Commit Graph

360 Commits

Author SHA1 Message Date
Richard Henderson
1f7f72bdc4 target/i386: Wrap cc_op_live with a validity check
Assert that op is known and that cc_op_live_ is populated.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-31 18:28:33 +01:00
Richard Henderson
f359b2fb71 target/i386: Introduce cc_op_size
Replace arithmetic on cc_op with a helper function.
Assert that the op has a size and that it is valid
for the configuration.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Link: https://lore.kernel.org/r/20240701025115.1265117-6-richard.henderson@linaro.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-31 18:28:33 +01:00
Richard Henderson
ee806f9f67 target/i386: Rearrange CCOp
Give the first few enumerators explicit integer constants,
align the BWLQ enumerators.

This will be used to simplify ((op - CC_OP_*B) & 3).

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Link: https://lore.kernel.org/r/20240701025115.1265117-4-richard.henderson@linaro.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-31 18:28:33 +01:00
Paolo Bonzini
e09447c39f target/i386: remove CC_OP_CLR
Just use CC_OP_EFLAGS; it is not that likely that the flags computed by
CC_OP_CLR survive the end of the basic block, in which case there is no
need to spill cc_op_src.

cc_op_src now does need spilling if the XOR is followed by a memory
operation, but this only costs 0.2% extra TCG ops.  They will be recouped
by simplifications in how QEMU evaluates ZF at runtime, which are even
greater with this change.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-31 18:28:33 +01:00
Babu Moger
9c07a7af5d target/i386: Expose new feature bits in CPUID 8000_0021_EAX/EBX
Newer AMD CPUs support ERAPS (Enhanced Return Address Prediction Security)
feature that enables the auto-clear of RSB entries on a TLB flush, context
switches and VMEXITs. The number of default RSP entries is reflected in
RapSize.

Add the feature bit and feature word to support these features.

CPUID_Fn80000021_EAX
Bits   Feature Description
24     ERAPS:
       Indicates support for enhanced return address predictor security.

CPUID_Fn80000021_EBX
Bits   Feature Description
31-24  Reserved
23:16  RapSize:
       Return Address Predictor size. RapSize x 8 is the minimum number
       of CALL instructions software needs to execute to flush the RAP.
15-00  MicrocodePatchSize. Read-only.
       Reports the size of the Microcode patch in 16-byte multiples.
       If 0, the size of the patch is at most 5568 (15C0h) bytes.

Link: https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/57238.zip
Signed-off-by: Babu Moger <babu.moger@amd.com>
Link: https://lore.kernel.org/r/7c62371fe60af1e9bbd853f5f8e949bf2d908bd0.1729807947.git.babu.moger@amd.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-31 18:28:32 +01:00
Babu Moger
2ec282b8ea target/i386: Expose bits related to SRSO vulnerability
Add following bits related Speculative Return Stack Overflow (SRSO).
Guests can make use of these bits if supported.

These bits are reported via CPUID Fn8000_0021_EAX.
===================================================================
Bit Feature Description
===================================================================
27  SBPB                Indicates support for the Selective Branch Predictor Barrier.
28  IBPB_BRTYPE         MSR_PRED_CMD[IBPB] flushes all branch type predictions.
29  SRSO_NO             Not vulnerable to SRSO.
30  SRSO_USER_KERNEL_NO Not vulnerable to SRSO at the user-kernel boundary.
===================================================================

Link: https://www.amd.com/content/dam/amd/en/documents/corporate/cr/speculative-return-stack-overflow-whitepaper.pdf
Link: https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/57238.zip
Signed-off-by: Babu Moger <babu.moger@amd.com>
Link: https://lore.kernel.org/r/dadbd70c38f4e165418d193918a3747bd715c5f4.1729807947.git.babu.moger@amd.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-31 18:28:32 +01:00
Sandipan Das
209b0ac120 target/i386: Add PerfMonV2 feature bit
CPUID leaf 0x80000022, i.e. ExtPerfMonAndDbg, advertises new performance
monitoring features for AMD processors. Bit 0 of EAX indicates support
for Performance Monitoring Version 2 (PerfMonV2) features. If found to
be set during PMU initialization, the EBX bits can be used to determine
the number of available counters for different PMUs. It also denotes the
availability of global control and status registers.

Add the required CPUID feature word and feature bit to allow guests to
make use of the PerfMonV2 features.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Link: https://lore.kernel.org/r/a96f00ee2637674c63c61e9fc4dee343ea818053.1729807947.git.babu.moger@amd.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-31 18:28:32 +01:00
Babu Moger
9c882ad4dc target/i386: Fix minor typo in NO_NESTED_DATA_BP feature bit
Rename CPUID_8000_0021_EAX_No_NESTED_DATA_BP to
       CPUID_8000_0021_EAX_NO_NESTED_DATA_BP.

No functional change intended.

