machine.c is only compiled for softmmu targets, so checks for
!defined(CONFIG_USER_ONLY) are unnecessary and can be dropped.
Signed-off-by: Juan Quintela <quintela@redhat.com>
[AF: Use more verbose commit message suggested by PMM]
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Andreas Färber <afaerber@suse.de>
commit f7aa558396 pulled the dcache and icache
line size initialization inside of a '#if !defined(CONFIG_USER_ONLY)' block.
This is not correct because instructions like 'dcbz' need the dcache size
initialized even for user mode.
Signed-off-by: Meador Inge <meadori@codesourcery.com>
Cc: Varun Sethi <Varun.Sethi@freescale.com>
[AF: Simplify #ifdefs by using cache line size 32 for *-user as before]
Suggested-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
Move code from cpu_state_reset() into ppc_cpu_reset().
Reorder #include of helper_regs.h to use it in translate_init.c.
Adjust whitespace and add braces.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Move code not dependent on ppc_def_t from cpu_ppc_init() into an initfn.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Embed CPUPPCState as first member of PowerPCCPU.
Distinguish between "powerpc-cpu", "powerpc64-cpu" and
"embedded-powerpc-cpu".
Let CPUClass::reset() call cpu_state_reset() for now.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
On target-ppc, our table of CPU types and features encodes the features as
found on the hardware, regardless of whether these features are actually
usable under TCG or KVM. We already have cases where the information from
the cpu table must be fixed up to account for limitations in the emulation
method we're using. e.g. TCG does not support the DFP and VSX instructions
and KVM needs different numbering of the CPUs in order to tell it the
correct thread to core mappings.
This patch cleans up these hacks to handle emulation limitations by
consolidating them into a pair of functions specifically for the purpose.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
[AF: Style and typo fixes, rename new functions and drop ppc_def_t arg]
Signed-off-by: Andreas Färber <afaerber@suse.de>
Commit 41557447d3 also introduced a subtle TLB
flush bug. By applying a mask to the interrupt MSR which cleared the IR/DR
bits at the start of the interrupt handler, the logic towards the end of the
handler to force a TLB flush if either one of these bits were set would never
be triggered.
This patch simply changes the IR/DR bit check in the TLB flush logic to use
the original MSR value (albeit with some interrupt-specific bits cleared) so
that the IR/DR bits are preserved at the point where the check takes place.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andreas Färber <afaerber@suse.de>
Use uintptr_t instead of void * or unsigned long in
several op related functions, env->mem_io_pc and
GETPC() macro.
Reviewed-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
The official spelling is QEMU.
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Reviewed-by: Andreas Färber <afaerber@suse.de>
[blauwirbel@gmail.com: fixed comment style in hw/sun4m.c]
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
When we dump the CPU registers, there's a certain chance they haven't been
synchronized with KVM yet, so we have to manually trigger that.
This aligns the code with x86 and fixes a bug where the register state was
bogus on invalid/unknown kvm exit reasons.
Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
'POWERPC_INSNS2_DEFAULT' was defined incorrectly which was causing the
opcode table creation code to erroneously register 'eieio' and 'mbar'
for the "default" processor:
** ERROR: opcode 1a already assigned in opcode table 16
*** ERROR: unable to insert opcode [1f-16-1a]
*** ERROR initializing PowerPC instruction 0x1f 0x16 0x1a
Signed-off-by: Meador Inge <meadori@codesourcery.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Fix large page support in TCG. The old code would overwrite the large page
table entry with the fake 4 KB one generated here whenever the ref/change bits
were updated, causing it to point to the wrong area of memory.
Signed-off-by: Nathan Whitehorn <nwhitehorn@freebsd.org>
Acked-by: David Gibson <david@gibson.drobpear.id.au>
[agraf: fix whitespace, braces]
Signed-off-by: Alexander Graf <agraf@suse.de>
The POWER7 emulation is missing the Processor Identification Register,
mandatory in recent POWER CPUs, that is required for SMP on at least
some operating systems (e.g. FreeBSD) to function properly. This patch
copies the existing PIR code from the other CPUs that implement it.
Signed-off-by: Nathan Whitehorn <nwhitehorn@freebsd.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
These instructions for loading and storing byte-swapped 64-bit values have
been introduced in PowerISA 2.06.
Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
For the pseries machine, TCE (IOMMU) tables can either be directly
malloc()ed in qemu or, when running on a KVM which supports it, mmap()ed
from a KVM ioctl. The latter option is used when available, because it
allows the (frequent bottlenext) H_PUT_TCE hypercall to be KVM accelerated.
However, even when KVM is persent, TCE acceleration is not always possible.
Only KVM HV supports this ioctl(), not KVM PR, or the kernel could run out
of contiguous memory to allocate the new table. In this case we need to
fall back on the malloc()ed table.
When a device is removed, and we need to remove the TCE table, we need to
either munmap() or free() the table as appropriate for how it was
allocated. The code is supposed to do that, but we buggily fail to
initialize the tcet->fd variable in the malloc() case, which is used as a
flag to determine which is the right choice.
This patch fixes the bug, and cleans up error messages relating to this
path while we're at it.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
Scripted conversion:
for file in *.[hc] hw/*.[hc] hw/kvm/*.[hc] linux-user/*.[hc] linux-user/m68k/*.[hc] bsd-user/*.[hc] darwin-user/*.[hc] tcg/*/*.[hc] target-*/cpu.h; do
sed -i "s/CPUState/CPUArchState/g" $file
done
All occurrences of CPUArchState are expected to be replaced by QOM CPUState,
once all targets are QOM'ified and common fields have been extracted.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Reviewed-by: Anthony Liguori <aliguori@us.ibm.com>
Scripted conversion:
sed -i "s/CPUState/CPUPPCState/g" target-ppc/*.[hc]
sed -i "s/#define CPUPPCState/#define CPUState/" target-ppc/cpu.h
Signed-off-by: Andreas Färber <afaerber@suse.de>
Acked-by: Anthony Liguori <aliguori@us.ibm.com>
Frees the identifier cpu_reset for QOM CPUs (manual rename).
