The PAT bit is the high-order bit
// of a 3-bit index into the PAT register. The other two
// bits involved in forming the index are the PCD and PWT
// bits.
//
// D: Dirty bit:
// Processor sets the Dirty bit in the 2nd-level page table before a
// write operation to an address mapped by that page table entry.
// Dirty bit in directory entries is undefined.
//
// A: Accessed bit:
// Processor sets the Accessed bits in both levels of page tables before
// a read/write operation to a page.
//
// PCD: Page level Cache Disable
// Controls caching of individual pages or page tables.
// This allows a per-page based mechanism to disable caching, for
// those pages which contained memory mapped IO, or otherwise
// should not be cached. Processor ignores this flag if paging
// is not used (CR0.PG=0) or the cache disable bit is set (CR0.CD=1).
// Values:
// 0: page or page table can be cached
// 1: page or page table is not cached (prevented)
//
// PWT: Page level Write Through
// Controls the write-through or write-back caching policy of individual
// pages or page tables. Processor ignores this flag if paging
// is not used (CR0.PG=0) or the cache disable bit is set (CR0.CD=1).
// Values:
// 0: write-back caching
// 1: write-through caching
//
// U/S: User/Supervisor level
// 0: Supervisor level - for the OS, drivers, etc.
// 1: User level - application code and data
//
// R/W: Read/Write access
// 0: read-only access
// 1: read/write access
//
// P: Present
// 0: Not present
// 1: Present
// ==========================================
// Combined page directory/page table protection:
// ==============================================
// There is one column for the combined effect on a 386
// and one column for the combined effect on a 486+ CPU.
//
// +----------------+-----------------+----------------+----------------+
// | Page Directory| Page Table | Combined 386 | Combined 486+ |
// |Privilege Type | Privilege Type | Privilege Type| Privilege Type|
// |----------------+-----------------+----------------+----------------|
// |User R | User R | User R | User R |
// |User R | User RW | User R | User R |
// |User RW | User R | User R | User R |
// |User RW | User RW | User RW | User RW |
// |User R | Supervisor R | User R | Supervisor RW |
// |User R | Supervisor RW | User R | Supervisor RW |
// |User RW | Supervisor R | User R | Supervisor RW |
// |User RW | Supervisor RW | User RW | Supervisor RW |
// |Supervisor R | User R | User R | Supervisor RW |
// |Supervisor R | User RW | User R | Supervisor RW |
// |Supervisor RW | User R | User R | Supervisor RW |
// |Supervisor RW | User RW | User RW | Supervisor RW |
// |Supervisor R | Supervisor R | Supervisor RW | Supervisor RW |
// |Supervisor R | Supervisor RW | Supervisor RW | Supervisor RW |
// |Supervisor RW | Supervisor R | Supervisor RW | Supervisor RW |
// |Supervisor RW | Supervisor RW | Supervisor RW | Supervisor RW |
// +----------------+-----------------+----------------+----------------+
// Page Fault Error Code Format:
// =============================
//
// bits 31..4: Reserved
// bit 3: RSVD (Pentium Pro+)
// 0: fault caused by reserved bits set to 1 in a page directory
// when the PSE or PAE flags in CR4 are set to 1
// 1: fault was not caused by reserved bit violation
// bit 2: U/S (386+)
// 0: fault originated when in supervior mode
// 1: fault originated when in user mode
// bit 1: R/W (386+)
// 0: access causing the fault was a read
// 1: access causing the fault was a write
// bit 0: P (386+)
// 0: fault caused by a nonpresent page
// 1: fault caused by a page level protection violation
// Some paging related notes:
// ==========================
//
// - When the processor is running in supervisor level, all pages are both
// readable and writable (write-protect ignored). When running at user
// level, only pages which belong to the user level are accessible;
// read/write & read-only are readable, read/write are writable.
//
// - If the Present bit is 0 in either level of page table, an
// access which uses these entries will generate a page fault.
//
// - (A)ccess bit is used to report read or write access to a page
// or 2nd level page table.
//
// - (D)irty bit is used to report write access to a page.
//
// - Processor running at CPL=0,1,2 maps to U/S=0
// Processor running at CPL=3 maps to U/S=1
//
// - Pentium+ processors have separate TLB's for data and instruction caches
// - Pentium Pro+ processors maintain separate 4K and 4M TLBs.
#endif
#if BX_SUPPORT_PAGING
#define BX_INVALID_TLB_ENTRY 0xffffffff
#if BX_USE_QUICK_TLB_INVALIDATE
#define BX_MAX_TLB_INVALIDATE 0xffe
#endif
#define BX_USE_TLB_GENERATION 1
#if BX_CPU_LEVEL >= 4
# define BX_PRIV_CHECK_SIZE 32
#else
# define BX_PRIV_CHECK_SIZE 16
#endif
// The 'priv_check' array is used to decide if the current access
// has the proper paging permissions. An index is formed, based
// on parameters such as the access type and level, the write protect
// flag and values cached in the TLB. The format of the index into this
// array is:
//
// |4 |3 |2 |1 |0 |
// |wp|us|us|rw|rw|
// | | | | |
// | | | | +---> r/w of current access
// | | +--+------> u/s,r/w combined of page dir & table (cached)
// | +------------> u/s of current access
// +---------------> Current CR0.wp value
// Each entry in the TLB cache has 3 entries:
// lpf: Linear Page Frame (page aligned linear address of page)
// bits 32..12 Linear page frame.
// bits 11..0 Invalidate index.