Signed-off-by: Babu Moger <babu.moger@amd.com>
Link: https://lore.kernel.org/r/a6749acd125670d3930f4ca31736a91b1d965f2f.1729807947.git.babu.moger@amd.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-31 18:28:32 +01:00
Gao Shiyuan
b5151ace58 target/i386: Add support save/load HWCR MSR
KVM commit 191c8137a939 ("x86/kvm: Implement HWCR support")
introduced support for emulating HWCR MSR.

Add support for QEMU to save/load this MSR for migration purposes.

Signed-off-by: Gao Shiyuan <gaoshiyuan@baidu.com>
Signed-off-by: Wang Liang <wangliang44@baidu.com>
Link: https://lore.kernel.org/r/20241009095109.66843-1-gaoshiyuan@baidu.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-17 12:30:21 +02:00
Xiaoyao Li
7dddc3bb87 target/i386: Enable fdp-excptn-only and zero-fcs-fds
- CPUID.(EAX=07H,ECX=0H):EBX[bit 6]: x87 FPU Data Pointer updated only
  on x87 exceptions if 1.

- CPUID.(EAX=07H,ECX=0H):EBX[bit 13]: Deprecates FPU CS and FPU DS
  values if 1. i.e., X87 FCS and FDS are always zero.

Define names for them so that they can be exposed to guest with -cpu host.

Also define the bit field MACROs so that named cpu models can add it as
well in the future.

Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240814075431.339209-3-xiaoyao.li@intel.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-17 12:30:21 +02:00
Ilya Leoshkevich
ac2fb86a0e target/i386/gdbstub: Expose orig_ax
Copy XML files describing orig_ax from GDB and glue them with
CPUX86State.orig_ax.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Message-ID: <20240912093012.402366-5-iii@linux.ibm.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2024-10-13 10:05:51 -07:00
Lei Wang
ab891454eb target/i386: Raise the highest index value used for any VMCS encoding
Because the index value of the VMCS field encoding of FRED injected-event
data (one of the newly added VMCS fields for FRED transitions), 0x52, is
larger than any existing index value, raise the highest index value used
for any VMCS encoding to 0x52.

Because the index value of the VMCS field encoding of Secondary VM-exit
controls, 0x44, is larger than any existing index value, raise the highest
index value used for any VMCS encoding to 0x44.

Co-developed-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Lei Wang <lei4.wang@intel.com>
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Link: https://lore.kernel.org/r/20240807081813.735158-4-xin@zytor.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-02 12:58:46 +02:00
Xin Li (Intel)
a23bc65398 target/i386: Delete duplicated macro definition CR4_FRED_MASK
Macro CR4_FRED_MASK is defined twice, delete one.

Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Link: https://lore.kernel.org/r/20240807081813.735158-2-xin@zytor.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-02 12:58:46 +02:00
Richard Henderson
83a3a20e59 target/i386: Fix carry flag for BLSI
BLSI has inverted semantics for C as compared to the other two
BMI1 instructions, BLSMSK and BLSR.  Introduce CC_OP_BLSI* for
this purpose.

Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2175
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20240801075845.573075-3-richard.henderson@linaro.org>
2024-08-21 09:11:26 +10:00
Anthony Harivel
0418f90809 Add support for RAPL MSRs in KVM/Qemu
Starting with the "Sandy Bridge" generation, Intel CPUs provide a RAPL
interface (Running Average Power Limit) for advertising the accumulated
energy consumption of various power domains (e.g. CPU packages, DRAM,
etc.).

The consumption is reported via MSRs (model specific registers) like
MSR_PKG_ENERGY_STATUS for the CPU package power domain. These MSRs are
64 bits registers that represent the accumulated energy consumption in
micro Joules. They are updated by microcode every ~1ms.

For now, KVM always returns 0 when the guest requests the value of
these MSRs. Use the KVM MSR filtering mechanism to allow QEMU handle
these MSRs dynamically in userspace.

To limit the amount of system calls for every MSR call, create a new
thread in QEMU that updates the "virtual" MSR values asynchronously.

Each vCPU has its own vMSR to reflect the independence of vCPUs. The
thread updates the vMSR values with the ratio of energy consumed of
the whole physical CPU package the vCPU thread runs on and the
thread's utime and stime values.

All other non-vCPU threads are also taken into account. Their energy
consumption is evenly distributed among all vCPUs threads running on
the same physical CPU package.

To overcome the problem that reading the RAPL MSR requires priviliged
access, a socket communication between QEMU and the qemu-vmsr-helper is
mandatory. You can specified the socket path in the parameter.

This feature is activated with -accel kvm,rapl=true,path=/path/sock.sock

Actual limitation:
- Works only on Intel host CPU because AMD CPUs are using different MSR
  adresses.

- Only the Package Power-Plane (MSR_PKG_ENERGY_STATUS) is reported at
  the moment.