Don't hide the parameter type behind explicit casts, use static
functions with strongly typed argument to indirect.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Reviewed-by: Anthony Liguori <aliguori@us.ibm.com>
On ppc405ep there is a register that allows for software to reset the
core, but not the whole system. Implement this reset using a reset
interrupt.
This gets rid of a bunch of #if 0'ed code.
Reported-by: Andreas Färber <afaerber@suse.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Andreas Färber <afaerber@suse.de>
Fix this error:
/src/qemu/target-ppc/helper.c: In function 'booke206_tlb_to_page_size':
/src/qemu/target-ppc/helper.c:1296:14: error: variable 'tlbncfg' set but not used [-Werror=unused-but-set-variable]
Tested-by: Andreas Färber <afaerber@suse.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
When running Linux on e500 with powersave-nap enabled, Linux tries to
read out the L1CFG0 register and calculates some things from it. Passing
0 there ends up in a division by 0, resulting in -1, resulting in badness.
So let's populate the L1CFG0 register with reasonable defaults. That way
guests aren't completely confused.
Reported-by: Shrijeet Mukherjee <shm@cumulusnetworks.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The e500mc implements Embedded.Processor Control, so enable it and
thus enable guests to IPI each other. This makes -smp work with -cpu
e500mc.
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch implements the msgsnd instruction. It is part of the
Embedded.Processor Control specification and allows one CPU to
IPI another CPU without going through an interrupt controller.
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch implements the msgclr instruction. It is part of the
Embedded.Processor Control specification and clears pending doorbell
interrupts on the current CPU.
Signed-off-by: Alexander Graf <agraf@suse.de>
We already had all the code available to have doorbell exceptions
be handled properly. It was just disabled.
Enable it, so we can rely on it.
Signed-off-by: Alexander Graf <agraf@suse.de>
We're going to introduce doorbell instructions (called processor
control in the spec) soon. Add some defines for easier patch
readability later.
Signed-off-by: Alexander Graf <agraf@suse.de>
Our EXCP list is getting outdated. By now, 3 new exception vectors have
been introduced. Update the list so we have everything at one place.
Signed-off-by: Alexander Graf <agraf@suse.de>
We can have TLBs that only support a single page size. This is defined
by the absence of the AVAIL flag in TLBnCFG. If this is the case, we
currently write invalid size info into the TLB, but override it on
internal fault.
Let's move the check over to tlbwe, so we don't have the AVAIL check in
the hotter fault path.
Signed-off-by: Alexander Graf <agraf@suse.de>
Our internal helpers to fetch TLB entries were not able to tell us
that an entry doesn't even exist. Pass an error out if we hit such
a case to not accidently pass beyond the TLB array.
Signed-off-by: Alexander Graf <agraf@suse.de>
The PowerPC 2.06 BookE ISA defines an opcode called "tlbilx" which is used
to flush TLB entries. It's the recommended way of flushing in virtualized
environments.
So far we got away without implementing it, but Linux for e500mc uses this
instruction, so we better add it :).
Signed-off-by: Alexander Graf <agraf@suse.de>
When setting a TLB entry, we need to check if the TLB we're putting it in
actually supports the given size. According to the 2.06 PowerPC ISA, a
value that's out of range can either be redefined to something implementation
dependent or we can raise an illegal opcode exception. We do the latter.
Signed-off-by: Alexander Graf <agraf@suse.de>
When using MAV 2.0 TLB registers, we have another range of TLB registers
available to read the supported page sizes from.
Add SPR definitions for those and add a helper function that we can use
to receive such a bitmap even when using MAV 1.0.
Signed-off-by: Alexander Graf <agraf@suse.de>
We might want to call the tlb check function without actually caring about
the real address resolution. Check if we really should write the value
back.
Signed-off-by: Alexander Graf <agraf@suse.de>
The msync instruction as defined today is only valid on 4xx cores, not
on e500 which also supports msync, but treats it the same way as sync.
Rename it to reflect that it's 4xx only.
Signed-off-by: Alexander Graf <agraf@suse.de>
The e500 CPUs don't use 440's msync which falls on the same opcode IDs,
but instead use the real powerpc sync instruction. This is important,
since the invalid mask differs between the two.
Signed-off-by: Alexander Graf <agraf@suse.de>
Our code only knows IVORs up to 37. Add the new ones defined in ISA 2.06
from 38 - 42.
Signed-off-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Andreas Färber <afaerber@suse.de>
Unfortunately the HIOR setting code slipped into upstream QEMU
before it was pulled into upstream KVM. And since Murphy is always
right, comments on the patches only emerged on the pull request
leading to changes in the interface.
So here's an update to the HIOR setting. While at it, I also relaxed
it a bit since for HV KVM we can already run fine without and 3.2
works just fine with HV KVM but when not setting HIOR. We will only
need this when running PAPR in PR KVM.
Since we accidently changed the ABI and API along the way, we have
to update the underlying kernel headers together with the code that
uses it to not break bisectability.
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that we have 440 TLB emulation, we can also support running the 440EP
CPU target in system emulation mode.
Signed-off-by: Alexander Graf <agraf@suse.de>
Commit c5705a772 ("vmstate, memory: decouple vmstate from memory API") changed
the signature of memory_region_init_ram_ptr() but did not update a caller in
the ppc kvm module. Fix.
Signed-off-by: Avi Kivity <avi@redhat.com>
This core is found on chips such as p4080, p3041, p2040, and p5020.
More needs to be done to make this viable for TCG (such as missing SPRs
and instructions), but this suffices to get KVM running with appropriate
kernel support.