// ppf: Physical Page Frame (page aligned phy address of page)
// accessBits:
// bits 32..11: Host Page Frame address used for direct access to
// the mem.vector[] space allocated for the guest physical
// memory. If this is zero, it means that a pointer
// to the host space could not be generated, likely because
// that page of memory is not standard memory (it might
// be memory mapped IO, ROM, etc).
// bits 10..4: (currently unused)
//
// The following 4 bits are used for a very efficient permissions
// check. The goal is to be able, using only the current privilege
// level and access type, to determine if the page tables allow the
// access to occur or at least should rewalk the page tables. On
// the first read access, permissions are set to only read, so a
// rewalk is necessary when a subsequent write fails the tests.
// This allows for the dirty bit to be set properly, but for the
// test to be efficient. Note that the CR0.WP flag is not present.
// The values in the following flags is based on the current CR0.WP
// value, necessitating a TLB flush when CR0.WP changes.
//
// The test is:
// OK = 1 << ( (W<<1) | U ) [W:1=write, 0=read, U:1=CPL3,0=CPL0-2]
//
// Thus for reads, it's simply:
// OK = 1 << ( U )
//
// bit 8: Page is a global page.
// bit 3: a Write from User privilege is OK
// bit 2: a Write from System privilege is OK
// bit 1: a Read from User privilege is OK
// bit 0: a Read from System privilege is OK
#define WriteUserOK 0x08
#define WriteSysOK 0x04
#define ReadUserOK 0x02
#define ReadSysOK 0x01
#ifdef __GNUC__
#warning "Move priv_check to CPU fields, or init.cc"
#endif
static unsigned priv_check[BX_PRIV_CHECK_SIZE];
2004-12-17 01:21:35 +03:00
#define PAGE_DIRECTORY_NX_BIT (BX_CONST64(0x8000000000000000))
// === TLB Instrumentation section ==============================
// Note: this is an approximation of what Peter Tattam had.
#define InstrumentTLB 0
#if InstrumentTLB
static unsigned tlbLookups=0;
static unsigned tlbMisses=0;
static unsigned tlbGlobalFlushes=0;
static unsigned tlbNonGlobalFlushes=0;
static unsigned tlbEntryFlushes=0;
static unsigned tlbEntryInvlpg=0;
#define InstrTLB_StatsMask 0xfffff
#define InstrTLB_Stats() {\
if ((tlbLookups & InstrTLB_StatsMask) == 0) { \
BX_INFO(("TLB lookup:%8d miss:%8d %6.2f%% flush:%8d %6.2f%%", \
tlbLookups, \
tlbMisses, \
tlbMisses * 100.0 / tlbLookups, \
(tlbGlobalFlushes+tlbNonGlobalFlushes), \
(tlbGlobalFlushes+tlbNonGlobalFlushes) * 100.0 / tlbLookups \
)); \
tlbLookups = tlbMisses = tlbGlobalFlushes = tlbNonGlobalFlushes = 0; \
} \
}
#define InstrTLB_Increment(v) (v)++
#else
#define InstrTLB_Stats()
#define InstrTLB_Increment(v)
#endif
// ==============================================================
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::pagingCR0Changed(Bit32u oldCR0, Bit32u newCR0)
{
// Modification of PG,PE flushes TLB cache according to docs.
// Additionally, the TLB strategy is based on the current value of
// WP, so if that changes we must also flush the TLB.
if ( (oldCR0 & 0x80010001) != (newCR0 & 0x80010001) )
TLB_flush(1); // 1 = Flush Global entries also.
if (bx_dbg.paging)
BX_INFO(("pagingCR0Changed(0x%x -> 0x%x):", oldCR0, newCR0));
}
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::pagingCR4Changed(Bit32u oldCR4, Bit32u newCR4)
{
// Modification of PGE,PAE,PSE flushes TLB cache according to docs.
if ( (oldCR4 & 0x000000b0) != (newCR4 & 0x000000b0) )
TLB_flush(1); // 1 = Flush Global entries also.
if (bx_dbg.paging)
BX_INFO(("pagingCR4Changed(0x%x -> 0x%x):", oldCR4, newCR4));
2005-04-14 20:44:40 +04:00
#if BX_SupportPAE
if ( (oldCR4 & 0x00000020) != (newCR4 & 0x00000020) ) {
if (BX_CPU_THIS_PTR cr4.get_PAE())
BX_CPU_THIS_PTR cr3_masked = BX_CPU_THIS_PTR cr3 & 0xffffffe0;
else
BX_CPU_THIS_PTR cr3_masked = BX_CPU_THIS_PTR cr3 & 0xfffff000;
}
#endif
}
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::CR3_change(bx_address value)
{
if (bx_dbg.paging) {
BX_INFO(("CR3_change(): flush TLB cache"));
BX_INFO(("Page Directory Base %08x", (unsigned) value));
}
// flush TLB even if value does not change
TLB_flush(0); // 0 = Don't flush Global entries.
BX_CPU_THIS_PTR cr3 = value;
#if BX_SupportPAE
if (BX_CPU_THIS_PTR cr4.get_PAE())
BX_CPU_THIS_PTR cr3_masked = value & 0xffffffe0;
else
#endif
BX_CPU_THIS_PTR cr3_masked = value & 0xfffff000;
}
void
BX_CPU_C::pagingA20Changed(void)
{
TLB_flush(1); // 1 = Flush Global entries too.
}
void
BX_CPU_C::TLB_init(void)
{
// Called to initialize the TLB upon startup.
// Unconditional initialization of all TLB entries.
#if BX_USE_TLB
unsigned i;
unsigned wp, us_combined, rw_combined, us_current, rw_current;
2004-10-21 22:20:40 +04:00
for (i=0; i<BX_TLB_SIZE; i++)
BX_CPU_THIS_PTR TLB.entry[i].lpf = BX_INVALID_TLB_ENTRY;
//
// Setup privilege check matrix.
//
for (i=0; i<BX_PRIV_CHECK_SIZE; i++) {
wp = (i & 0x10) >> 4;
us_current = (i & 0x08) >> 3;
us_combined = (i & 0x04) >> 2;
rw_combined = (i & 0x02) >> 1;
rw_current = (i & 0x01) >> 0;
if (wp) { // when write protect on
if (us_current > us_combined) // user access, supervisor page
priv_check[i] = 0;
else if (rw_current > rw_combined) // RW access, RO page
priv_check[i] = 0;
else
priv_check[i] = 1;
}
else { // when write protect off
if (us_current == 0) // Supervisor mode access, anything goes
priv_check[i] = 1;
else {
// user mode access
if (us_combined == 0) // user access, supervisor Page
priv_check[i] = 0;
else if (rw_current > rw_combined) // RW access, RO page
priv_check[i] = 0;
else
priv_check[i] = 1;
}
}
}
#if BX_USE_QUICK_TLB_INVALIDATE
BX_CPU_THIS_PTR TLB.tlb_invalidate = BX_MAX_TLB_INVALIDATE;
#endif
#endif // #if BX_USE_TLB
}
void
- Apply patch.replace-Boolean rev 1.3. Every "Boolean" is now changed to a "bx_bool" which is always defined as Bit32u on all platforms. In Carbon specific code, Boolean is still used because the Carbon header files define it to unsigned char. - this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95. The bug was that some code in Bochs depends on Boolean to be a 32 bit value. (This should be fixed, but I don't know all the places where it needs to be fixed yet.) Because Carbon defined Boolean as an unsigned char, Bochs just followed along and used the unsigned char definition to avoid compile problems. This exposed the dependency on 32 bit Boolean on MacOS X only and led to major simulation problems, that could only be reproduced and debugged on that platform. - On the mailing list we debated whether to make all Booleans into "bool" or our own type. I chose bx_bool for several reasons. 1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all platforms, which makes it much less likely to have more platform-specific simulation differences in the future. (I spent hours on a borrowed MacOSX machine chasing bug 618388 before discovering that different sized Booleans were the problem, and I don't want to repeat that.) 2. We still have at least one dependency on 32 bit Booleans which must be fixed some time, but I don't want to risk introducing new bugs into the simulation just before the 2.0 release. Modified Files: bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile docs-html/cosimulation.html fpu/wmFPUemu_glue.cc gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h gui/x.cc instrument/example0/instrument.cc instrument/example0/instrument.h instrument/example1/instrument.cc instrument/example1/instrument.h instrument/stubs/instrument.cc instrument/stubs/instrument.h iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc iodev/eth_packetmaker.cc iodev/eth_packetmaker.h iodev/floppy.cc iodev/floppy.h iodev/guest2host.h iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
2002-10-25 15:44:41 +04:00
BX_CPU_C::TLB_flush(bx_bool invalidateGlobal)
{
#if InstrumentTLB
if (invalidateGlobal)
InstrTLB_Increment(tlbGlobalFlushes);
else
InstrTLB_Increment(tlbNonGlobalFlushes);
#endif
#if BX_USE_TLB
for (unsigned i=0; i<BX_TLB_SIZE; i++) {
// To be conscious of the native cache line usage, only
// write to (invalidate) entries which need it.
if (BX_CPU_THIS_PTR TLB.entry[i].lpf != BX_INVALID_TLB_ENTRY) {
#if BX_SupportGlobalPages
if ( invalidateGlobal ||
!(BX_CPU_THIS_PTR TLB.entry[i].accessBits & 0x100) )
#endif
{
BX_CPU_THIS_PTR TLB.entry[i].lpf = BX_INVALID_TLB_ENTRY;
InstrTLB_Increment(tlbEntryFlushes); // A TLB entry flush occurred.
}
}
}
#endif // #if BX_USE_TLB
}
2004-10-06 00:25:06 +04:00
void BX_CPU_C::INVLPG(bxInstruction_c* i)
{
#if BX_CPU_LEVEL >= 4
bx_address laddr;
invalidate_prefetch_q();
// Operand must not be a register
if (i->modC0()) {
#if BX_SUPPORT_X86_64
2004-10-06 00:25:06 +04:00
//
// Opcode 0F 01:
//
// ----------------------------------------------------
// MOD REG RM | non 64 bit mode | 64 bit mode
// ----------------------------------------------------
// MOD <> 11 7 --- | INVLPG | INVLPG
// MOD == 11 7 0 | #UD | SWAPGS
// MOD == 11 7 1-7 | #UD | #UD
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
if ((i->rm() == 0) && (i->nnn() == 7)) {
BX_CPU_THIS_PTR SWAPGS(i);
return;
}
}
2004-10-06 00:25:06 +04:00
#endif
BX_INFO(("INVLPG: op is a register"));
UndefinedOpcode(i);
2004-10-06 00:25:06 +04:00
}
// Can not be executed in v8086 mode
if (v8086_mode())
exception(BX_GP_EXCEPTION, 0, 0);
// Protected instruction: CPL0 only
if (BX_CPU_THIS_PTR cr0.pe) {
if (CPL!=0) {
BX_INFO(("INVLPG: CPL!=0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
#if BX_USE_TLB
laddr = BX_CPU_THIS_PTR get_segment_base(i->seg()) + RMAddr(i);
2004-10-21 22:20:40 +04:00
Bit32u TLB_index = BX_TLB_INDEX_OF(laddr);
BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf = BX_INVALID_TLB_ENTRY;
InstrTLB_Increment(tlbEntryInvlpg);
#endif // BX_USE_TLB
2004-10-06 00:25:06 +04:00
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_INVLPG, 0);
#else
// not supported on < 486
UndefinedOpcode(i);
#endif
}
// Translate a linear address to a physical address, for
// a data access (D)
Bit32u BX_CPP_AttrRegparmN(3)
2004-12-17 01:21:35 +03:00
BX_CPU_C::translate_linear(bx_address laddr, unsigned pl, unsigned rw, unsigned access_type)
{
2004-10-21 22:20:40 +04:00
bx_address lpf;
Bit32u accessBits, combined_access = 0, error_code = 0;
unsigned priv_index;
2004-10-21 22:20:40 +04:00
#if BX_USE_TLB
Bit32u TLB_index;
2004-10-21 22:20:40 +04:00
#endif
InstrTLB_Increment(tlbLookups);
InstrTLB_Stats();
// note - we assume physical memory < 4gig so for brevity & speed, we'll use
// 32 bit entries although cr3 is expanded to 64 bits.