Signed-off-by: Varun Sethi <Varun.Sethi@freescale.com>
[scottwood@freescale.com: tweak some flags]
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
When guest reset, we need to halt secondary cpus until guest kick them.
This already works for tcg. The patch add the support for kvm.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
[agraf: remove in-kernel irqchip code]
When run with a PPC Book3S (server) CPU Currently 'info tlb' in the
qemu monitor reports "dump_mmu: unimplemented". However, during
bringup work, it can be quite handy to have the SLB entries, which are
available in the CPUPPCState. This patch adds an implementation of
info tlb for book3s, which dumps the SLB.
Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Edgar E. Iglesias <edgar.iglesias@gmail.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: Alexander Graf <agraf@suse.de>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: Blue Swirl <blauwirbel@gmail.com>
Signed-off-by: Dong Xu Wang <wdongxu@linux.vnet.ibm.com>
Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
When using gdb to single step a ppc interrupt routine, the execution
flow passes the rfi instruction without actually returning from the
interrupt.
The patch fixes this by avoiding to update the nip when the debug
exception is raised and a previous POWERPC_EXCP_SYNC was set.
The latter is the case only, if code for rfi or a related instruction
was generated.
Signed-off-by: Sebastian Bauer <mail@sebastianbauer.info>
Signed-off-by: Alexander Graf <agraf@suse.de>
The CPU state contains two bitmaps, initialized from the CPU spec
which describes which instructions are implemented on the CPU. A
couple of bits are defined which cover instructions (VSX and DFP)
which are not currently implemented in TCG. So far, these are only
used to handle the case of -cpu host because a KVM guest can use
the instructions when the host CPU supports them.
However, it's a mild layering violation to simply not include those
bits in the CPU descriptions for those CPUs that do support them,
just because we can't handle them in TCG. This patch corrects the
situation, so that the instruction bits _are_ shown correctly in the
cpu spec table, but are masked out from the cpu state in the non-KVM
case.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
Sufficiently recent kernels include a KVM call to accelerate use of
PAPR TCE tables (IOMMU), which are used by PAPR virtual IO devices.
This involves qemu mapping the TCE table in from a kernel obtained fd,
which currently we do with PROT_READ only. This is a hangover from
early (never released) versions of this kernel interface which only
permitted read-only mappings and required us to destroy and recreate
the table when we needed to clear it from qemu.
Now, the kernel permits read-write mappings, and we rely on this to
clear the table in spapr_vio_quiesce_one(). However, due to
insufficient testing, I forgot to update the actual mapping of the
table in kvmppc_create_spapr_tce() to add PROT_WRITE to the mmap().
This patch corrects the oversight.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
The -cpu host feature tries to find out the host capabilities based
on device tree information. However, we don't always have that available
because it's an optional property in dt.
So instead of force unsetting values depending on an unreliable source
of information, let's just try to be clever about it and not override
capabilities when we don't know the device tree pieces.
This fixes altivec with -cpu host on YDL PowerStations.
Reported-by: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
The recent usage of MemoryRegion in kvm_ppc.h breaks builds with
CONFIG_USER_ONLY=y. This patch fixes it.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently, when KVM is enabled, the pseries machine checks if the host
CPU supports VMX, VSX and/or DFP instructions and advertises
accordingly in the guest device tree. It does this regardless of what
CPU is selected on the command line. On the other hand, when in TCG
mode, it never advertises any of these facilities, even basic VMX
(Altivec) which is supported in TCG.
Now that we have a -cpu host option for ppc, it is fairly
straightforward to fix both problems. This patch changes the -cpu
host code to override the basic cpu spec derived from the PVR with
information queried from the host avout VMX, VSX and DFP capability.
The pseries code then uses the instruction availability advertised in
the cpu state to set the guest device tree correctly for both the KVM
and TCG cases.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
The sole reason we have the ppcemb target is to support MMUs that have
less than the usual 4k possible page size. There are very few of these
chips and I don't want to add additional QA and testing burden to everyone
to ensure that code still works when TARGET_PAGE_SIZE is not 4k.
So this patch disables all CPUs except for MMU_BOOKE capable ones from
the ppcemb target.
Signed-off-by: Alexander Graf <agraf@suse.de>
Some 32-bit PPC CPUs can use up to 36 bit of physical address space.
Treat them accordingly in the qemu-system-ppc binary type.
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch adds cpu specs to the table for POWER7 revisions 2.1 and 2.3.
This allows -cpu host to be used on these host cpus.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
For convenience with kvm, x86 allows the user to specify -cpu host on the
qemu command line, which means make the guest cpu the same as the host
cpu. This patch implements the same option for ppc targets.
For now, this just read the host PVR (Processor Version Register) and
selects one of our existing CPU specs based on it. This means that the
option will not work if the host cpu is not supported by TCG, even if that
wouldn't matter for use under kvm.
In future, we can extend this in future to override parts of the cpu spec
based on information obtained from the host (via /proc/cpuinfo, the host
device tree, or explicit KVM calls). That will let us handle cases where
the real kvm-virtualized CPU doesn't behave exactly like the TCG-emulated
CPU. With appropriate annotation of the CPU specs we'll also then be able
to use host cpus under kvm even when there isn't a matching full TCG model.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
The ppc target contains a ppc_find_by_pvr() function, which looks up a
CPU spec based on a PVR (that is, based on the value in the target cpu's
Processor Version Register). PVR values contain information on both the
cpu model (upper 16 bits, usually) and on the precise revision (low 16
bits, usually).
ppc_find_by_pvr, as well as making exact PVR matches, attempts to find
"close" PVR matches, when we don't have a CPU spec for the exact revision
specified. This sounds like a good idea, execpt that the current logic
is completely nonsensical.