Bit32u ppf, poffset, paddress;
2004-12-17 01:21:35 +03:00
bx_bool isWrite = (rw >= BX_WRITE); // write or r-m-w
#if BX_SupportPAE
if (BX_CPU_THIS_PTR cr4.get_PAE())
{
bx_address pde, pdp;
Bit32u pde_addr;
Bit32u pdp_addr;
lpf = laddr & BX_CONST64(0xfffffffffffff000); // linear page frame
poffset = laddr & 0x00000fff; // physical offset
2004-10-21 22:20:40 +04:00
#if BX_USE_TLB
TLB_index = BX_TLB_INDEX_OF(lpf);
if (BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf == BX_TLB_LPF_VALUE(lpf))
{
paddress = BX_CPU_THIS_PTR TLB.entry[TLB_index].ppf | poffset;
accessBits = BX_CPU_THIS_PTR TLB.entry[TLB_index].accessBits;
2004-10-21 22:20:40 +04:00
if (accessBits & (1 << ((isWrite<<1) | pl)))
return(paddress);
// The current access does not have permission according to the info
// in our TLB cache entry. Re-walk the page tables, in case there is
// updated information in the memory image, and let the long path code
// generate an exception if one is warranted.
2004-10-21 22:20:40 +04:00
}
#endif
InstrTLB_Increment(tlbMisses);
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR msr.lma)
{
bx_address pml4;
// Get PML4 entry
Bit32u pml4_addr = BX_CPU_THIS_PTR cr3_masked |
((laddr & BX_CONST64(0x0000ff8000000000)) >> 36);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, pml4_addr, 8, &pml4);
if ( !(pml4 & 0x01) ) {
2004-12-17 01:21:35 +03:00
goto page_fault_not_present; // PML4 Entry NOT present
}
if (pml4 & PAGE_DIRECTORY_NX_BIT) {
if (! BX_CPU_THIS_PTR msr.nxe)
goto page_fault_reserved;
else if (access_type == CODE_ACCESS)
goto page_fault_access;
}
2004-12-17 01:21:35 +03:00
if ( !(pml4 & 0x20) )
{
pml4 |= 0x20;
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, pml4_addr, 8, &pml4);
}
// Get PDP entry
pdp_addr = (pml4 & 0xfffff000) |
((laddr & BX_CONST64(0x0000007fc0000000)) >> 27);
}
else
#endif
{
pdp_addr = BX_CPU_THIS_PTR cr3_masked | ((laddr & 0xc0000000) >> 27);
}
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, pdp_addr, sizeof(bx_address), &pdp);
if ( !(pdp & 0x01) ) {
2004-12-17 01:21:35 +03:00
goto page_fault_not_present; // PDP Entry NOT present
}
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR msr.lma)
{
if (pdp & PAGE_DIRECTORY_NX_BIT) {
if (! BX_CPU_THIS_PTR msr.nxe)
goto page_fault_reserved;
else if (access_type == CODE_ACCESS)
goto page_fault_access;
}
}
#endif
if ( !(pdp & 0x20) ) {
pdp |= 0x20;
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, pdp_addr, sizeof(bx_address), &pdp);
}
// Get page dir entry
pde_addr = (pdp & 0xfffff000) | ((laddr & 0x3fe00000) >> 18);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, pde_addr, sizeof(bx_address), &pde);
if ( !(pde & 0x01) ) {
2004-12-17 01:21:35 +03:00
goto page_fault_not_present; // Page Directory Entry NOT present
}
#if BX_SUPPORT_X86_64
if (pde & PAGE_DIRECTORY_NX_BIT) {
if (! BX_CPU_THIS_PTR msr.nxe)
goto page_fault_reserved;
else if (access_type == CODE_ACCESS)
goto page_fault_access;
}
#endif
#if BX_SUPPORT_4MEG_PAGES
// (KPL) Weird. I would think the processor would consult CR.PSE?
// if ((pde & 0x80) && (BX_CPU_THIS_PTR cr4.get_PSE())) {}
if (pde & 0x80) {
// 4M pages are enabled, and this is a 4Meg page.
// Combined access is just access from the pde (no pte involved).
combined_access = pde & 0x06; // U/S and R/W
// Make up the physical page frame address.
ppf = (pde & 0xffe00000) | (laddr & 0x001ff000);
#if BX_SupportGlobalPages
if (BX_CPU_THIS_PTR cr4.get_PGE()) { // PGE==1
combined_access |= (pde & 0x100); // G
}
#endif
priv_index =
#if BX_CPU_LEVEL >= 4
(BX_CPU_THIS_PTR cr0.wp<<4) | // bit 4
#endif
(pl<<3) | // bit 3
(combined_access & 0x06) | // bit 2,1
isWrite; // bit 0
2004-12-17 01:21:35 +03:00
if (!priv_check[priv_index]) goto page_fault_access;
// Update PDE if A/D bits if needed.
if ( ((pde & 0x20)==0) || (isWrite && ((pde&0x40)==0)) )
{
pde |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, pde_addr, sizeof(bx_address), &pde);
}
}
else
#endif
{ // 4k pages.
bx_address pte;
// Get page table entry
Bit32u pte_addr = (pde & 0xfffff000) | ((laddr & 0x001ff000) >> 9);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, pte_addr, sizeof(bx_address), &pte);
if ( !(pte & 0x01) ) {
goto page_fault_not_present;
}
#if BX_SUPPORT_X86_64
if (pte & PAGE_DIRECTORY_NX_BIT) {
if (! BX_CPU_THIS_PTR msr.nxe)
goto page_fault_reserved;
else if (access_type == CODE_ACCESS)
goto page_fault_access;
}
#endif
combined_access = (pde & pte) & 0x06; // U/S and R/W
// Make up the physical page frame address.
ppf = pte & 0xfffff000;
#if BX_SupportGlobalPages
if (BX_CPU_THIS_PTR cr4.get_PGE()) { // PGE==1
combined_access |= (pte & 0x100); // G
}
#endif
priv_index =
#if BX_CPU_LEVEL >= 4
(BX_CPU_THIS_PTR cr0.wp<<4) | // bit 4
#endif
(pl<<3) | // bit 3
(combined_access & 0x06) | // bit 2,1
isWrite; // bit 0
2004-12-17 01:21:35 +03:00
if (!priv_check[priv_index]) goto page_fault_access;
// Update PDE A bit if needed.
if ( (pde & 0x20)==0 ) {
pde |= 0x20; // Update A bit.
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, pde_addr, sizeof(bx_address), &pde);
}
// Update PTE A/D bits if needed.
if (((pte & 0x20)==0) || (isWrite && ((pte&0x40)==0)))
{
pte |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, pte_addr, sizeof(bx_address), &pte);
}
}
2004-10-21 22:20:40 +04:00
}
else
#endif // #if BX_SupportPAE
{
// CR4.PAE==0 (and MSR.LMA==0)
lpf = laddr & 0xfffff000; // linear page frame
poffset = laddr & 0x00000fff; // physical offset
2004-10-21 22:20:40 +04:00
#if BX_USE_TLB
TLB_index = BX_TLB_INDEX_OF(lpf);
if (BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf == BX_TLB_LPF_VALUE(lpf))
{
paddress = BX_CPU_THIS_PTR TLB.entry[TLB_index].ppf | poffset;
accessBits = BX_CPU_THIS_PTR TLB.entry[TLB_index].accessBits;
if (accessBits & (1 << ((isWrite<<1) | pl)))
return(paddress);
// The current access does not have permission according to the info
// in our TLB cache entry. Re-walk the page tables, in case there is
// updated information in the memory image, and let the long path code
// generate an exception if one is warranted.
}
2004-10-21 22:20:40 +04:00
#endif
InstrTLB_Increment(tlbMisses);
Bit32u pde, pde_addr;
// Get page dir entry
pde_addr = BX_CPU_THIS_PTR cr3_masked | ((laddr & 0xffc00000) >> 20);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, pde_addr, 4, &pde);
2004-12-17 01:21:35 +03:00
if ( !(pde & 0x01) ) {
goto page_fault_not_present; // Page Directory Entry NOT present
}
#if BX_SUPPORT_4MEG_PAGES
if ((pde & 0x80) && (BX_CPU_THIS_PTR cr4.get_PSE()))
{
// 4M pages are enabled, and this is a 4Meg page.
// Note: when the PSE and PAE flags in CR4 are set,
// the processor generates a PF if the reserved bits are not
// set to 0. (We don't handle PAE yet, just a note for
// the future).
// Combined access is just access from the pde (no pte involved).
combined_access = pde & 0x006; // {US,RW}
// make up the physical frame number
ppf = (pde & 0xFFC00000) | (laddr & 0x003FF000);
#if BX_SupportGlobalPages
if (BX_CPU_THIS_PTR cr4.get_PGE()) { // PGE==1
combined_access |= pde & 0x100; // {G}
}
#endif
priv_index =
#if BX_CPU_LEVEL >= 4
(BX_CPU_THIS_PTR cr0.wp<<4) | // bit 4
#endif
(pl<<3) | // bit 3
(combined_access & 0x06) | // bit 2,1
isWrite; // bit 0
2004-12-17 01:21:35 +03:00
if (!priv_check[priv_index]) goto page_fault_access;
// Update PDE if A/D bits if needed.
if (((pde & 0x20)==0) || (isWrite && ((pde&0x40)==0)))
{
pde |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, pde_addr, 4, &pde);
}
}
else // Else normal 4Kbyte page...
#endif
{
Bit32u pte, pte_addr;
#if (BX_CPU_LEVEL < 6)
// update PDE if A bit was not set before
if ( !(pde & 0x20) ) {
pde |= 0x20;
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, pde_addr, 4, &pde);
}
#endif
// Get page table entry
pte_addr = (pde & 0xfffff000) | ((laddr & 0x003ff000) >> 10);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, pte_addr, 4, &pte);
if ( !(pte & 0x01) ) {
goto page_fault_not_present; // Page Table Entry NOT present
}
// 386 and 486+ have different bahaviour for combining
// privilege from PDE and PTE.