It seems to assume CPU families are subdivided bit by bit in the PVR in a
way they just aren't. Specifically, it requires a match on all bits of the
specified pvr up to the last non-zero bit. This has the bizarre effect
that when the low bits are simply a sequential revision number (a common
though not universal pattern), then odd specified revisions must be matched
exactly, whereas even specified revisions will also match the next odd
revision, likewise for powers of 4, 8 and so forth.
To correctly do inexact matching we'd need to re-organize the table of CPU
specs to include a mask showing what PVR range the spec is compatible with
(similar to the cputable code in the Linux kernel).
For now, just remove the bogosity by only permitting exact PVR matches.
That at least makes the matching simple and consistent. If we need inexact
matching we can add the necessary per-subfamily masks later.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
Sufficiently recent PAPR specifications define properties "ibm,vmx"
and "ibm,dfp" on the CPU node which advertise whether the VMX vector
extensions (or the later VSX version) and/or the Decimal Floating
Point operations from IBM's recent POWER CPUs are available.
Currently we do not put these in the guest device tree and the guest
kernel will consequently assume they are not available. This is good,
because they are not supported under TCG. VMX is similar enough to
Altivec that it might be trivial to support, but VSX and DFP would
both require significant work to support in TCG.
However, when running under kvm on a host which supports these
instructions, there's no reason not to let the guest use them. This
patch, therefore, checks for the relevant support on the host CPU
and, if present, advertises them to the guest as well.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently the kvmppc_get_clockfreq() function reads the host's clock
frequency from /proc/device-tree, which is useful to past to the guest
in KVM setups. However, there are some other host properties
advertised in the device tree which can also be relevant to the
guests.
This patch, therefore, replaces kvmppc_get_clockfreq() which can
retrieve any named, single integer property from the host device
tree's CPU node.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
SPE instructions are defined by pairs. Currently, the invalid-bits mask is set
for the first instruction, but the second one can have a different mask.
example:
GEN_SPE(efdcmpeq, efdcfs, 0x17, 0x0B, 0x00600000, 0x00180000, PPC_SPE_DOUBLE),
Signed-off-by: Fabien Chouteau <chouteau@adacore.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The pseries machine of qemu implements the TCE mechanism used as a
virtual IOMMU for the PAPR defined virtual IO devices. Because the
PAPR spec only defines a small DMA address space, the guest VIO
drivers need to update TCE mappings very frequently - the virtual
network device is particularly bad. This means many slow exits to
qemu to emulate the H_PUT_TCE hypercall.
Sufficiently recent kernels allow this to be mitigated by implementing
H_PUT_TCE in the host kernel. To make use of this, however, qemu
needs to initialize the necessary TCE tables, and map them into itself
so that the VIO device implementations can retrieve the mappings when
they access guest memory (which is treated as a virtual DMA
operation).
This patch adds the necessary calls to use the KVM TCE acceleration.
If the kernel does not support acceleration, or there is some other
error creating the accelerated TCE table, then it will still fall back
to full userspace TCE implementation.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
At present, using the hypervisor aware Book3S-HV KVM will only work
with qemu on POWER7 CPUs. PPC970 CPUs also have hypervisor
capability, but they lack the VRMA feature which makes assigning guest
memory easier.
In order to allow KVM Book3S-HV on PPC970, we need to specially
allocate the first chunk of guest memory (the "Real Mode Area" or
RMA), so that it is physically contiguous.
Sufficiently recent host kernels allow such contiguous RMAs to be
allocated, with a kvm capability advertising whether the feature is
available and/or necessary on this hardware. This patch enables qemu
to use this support, thus allowing kvm acceleration of pseries qemu
machines on PPC970 hardware.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
---
agraf: fix to use memory api
Alex Graf has already made qemu support KVM for the pseries machine
when using the Book3S-PR KVM variant (which runs the guest in
usermode, emulating supervisor operations). This code allows gets us
very close to also working with KVM Book3S-HV (using the hypervisor
capabilities of recent POWER CPUs).
This patch moves us another step towards Book3S-HV support by
correctly handling SMT (multithreaded) POWER CPUs. There are two
parts to this:
* Querying KVM to check SMT capability, and if present, adjusting the
cpu numbers that qemu assigns to cause KVM to assign guest threads
to cores in the right way (this isn't automatic, because the POWER
HV support has a limitation that different threads on a single core
cannot be in different guests at the same time).
* Correctly informing the guest OS of the SMT thread to core mappings
via the device tree.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
While working on the emulation of the freescale p2010 (e500v2) I realized that
there's no implementation of booke's timers features. Currently mpc8544 uses
ppc_emb (ppc_emb_timers_init) which is close but not exactly like booke (for
example booke uses different SPR).
Signed-off-by: Fabien Chouteau <chouteau@adacore.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
When running with PR KVM, we need to set HIOR directly. Thankfully there
is now a new interface to set registers individually so we can just use that
and poke HIOR into the guest vcpu's HIOR register.
While at it, this also sets SDR1 because -M pseries requires it to run.
With this patch, -M pseries works properly with PR KVM.
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch implements support for the CFAR SPR on POWER7 (Come From
Address Register), which snapshots the PC value at the time of a branch or
an rfid. The latest powerpc-next kernel also catches it and can show it in
xmon or in the signal frames.
This works well enough to let recent kernels boot (which otherwise oops
on the CFAR access). It hasn't been tested enough to be confident that the
CFAR values are actually accurate, but one thing at a time.
Signed-off-by: Ben Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
This definition is backward compatible with MAV=1.0 as long as
the guest does not set reserved bits in MAS1/MAS4.
Also, fix the shift in booke206_tlb_to_page_size -- it's the base
that should be able to hold a 4G page size, not the shift count.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Share the TLB array with KVM. This allows us to set the initial TLB
both on initial boot and reset, is useful for debugging, and could
eventually be used to support migration.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
When running PR style KVM, we need to tell the kernel that we want
to run in PAPR mode now. This means that we need to pass some more
register information down and enable papr mode. We also need to align
the HTAB to htab_size boundary.
Using this patch, -M pseries works with kvm even on non-hv kvm
implementations, as long as the preceding kernel patches are in.
Signed-off-by: Alexander Graf <agraf@suse.de>
---
v1 -> v2:
- match on CONFIG_PSERIES
v2 -> v3:
- remove HIOR pieces from PAPR patch (ABI breakage)
We have a bunch of helper functions that don't have any stubs for them in case
we don't have CONFIG_KVM enabled. That didn't bite us so far, because gcc can
optimize them out pretty well, but we should really provide them.
Signed-off-by: Alexander Graf <agraf@suse.de>
---
v1 -> v2:
- use uint64_t for clockfreq
We need to find out the host's clock-frequency when running on KVM, so
let's export a respective function.
Signed-off-by: Alexander Graf <agraf@suse.de>
---
v1 -> v2:
- enable 64bit values
qemu_service_io was mainly an alias to qemu_notify_event,
currently used only by PPC for timer hack, so call
qemu_notify_event directly.
Signed-off-by: Frediano Ziglio <freddy77@gmail.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Those blanks violate the coding conventions, see
scripts/checkpatch.pl.
Blanks missing after colons in the changed lines were added.
This patch does not try to fix tabs, long lines and other
problems in the changed lines, therefore checkpatch.pl reports
many violations.
Signed-off-by: Stefan Weil <weil@mail.berlios.de>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
When an exception occurs on BookE, we need to set ESR bits to expose
to the guest information on what exactly happened. Add the obvious ones.
Reported-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
When accessing an SPE instruction despite it being not available,
throw an SPE exception instead of an APU exception. That way the
guest knows what's going on and actually uses SPE.
Reported-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
The BookE spec specifies a number of ESR bits. Add defines for them
so we can use them later on.
Reported-by: Jason Wessel <jason.wessel@windriver.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
Parameter is_softmmu (and its evil mutant twin brother is_softmuu)
is not used in cpu_*_handle_mmu_fault() functions, remove them
and adjust callers.
Acked-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
Do not allocate TCG-only resources like the translation buffer when
running over KVM or XEN. Saves a "few" bytes in the qemu address space
and is also conceptually cleaner.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Move softmmu_exec.h include directives from target-*/exec.h to
target-*/op_helper.c. Move also various other stuff only used in
op_helper.c there.
Define global env in dyngen-exec.h.
For i386, move wrappers for segment and FPU helpers from user-exec.c
to op_helper.c. Implement raise_exception_err_env() to handle dynamic
CPUState. Move the function declarations to cpu.h since they can be
used outside of op_helper.c context.
LM32, s390x, UniCore32: remove unused cpu_halted(), regs_to_env() and
env_to_regs().
ARM: make raise_exception() static.
Convert
#include "exec.h"
to
#include "cpu.h"
#include "dyngen-exec.h"
and remove now unused target-*/exec.h.
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
Remove the include of setjmp.h from the cpu.h of target-alpha
and target-ppc. This is unnecessary because cpu-defs.h already
includes this header; this change brings these two targets
into line with all the rest.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
* 'ppc-next' of git://repo.or.cz/qemu/agraf:
PPC: move TLBs to their own arrays
PPC: 440: Use 440 style MMU as default, so Qemu knows the MMU type
PPC: E500: Use MAS registers instead of internal TLB representation
PPC: Only set lower 32bits with mtmsr
PPC: update openbios firmware
PPC: mpc8544ds: Add hypervisor node
PPC: calculate kernel,initrd,cmdline locations dynamically
target-ppc: Handle memory-forced I/O controller access
PPC: E500: Implement reboot controller
Move functions cpu_has_work() and cpu_pc_from_tb() from exec.h to cpu.h. This is
needed by later patches.
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
Before the next patch, fix coding style of the areas affected.
Change the type of the return value from cpu_has_work() and
qemu_cpu_has_work() to bool.
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
No longer needed with accompanied kernel headers.
CC: Alexander Graf <agraf@suse.de>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Required header support is now unconditionally available.
CC: Alexander Graf <agraf@suse.de>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Until now, we've created a union over multiple different TLB types and
allocated that union. While it's a waste of memory (and cache) to allocate
TLB information for a TLB type with much information when you only need
little, it also inflicts another issue.
With the new KVM API, we can now share the TLB between KVM and qemu, but
for that to work we need to have both be in the same layout. We can't just
stretch it over to fit some internal different TLB representation.
Hence this patch moves all TLB types to their own array, allowing us to only
address and allocate exactly the boundaries required for the specific TLB
type at hand.
Signed-off-by: Alexander Graf <agraf@suse.de>
The natural format for e500 cores to do TLB manipulation with are the MAS
registers. Instead of converting them into some internal representation
and back again when the guest reads them, we can just keep the data
identical to the way the guest passed it to us.
The main advantage of this approach is that we're getting closer to being
able to share MMU data with KVM using shared memory, so that we don't need
to copy lots of MMU data back and forth all the time. For this to work
however, another patch is required that gets rid of the TLB union, as that
destroys our memory layout that needs to be identical with the kernel one.
Signed-off-by: Alexander Graf <agraf@suse.de>
As Nathan pointed out correctly, the mtmsr instruction does not modify
the high 32 bits of MSR. It also doesn't matter if SF is set or not,
the instruction always behaves the same.
This patch moves it a bit closer to the spec.
Reported-by: Nathan Whitehorn <nwhitehorn@freebsd.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
On at least the PowerPC 601, a direct-store (T=1) with bus unit ID 0x07F
is special-cased as memory-forced I/O controller access. It is supposed
to be checked immediately if T=1, bypassing all protection mechanisms
and acting cache-inhibited and global.