#if BX_CPU_LEVEL == 3
combined_access = (pde | pte) & 0x04; // U/S
combined_access |= (pde & pte) & 0x02; // R/W
#else // 486+
combined_access = (pde & pte) & 0x06; // U/S and R/W
#if BX_SupportGlobalPages
if (BX_CPU_THIS_PTR cr4.get_PGE()) {
combined_access |= (pte & 0x100); // G
}
#endif
#endif
// Make up the physical page frame address.
ppf = pte & 0xfffff000;
priv_index =
#if BX_CPU_LEVEL >= 4
(BX_CPU_THIS_PTR cr0.wp<<4) | // bit 4
#endif
(pl<<3) | // bit 3
(combined_access & 0x06) | // bit 2,1
isWrite; // bit 0
2004-12-17 01:21:35 +03:00
if (!priv_check[priv_index]) goto page_fault_access;
#if (BX_CPU_LEVEL >= 6)
// update PDE if A bit was not set before
if ( !(pde & 0x20) ) {
pde |= 0x20;
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, pde_addr, 4, &pde);
}
#endif
// Update PTE if A/D bits if needed.
if (((pte & 0x20)==0) || (isWrite && ((pte&0x40)==0)))
{
pte |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, pte_addr, 4, &pte);
}
}
}
// Calculate physical memory address and fill in TLB cache entry
paddress = ppf | poffset;
2004-10-21 22:20:40 +04:00
#if BX_USE_TLB
BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf = BX_TLB_LPF_VALUE(lpf);
BX_CPU_THIS_PTR TLB.entry[TLB_index].ppf = ppf;
2004-10-21 22:20:40 +04:00
#endif
// b3: Write User OK
// b2: Write Sys OK
// b1: Read User OK
// b0: Read Sys OK
if ( combined_access & 4 ) { // User
2004-12-17 01:21:35 +03:00
accessBits = 0x3; // User priv; read from {user,sys} OK.
if ( isWrite ) // Current operation is a write (Dirty bit updated)
{
if (combined_access & 2) {
accessBits |= 0x8; // R/W access from {user,sys} OK.
}
else {
accessBits |= 0x4; // read only page, only {sys} write allowed
}
}
}
else { // System
2004-12-17 01:21:35 +03:00
accessBits = 0x1; // System priv; read from {sys} OK.
if ( isWrite ) { // Current operation is a write (Dirty bit updated)
accessBits |= 0x4; // write from {sys} OK.
}
}
#if BX_SupportGlobalPages
accessBits |= combined_access & 0x100; // Global bit
#endif
2004-10-21 22:20:40 +04:00
#if BX_USE_TLB
BX_CPU_THIS_PTR TLB.entry[TLB_index].accessBits = accessBits;
#if BX_SupportGuest2HostTLB
// Attempt to get a host pointer to this physical page. Put that
// pointer in the TLB cache. Note if the request is vetoed, NULL
// will be returned, and it's OK to OR zero in anyways.
BX_CPU_THIS_PTR TLB.entry[TLB_index].hostPageAddr =
(bx_hostpageaddr_t) BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, A20ADDR(ppf), rw);
2004-10-21 22:20:40 +04:00
#endif
#endif
return(paddress);
// error checking order - page not present, reserved bits, protection
2004-12-17 01:21:35 +03:00
#define ERROR_NOT_PRESENT 0x00
#define ERROR_PROTECTION 0x01
#define ERROR_RESERVED 0x08
#define ERROR_CODE_ACCESS 0x10
2004-12-17 01:21:35 +03:00
#if BX_SUPPORT_X86_64 // keep compiler happy
2004-12-17 01:21:35 +03:00
page_fault_reserved:
error_code |= ERROR_RESERVED; // RSVD = 1
#endif
2004-12-17 01:21:35 +03:00
page_fault_access:
2004-12-17 01:21:35 +03:00
error_code |= ERROR_PROTECTION; // P = 1
2004-12-17 01:21:35 +03:00
page_fault_not_present:
error_code |= (pl << 2) | (isWrite << 1);
2004-12-17 01:21:35 +03:00
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR msr.nxe && (access_type == CODE_ACCESS))
error_code |= ERROR_CODE_ACCESS; // I/D = 1
2004-12-17 01:21:35 +03:00
#endif
BX_CPU_THIS_PTR cr2 = laddr;
// Invalidate TLB entry.