Signed-off-by: Hervé Poussineau <hpoussin@reactos.org>
Simplified by avoiding reindentation. Added explanatory comments.
Cc: Alexander Graf <agraf@suse.de>
Signed-off-by: Andreas Färber <andreas.faerber@web.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch removes all references to signal.h when qemu-common.h is included
as they become redundant.
Signed-off-by: Alexandre Raymond <cerbere@gmail.com>
Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
target-ppc has been switched to softfloat only long ago, but a
few #ifdef CONFIG_SOFTFLOAT have been forgotten. Remove them.
Cc: Alexander Graf <agraf@suse.de>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
When compiling qemu with kvm support on BookE PPC machines, I get
the following error:
cc1: warnings being treated as errors
/tmp/qemu/target-ppc/kvm.c: In function 'kvm_arch_get_registers':
/tmp/qemu/target-ppc/kvm.c:188: error: unused variable 'sregs'
This is due to overly ambitious #ifdef'ery introduced in 90dc88.
Fix it by keeping code that doesn't depend on new headers alive
for the compiler, but never executed due to failing capability
checks.
CC: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
When QEMU was configured with --enable-debug-tcg,
compilation fails in spr_write_booke206_mmucsr0() and in
spr_write_booke_pid(). Similar changes are also needed
in conditional code which is normally unused.
Cc: Alexander Graf <agraf@suse.de>
Signed-off-by: Stefan Weil <weil@mail.berlios.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
* 'ppc-next' of git://repo.or.cz/qemu/agraf:
Fix a bug in mtsr/mtsrin emulation on ppc64
pSeries: Clean up write-only variables
w32: Fix compilation and replace non-portable usage of ulong
tb_invalidate_page_range() was intended to be used to invalidate an
area of a TB which the guest explicitly flushes from i-cache. However,
QEMU detects writes to code areas where TBs have been generated, so
his has never been useful.
Delete the function, adjust callers.
Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
Early ppc64 CPUs include a hack to partially simulate the ppc32 segment
registers, by translating writes to them into writes to the SLB. This is
not used by any current Linux kernel, but it is used by the openbios used
in the qemu mac99 model.
Commit 81762d6dd0, cleaning up the SLB
handling introduced a bug in this code, breaking the openbios currently in
qemu. Specifically, there was an off by one error bitshuffling the
register format used by mtsr into the format needed for the SLB load,
causing the flag bits to end up in the wrong place. This caused the
storage keys to be wrong under openbios, meaning that the translation code
incorrectly thought a legitimate access was a permission violation.
This patch fixes the bug, at the same time it fixes some build bug in the
MMU debugging code (only exposed when DEBUG_MMU is enabled).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
ulong is undefined for w32 (and maybe other) compilations.
Replace it by uintptr_t (which also fixes compilation for w64
and is a better choice for pointer to integer conversions).
Cc: Aurelien Jarno <aurelien@aurel32.net>
Signed-off-by: Stefan Weil <weil@mail.berlios.de>
Reviewed-by: Aurelien Jarno <aurelien@aurel32.net>
Signed-off-by: Alexander Graf <agraf@suse.de>
* 'ppc-next' of git://repo.or.cz/qemu/agraf:
PPC: Qdev'ify e500 pci
PPC MPC7544DS: Use new TLB helper function
PPC: Implement e500 (FSL) MMU
PPC: Add another 64 bits to instruction feature mask
PPC: Add GS MSR definition
PPC: Make MPC8544DS emulation work w/o KVM
PPC: Make MPC8544DS obey -cpu switch
Fix off-by-one error in sizing pSeries hcall table
ppc64: Fix out-of-tree builds
kvm: ppc: warn user on PAGE_SIZE mismatch
kvm: ppc: detect old headers
monitor: add PPC BookE SPRs
kvm: ppc: fixes for KVM_SET_SREGS on init
ppc64: Don't try to build sPAPR RTAS on Darwin
Place pseries vty devices at addresses more similar to existing machines
Make pSeries 'model' property more closely resemble real hardware
pseries: Increase maximum CPUs to 256
Most of the code to support e500 style MMUs is already in place, but
we're missing on some of the special TLB0-TLB1 handling code and slightly
different TLB modification.
This patch adds support for the FSL style MMU.
Signed-off-by: Alexander Graf <agraf@suse.de>
To enable quick runtime detection of instruction groups to the currently
selected CPU emulation, we have a feature mask of what exactly the respective
instruction supports.
This feature mask is 64 bits long and we just successfully exceeded those 64
bits. To add more features, we need to think of something.
The easiest solution that came to my mind was to simply add another 64 bits
that we can also match on. Since the comparison is only done on start of the
qemu process to generate an internal opcode calling table, we should be fine
on any performance penalties here.
Signed-off-by: Alexander Graf <agraf@suse.de>
When compiling Qemu with older kernel headers, the PVR setting
mechanism isn't available yet. Unfortunately, back then I didn't add
a capability we could check against, so all we can do is add a configure
test to see if we support PVR setting. For BookE, we don't care yet.
This fixes compilation errors with KVM enabled on older kernel headers
(like 2.6.32).
Signed-off-by: Alexander Graf <agraf@suse.de>
Read them via KVM_GET_SREGS in kvm_arch_get_registers(),
and display them in "info registers".
Also get CR and PID from the existing KVM_GET_REGS.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Classic/server ppc has had SREGS for a while now (though I think not
always?), but it's still missing for booke. Check the capability before
calling KVM_SET_SREGS.
Without this, booke kvm fails to boot as of commit
84b4915dd2 (kvm: Handle kvm_init_vcpu
errors).
Also, don't write random stack state into the non-PVR sregs fields --
have kvm fill it in first.
Eventually booke will have sregs and it will have its own capability to
be tested here. However, we will want a way for platform code to request
to look like the actual CPU we're running on, especially if SoC devices
are being directly assigned.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The previous patch removed the need for parameter puc.
Is is now unused, so remove it.
Cc: Aurelien Jarno <aurelien@aurel32.net>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Stefan Weil <weil@mail.berlios.de>
Function gen_pc_load was introduced in commit
d2856f1ad4.
The only reason for parameter searched_pc was
a debug statement in target-i386/translate.c.
Parameter puc was needed by target-sparc until
commit d7da2a1040.
Remove searched_pc from the debug statement and remove both
parameters from the parameter list of gen_pc_load.
As the function name gen_pc_load was also misleading,
it is now called restore_state_to_opc. This new name
was suggested by Peter Maydell, thanks.
v2: Remove last parameter, too, and rename the function.
v3: Fix [] typo in target-arm/translate.c.
Fix wrong SHA1 object name in commit message (copy+paste error).
Cc: Aurelien Jarno <aurelien@aurel32.net>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Stefan Weil <weil@mail.berlios.de>
efstst*() functions are fast SPE funtions which do not take into account
special values (infinites, NaN, etc.), while efscmp*() functions are
IEEE754 compliant.
Given that float32_*() functions are IEEE754 compliant, the efscmp*()
functions are correctly implemented, while efstst*() are not. This
patch reverse the implementation of this two groups of functions and
fix the comments. It also use float32_eq() instead of float32_eq_quiet()
as qNaNs should not be ignored.
Cc: Alexander Graf <agraf@suse.de>
Cc: Nathan Froyd <froydnj@codesourcery.com>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
float*_eq functions have a different semantics than other comparison
functions. Fix that by first renaming float*_quiet() into float*_eq_quiet().
Note that it is purely mechanical, and the behaviour should be unchanged.
That said it clearly highlight problems due to this different semantics,
they are fixed later in this patch series.
Cc: Alexander Graf <agraf@suse.de>
Acked-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
Now that PPC defaults to softfloat which always provides float128
support, there is no need to keep two version of the code, depending if
float128 support is available or not. Suggested by Peter Maydell.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
tcg_gen_exit_tb takes a parameter of type tcg_target_long,
so the type casts of pointer to long should be replaced by
type casts of pointer to tcg_target_long (suggested by Blue Swirl).
These changes are needed for build environments where
sizeof(long) != sizeof(void *), especially for w64.
Signed-off-by: Stefan Weil <weil@mail.berlios.de>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
When configured with --enable-debug, we compile without optimization.
This means that the function mpc8544_copy_soc_cell() in ppce500_mpc8544ds.c
is not optimized out, even though it is never called without kvm. That in
turn causes a link failure, because it calls the function
kvmppc_read_host_property() which is in kvm_ppc.o and therefore not
included in a --disable-kvm build.
This patch fixes the problem by providing a dummy stub for
kvmppc_read_host_property() in kvm_ppc.h when !CONFIG_KVM.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
The recent patches adding partial support for POWER7 cpu emulation included
implementing the popcntd instruction. The support for this was open coded,
but host-utils.h already included a function implementing an equivalent
population count function, which uses a gcc builtin (which can use special
host instructions) if available.
This patch makes the popcntd implementation use the existing, potentially
faster, implementation.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
Shared-processor partitions are those where a CPU is time-sliced between
partitions, rather than being permanently dedicated to a single
partition. qemu emulated partitions, since they are just scheduled with
the qemu user process, behave mostly like shared processor partitions.
In order to better support shared processor partitions (splpar), PAPR
defines the "VPA" (Virtual Processor Area), a shared memory communication
channel between the hypervisor and partitions. There are also two
additional shared memory communication areas for specialized purposes
associated with the VPA.
A VPA is not essential for operating an splpar, though it can be necessary
for obtaining accurate performance measurements in the presence of
runtime partition switching.
Most importantly, however, the VPA is a prerequisite for PAPR's H_CEDE,
hypercall, which allows a partition OS to give up it's shared processor
timeslices to other partitions when idle.
This patch implements the VPA and H_CEDE hypercalls in qemu. We don't
implement any of the more advanced statistics which can be communicated
through the VPA. However, this is enough to make normal pSeries kernels
do an effective power-save idle on an emulated pSeries, significantly
reducing the host load of a qemu emulated pSeries running an idle guest OS.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch implements the infrastructure and hypercalls necessary for the
PAPR specified CRQ (Command Request Queue) mechanism. This general
request queueing system is used by many of the PAPR virtual IO devices,
including the virtual scsi adapter.
Signed-off-by: Ben Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
On pSeries logical partitions, excepting the old POWER4-style full system
partitions, the guest does not have direct access to the hardware page
table. Instead, the pagetable exists in hypervisor memory, and the guest
must manipulate it with hypercalls.
However, our current pSeries emulation more closely resembles the old
style where the guest must set up and handle the pagetables itself. This
patch converts it to act like a modern partition.
This involves two things: first, the hash translation path is modified to
permit the has table to be stored externally to the emulated machine's
RAM. The pSeries machine init code configures the CPUs to use this mode.
Secondly, we emulate the PAPR hypercalls for manipulating the external
hashed page table.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This adds emulation support for the recent POWER7 cpu to qemu. It's far
from perfect - it's missing a number of POWER7 features so far, including
any support for VSX or decimal floating point instructions. However, it's
close enough to boot a kernel with the POWER7 PVR.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Traditionally, the "segments" used for the two-stage translation used on
powerpc MMUs were 256MB in size. This was the only option on all hash
page table based 32-bit powerpc cpus, and on the earlier 64-bit hash page
table based cpus. However, newer 64-bit cpus also permit 1TB segments
This patch adds support for 1TB segment translation to the qemu code.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently the path handling hash page table translation in get_segment()
has a mix of common and 32 or 64 bit specific code. However the
division is not done terribly well which results in a lot of messy code
flipping between common and divided paths.