2004-10-21 22:20:40 +04:00
#if BX_USE_TLB
BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf = BX_INVALID_TLB_ENTRY;
2004-10-21 22:20:40 +04:00
#endif
#if BX_EXTERNAL_DEBUGGER
#if BX_SUPPORT_X86_64
printf("page fault for address %08x%08x @ %08x%08x\n",
(Bit32u)(laddr >> 32),(Bit32u)(laddr & 0xffffffff),
(Bit32u)(RIP >> 32),(Bit32u)(RIP & 0xffffffff));
#else
2004-10-21 22:20:40 +04:00
printf("page fault for address %08x:%08x\n",
(Bit32u)(laddr >> 32),(Bit32u)(laddr & 0xffffffff));
#endif
#endif
exception(BX_PF_EXCEPTION, error_code, 0);
return(0); // keep compiler happy
}
2004-12-17 01:21:35 +03:00
Bit32u BX_CPP_AttrRegparmN(3)
BX_CPU_C::dtranslate_linear(bx_address laddr, unsigned pl, unsigned rw)
{
return translate_linear(laddr, pl, rw, DATA_ACCESS);
}
Bit32u BX_CPP_AttrRegparmN(2)
BX_CPU_C::itranslate_linear(bx_address laddr, unsigned pl)
{
2004-12-17 01:21:35 +03:00
return translate_linear(laddr, pl, BX_READ, CODE_ACCESS);
}
#if BX_DEBUGGER || BX_DISASM || BX_INSTRUMENTATION || BX_GDBSTUB
void BX_CPU_C::dbg_xlate_linear2phy(bx_address laddr, Bit32u *phy, bx_bool *valid)
{
bx_address lpf, poffset, paddress;
Bit32u TLB_index;
if (BX_CPU_THIS_PTR cr0.pg == 0) {
*phy = laddr;
*valid = 1;
return;
2004-12-17 01:21:35 +03:00
}
lpf = laddr & BX_CONST64(0xfffffffffffff000); // linear page frame
poffset = laddr & 0x00000fff; // physical offset
TLB_index = BX_TLB_INDEX_OF(lpf);
// see if page is in the TLB first
2004-10-21 22:20:40 +04:00
#if BX_USE_TLB
if (BX_CPU_THIS_PTR TLB.entry[TLB_index].lpf == BX_TLB_LPF_VALUE(lpf)) {
paddress = BX_CPU_THIS_PTR TLB.entry[TLB_index].ppf | poffset;
*phy = paddress;
*valid = 1;
return;
2004-10-21 22:20:40 +04:00
}
#endif
if (BX_CPU_THIS_PTR cr4.get_PAE()) {
Bit64u pt_address;
int levels = 3;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR msr.lme)
levels = 4;
#endif
pt_address = BX_CPU_THIS_PTR cr3_masked;
Bit64u offset_mask = 0xfff;
for (int level = levels - 1; level >= 0; --level) {
Bit64u pte;
pt_address += 8 * ((laddr >> (12 + 9*level)) & 511);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, pt_address, 8, &pte);
if (!(pte & 1))
goto page_fault;
pt_address = pte & BX_CONST64(0x000ffffffffff000);
if (level == 1 && (pte & 0x80)) { // PSE page
offset_mask = 0x1fffff;
break;
}
}
paddress = pt_address + (laddr & offset_mask);
} else { // not PAE
Bit32u pt_address;
pt_address = BX_CPU_THIS_PTR cr3_masked;
Bit32u offset_mask = 0xfff;
for (int level = 1; level >= 0; --level) {
Bit32u pte;
pt_address += 4 * ((laddr >> (12 + 10*level)) & 1023);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, pt_address, 4, &pte);
if (!(pte & 1))
goto page_fault;
pt_address = pte & 0xfffff000;
if (level == 1 && (pte & 0x80)) { // PSE page
offset_mask = 0x3fffff;
break;
}
}
paddress = pt_address + (laddr & offset_mask);
}
*phy = paddress;
*valid = 1;
return;
page_fault:
*phy = 0;
*valid = 0;
return;
}
#endif
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::access_linear(bx_address laddr, unsigned length, unsigned pl,
unsigned rw, void *data)
{
#if BX_X86_DEBUGGER
if ( BX_CPU_THIS_PTR dr7 & 0x000000ff ) {
// Only compare debug registers if any breakpoints are enabled
Bit32u dr6_bits;
unsigned opa, opb;
opa = BX_HWDebugMemRW; // Read or Write always compares vs 11b
if (rw==BX_READ) // only compares vs 11b
opb = opa;
else // BX_WRITE or BX_RW; also compare vs 01b
opb = BX_HWDebugMemW;
dr6_bits = hwdebug_compare(laddr, length, opa, opb);
if (dr6_bits) {
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
BX_CPU_THIS_PTR async_event = 1;
}
}
#endif
Bit32u pageOffset = laddr & 0x00000fff;
unsigned xlate_rw = rw;
if (rw==BX_RW) rw = BX_READ;
if (BX_CPU_THIS_PTR cr0.pg) {
/* check for reference across multiple pages */
if ( (pageOffset + length) <= 4096 ) {
// Access within single page.
BX_CPU_THIS_PTR address_xlation.paddress1 =
dtranslate_linear(laddr, pl, xlate_rw);
BX_CPU_THIS_PTR address_xlation.pages = 1;
if (rw == BX_READ) {
BX_INSTR_LIN_READ(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, length);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1, length, data);
}
else {
BX_INSTR_LIN_WRITE(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, length);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1, length, data);
}
return;
}
else {
// access across 2 pages
BX_CPU_THIS_PTR address_xlation.paddress1 =
dtranslate_linear(laddr, pl, xlate_rw);
BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset;
BX_CPU_THIS_PTR address_xlation.len2 = length -
BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.pages = 2;
BX_CPU_THIS_PTR address_xlation.paddress2 =
dtranslate_linear(laddr + BX_CPU_THIS_PTR address_xlation.len1,
pl, xlate_rw);
#ifdef BX_LITTLE_ENDIAN
if (rw == BX_READ) {
BX_INSTR_LIN_READ(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, data);
BX_INSTR_LIN_READ(BX_CPU_ID, laddr + BX_CPU_THIS_PTR address_xlation.len1,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
}
else {
BX_INSTR_LIN_WRITE(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, data);
BX_INSTR_LIN_WRITE(BX_CPU_ID, laddr + BX_CPU_THIS_PTR address_xlation.len1,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
}
#else // BX_BIG_ENDIAN
if (rw == BX_READ) {
BX_INSTR_LIN_READ(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u*)data) + (length - BX_CPU_THIS_PTR address_xlation.len1));
BX_INSTR_LIN_READ(BX_CPU_ID, laddr + BX_CPU_THIS_PTR address_xlation.len1,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, data);
}
else {
BX_INSTR_LIN_WRITE(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u*)data) + (length - BX_CPU_THIS_PTR address_xlation.len1));
BX_INSTR_LIN_WRITE(BX_CPU_ID, laddr + BX_CPU_THIS_PTR address_xlation.len1,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, data);
}
#endif
return;
}
}
else {
// Paging off.
if ( (pageOffset + length) <= 4096 ) {
// Access within single page.
BX_CPU_THIS_PTR address_xlation.paddress1 = laddr;
BX_CPU_THIS_PTR address_xlation.pages = 1;
if (rw == BX_READ) {
BX_INSTR_LIN_READ(BX_CPU_ID, laddr, laddr, length);
#if BX_SupportGuest2HostTLB
2004-09-04 22:22:22 +04:00
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
Bit32u lpf = laddr & 0xfffff000;
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) {
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, laddr, length, data);
return;
}
// We haven't seen this page, or it's been bumped before.
BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf = BX_TLB_LPF_VALUE(lpf);
BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf = lpf;
// Request a direct write pointer so we can do either R or W.
BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr = (bx_hostpageaddr_t)
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, A20ADDR(lpf), BX_WRITE);
if (!BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr) {
// Direct write vetoed. Try requesting only direct reads.
BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr = (bx_hostpageaddr_t)
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, A20ADDR(lpf), BX_READ);
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr) {
// Got direct read pointer OK.
BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits =
(ReadSysOK | ReadUserOK);
}
else
BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits = 0;
}
else {
// Got direct write pointer OK. Mark for any operation to succeed.
BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits =
(ReadSysOK | ReadUserOK | WriteSysOK | WriteUserOK);
}
#endif // BX_SupportGuest2HostTLB
// Let access fall through to the following for this iteration.
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, laddr, length, data);
}
else { // Write
BX_INSTR_LIN_WRITE(BX_CPU_ID, laddr, laddr, length);
#if BX_SupportGuest2HostTLB
2004-09-04 22:22:22 +04:00
Bit32u tlbIndex = BX_TLB_INDEX_OF(laddr);
Bit32u lpf = laddr & 0xfffff000;
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf == BX_TLB_LPF_VALUE(lpf)) {
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, laddr, length, data);
return;
}
// We haven't seen this page, or it's been bumped before.
BX_CPU_THIS_PTR TLB.entry[tlbIndex].lpf = BX_TLB_LPF_VALUE(lpf);
BX_CPU_THIS_PTR TLB.entry[tlbIndex].ppf = lpf;
// TLB.entry[tlbIndex].ppf field not used for PG==0.
// Request a direct write pointer so we can do either R or W.
BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr = (bx_hostpageaddr_t)
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, A20ADDR(lpf), BX_WRITE);
if (BX_CPU_THIS_PTR TLB.entry[tlbIndex].hostPageAddr) {
// Got direct write pointer OK. Mark for any operation to succeed.
BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits =
(ReadSysOK | ReadUserOK | WriteSysOK | WriteUserOK);
}
else
BX_CPU_THIS_PTR TLB.entry[tlbIndex].accessBits = 0;
#endif // BX_SupportGuest2HostTLB
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, laddr, length, data);
}
}
else {
// Access spans two pages.
BX_CPU_THIS_PTR address_xlation.paddress1 = laddr;
BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset;
BX_CPU_THIS_PTR address_xlation.len2 = length -
BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.pages = 2;
BX_CPU_THIS_PTR address_xlation.paddress2 = laddr +
BX_CPU_THIS_PTR address_xlation.len1;
#ifdef BX_LITTLE_ENDIAN
if (rw == BX_READ) {
BX_INSTR_LIN_READ(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, data);
BX_INSTR_LIN_READ(BX_CPU_ID, laddr + BX_CPU_THIS_PTR address_xlation.len1,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
}
else {
BX_INSTR_LIN_WRITE(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, data);
BX_INSTR_LIN_WRITE(BX_CPU_ID, laddr + BX_CPU_THIS_PTR address_xlation.len1,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
}
#else // BX_BIG_ENDIAN
if (rw == BX_READ) {
BX_INSTR_LIN_READ(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u*)data) + (length - BX_CPU_THIS_PTR address_xlation.len1));
BX_INSTR_LIN_READ(BX_CPU_ID, laddr + BX_CPU_THIS_PTR address_xlation.len1,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, data);
}
else {
BX_INSTR_LIN_WRITE(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u*)data) + (length - BX_CPU_THIS_PTR address_xlation.len1));
BX_INSTR_LIN_WRITE(BX_CPU_ID, laddr + BX_CPU_THIS_PTR address_xlation.len1,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2);
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, data);
}
#endif
}
}
}
#else // BX_SUPPORT_PAGING
// stub functions for non-support of paging
void
BX_CPU_C::CR3_change(Bit32u value32)
{
BX_INFO(("CR3_change(): flush TLB cache"));
BX_INFO(("Page Directory Base %08x", (unsigned) value32));
}
void
BX_CPU_C::access_linear(Bit32u laddr, unsigned length, unsigned pl,
unsigned rw, void *data)
{
/* perhaps put this check before all code which calls this function,
* so we don't have to here
*/
if (BX_CPU_THIS_PTR cr0.pg == 0) {
if (rw == BX_READ)
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, laddr, length, data);
else
2004-11-15 00:25:42 +03:00
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, laddr, length, data);
return;
}
BX_PANIC(("access_linear: paging not supported"));
}
2001-08-10 22:42:24 +04:00
void
BX_CPU_C::INVLPG(bxInstruction_c* i)
2001-08-10 22:42:24 +04:00
{}
#endif // BX_SUPPORT_PAGING