This patch improves the organization, consolidating several divided paths
into one. This in turn allows simplification of some code in
get_segment(), removing a number of ugly interim variables.
This new factorization will also make it easier to add support for the 1T
segments added in newer CPUs.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently, get_segment() has a variable called hash. However it doesn't
(quite) get the hash value for the ppc hashed page table. Instead it
gets the hash shifted - effectively the offset of the hash bucket within
the hash page table.
As well, as being different to the normal use of plain "hash" in the
architecture documentation, this usage necessitates some awkward 32/64
dependent masks and shifts which clutter up the path in get_segment().
This patch alters the code to use raw hash values through get_segment()
including storing raw hashes instead of pte group offsets in the ctx
structure. This cleans up the path noticeably.
This does necessitate 32/64 dependent shifts when the hash values are
taken out of the ctx structure and used, but those paths already have
32/64 bit variants so this is less awkward than it was in get_segment().
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
On ppc machines with hash table MMUs, the special purpose register SDR1
contains both the base address of the encoded size (hashed) page tables.
At present, we interpret the SDR1 value within the address translation
path. But because the encodings of the size for 32-bit and 64-bit are
different this makes for a confusing branch on the MMU type with a bunch
of curly shifts and masks in the middle of the translate path.
This patch cleans things up by moving the interpretation on SDR1 into the
helper function handling the write to the register. This leaves a simple
pre-sanitized base address and mask for the hash table in the CPUState
structure which is easier to work with in the translation path.
This makes the translation path more readable. It addresses the FIXME
comment currently in the mtsdr1 helper, by validating the SDR1 value during
interpretation. Finally it opens the way for emulating a pSeries-style
partition where the hash table used for translation is not mapped into
the guests's RAM.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The slb_lookup() function, used in the ppc translation path returns a
number of slb entry fields in reference parameters. However, only one
of the two callers of slb_lookup() actually wants this information.
This patch, therefore, makes slb_lookup() return a simple pointer to the
located SLB entry (or NULL), and the caller which needs the fields can
extract them itself.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
qemu already includes support for the popcntb instruction introduced
in POWER5 (although it doesn't actually allow you to choose POWER5).
However, the logic is slightly incorrect: it will generate results
truncated to 32-bits when the CPU is in 32-bit mode. This is not
normal for powerpc - generally arithmetic instructions on a 64-bit
powerpc cpu will generate full 64 bit results, it's just that only the
low 32 bits will be significant for condition codes.
This patch corrects this nit, which actually simplifies the code slightly.
In addition, this patch implements the popcntw and popcntd
instructions added in POWER7, in preparation for allowing POWER7 as an
emulated CPU.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
The PURR (Processor Utilization Resource Register) is a register found
on recent POWER CPUs. The guts of implementing it at least enough to
get by are already present in qemu, however some of the helper
functions needed to actually wire it up are missing.
This patch adds the necessary glue, so that the PURR can be wired up
when we implement newer POWER CPU targets which include it.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
For a 64-bit PowerPC target, qemu correctly implements translation
through the segment lookaside buffer. Likewise it supports the
slbmte instruction which is used to load entries into the SLB.
However, it does not emulate the slbmfee and slbmfev instructions
which read SLB entries back into registers. Because these are
only occasionally used in guests (mostly for debugging) we get
away with it.
However, given the recent SLB cleanups, it becomes quite easy to
implement these, and thereby allow, amongst other things, a guest
Linux to use xmon's command to dump the SLB.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
PowerPC and POWER chips since the POWER4 and 970 have a special
hypervisor mode, and a corresponding form of the system call
instruction which traps to the hypervisor.
qemu currently has stub implementations of hypervisor mode. That
is, the outline is there to allow qemu to run a PowerPC hypervisor
under emulation. There are a number of details missing so this
won't actually work at present, but the idea is there.
What there is no provision at all, is for qemu to instead emulate
the hypervisor itself. That is to have hypercalls trap into qemu
and their result be emulated from qemu, rather than running
hypervisor code within the emulated system.
Hypervisor hardware aware KVM implementations are in the works and
it would be useful for debugging and development to also allow
full emulation of the same para-virtualized guests as such a KVM.
Therefore, this patch adds a hook which will allow a machine to
set up emulation of hypervisor calls.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently the SLB information when emulating a PowerPC 970 is
storeed in a structure with the unhelpfully named fields 'tmp'
and 'tmp64'. While the layout in these fields does match the
description of the SLB in the architecture document, it is not
convenient either for looking up the SLB, or for emulating the
slbmte instruction.
This patch, therefore, reorganizes the SLB entry structure to be
divided in the the "ESID related" and "VSID related" fields as
they are divided in instructions accessing the SLB.
In addition to making the code smaller and more readable, this will
make it easier to implement for the 1TB segments used in more
recent PowerPC chips.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
This was done with:
sed -i 's/qemu_get_clock\>/qemu_get_clock_ns/' \
$(git grep -l 'qemu_get_clock\>' )
sed -i 's/qemu_new_timer\>/qemu_new_timer_ns/' \
$(git grep -l 'qemu_new_timer\>' )
after checking that get_clock and new_timer never occur twice
on the same line. There were no missed occurrences; however, even
if there had been, they would have been caught by the compiler.
There was exactly one false positive in qemu_run_timers:
- current_time = qemu_get_clock (clock);
+ current_time = qemu_get_clock_ns (clock);
which is of course not in this patch.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the return code of kvm_arch_handle_exit directly usable for
kvm_cpu_exec. This is straightforward for x86 and ppc, just s390
would require more work. Avoid this for now by pushing the return code
translation logic into s390's kvm_arch_handle_exit.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
CC: Alexander Graf <agraf@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We will broaden the scope of this function on x86 beyond irqchip events.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Commit 7a39fe5882 failed to convert the right arch function.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
All implementations are now the same, and there is only one caller,
so inline the function there.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>