Signed-off-by: Anthony Harivel <aharivel@redhat.com>
Link: https://lore.kernel.org/r/20240522153453.1230389-4-aharivel@redhat.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-22 19:19:37 +02:00
Richard Henderson
fffe424b38 target/i386/tcg: Introduce x86_mmu_index_{kernel_,}pl
Disconnect mmu index computation from the current pl
as stored in env->hflags.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Link: https://lore.kernel.org/r/20240617161210.4639-2-richard.henderson@linaro.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-16 18:18:24 +02:00
Paolo Bonzini
188569c10d target/i386/SEV: implement mask_cpuid_features
Drop features that are listed as "BitMask" in the PPR and currently
not supported by AMD processors.  The only ones that may become useful
in the future are TSC deadline timer and x2APIC, everything else is
not needed for SEV-SNP guests (e.g. VIRT_SSBD) or would require
processor support (e.g. TSC_ADJUST).

This allows running SEV-SNP guests with "-cpu host".

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-04 11:56:20 +02:00
Paolo Bonzini
29a51b2bb5 target/i386: do not include undefined bits in the AMD topoext leaf
Commit d7c72735f6 ("target/i386: Add new EPYC CPU versions with updated
cache_info", 2023-05-08) ensured that AMD-defined CPU models did not
have the 'complex_indexing' bit set, but left it set in "-cpu host"
which uses the default ("legacy") cache information.

Reimplement that commit using a CPU feature, so that it can be applied
to all guests using a new machine type, independent of the CPU model.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-03 18:41:26 +02:00
Paolo Bonzini
8dee384832 target/i386: pass X86CPU to x86_cpu_get_supported_feature_word
This allows modifying the bits in "-cpu max"/"-cpu host" depending on
the guest CPU vendor (which, at least by default, is the host vendor in
the case of KVM).

For example, machine check architecture differs between Intel and AMD,
and bits from AMD should be dropped when configuring the guest for
an Intel model.

Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Cc: John Allen <john.allen@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-07-03 18:41:26 +02:00
Paolo Bonzini
460231ad36 target/i386: give CC_OP_POPCNT low bits corresponding to MO_TL
Handle it like the other arithmetic cc_ops.  This simplifies a
bit the implementation of bit test instructions.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-28 14:44:52 +02:00
Paolo Bonzini
944f400134 target/i386: use cpu_cc_dst for CC_OP_POPCNT
It is the only CCOp, among those that compute ZF from one of the cc_op_*
registers, that uses cpu_cc_src.  Do not make it the odd one off,
instead use cpu_cc_dst like the others.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-28 14:44:52 +02:00
Philippe Mathieu-Daudé
8291239113 target/i386: Remove X86CPU::kvm_no_smi_migration field
X86CPU::kvm_no_smi_migration was only used by the
pc-i440fx-2.3 machine, which got removed. Remove it
and simplify kvm_put_vcpu_events().

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <20240617071118.60464-23-philmd@linaro.org>
2024-06-19 12:40:49 +02:00
Paolo Bonzini
cc155f1971 target/i386: rewrite flags writeback for ADCX/ADOX
Avoid using set_cc_op() in preparation for implementing APX; treat
CC_OP_EFLAGS similar to the case where we have the "opposite" cc_op
(CC_OP_ADOX for ADCX and CC_OP_ADCX for ADOX), except the resulting
cc_op is not CC_OP_ADCOX. This is written easily as two "if"s, whose
conditions are both false for CC_OP_EFLAGS, both true for CC_OP_ADCOX,
and one each true for CC_OP_ADCX/ADOX.

The new logic also makes it easy to drop usage of tmp0.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-11 14:29:22 +02:00
John Allen
1ea1432199 i386: Add support for overflow recovery
Add cpuid bit definition for overflow recovery. This is needed in the case
where a deferred error has been sent to the guest, a guest process accesses the
poisoned memory, but the machine_check_poll function has not yet handled the
original deferred error. If overflow recovery is not set in this case, when we
handle the uncorrected error from the poisoned memory access, the overflow bit
will be set and will result in the guest being shut down.

By the time the MCE reaches the guest, the overflow has been handled
by the host and has not caused a shutdown, so include the bit unconditionally.

Signed-off-by: John Allen <john.allen@amd.com>
Message-ID: <20240603193622.47156-4-john.allen@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-08 10:33:39 +02:00
John Allen
2ba8b7ee63 i386: Add support for SUCCOR feature
Add cpuid bit definition for the SUCCOR feature. This cpuid bit is required to
be exposed to guests to allow them to handle machine check exceptions on AMD
hosts.

----
v2:
  - Add "succor" feature word.
  - Add case to kvm_arch_get_supported_cpuid for the SUCCOR feature.

Reported-by: William Roche <william.roche@oracle.com>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: John Allen <john.allen@amd.com>
Message-ID: <20240603193622.47156-3-john.allen@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-08 10:33:39 +02:00
John Allen
4b77512b27 i386: Fix MCE support for AMD hosts
For the most part, AMD hosts can use the same MCE injection code as Intel, but
there are instances where the qemu implementation is Intel specific. First, MCE
delivery works differently on AMD and does not support broadcast. Second,
kvm_mce_inject generates MCEs that include a number of Intel specific status
bits. Modify kvm_mce_inject to properly generate MCEs on AMD platforms.

Reported-by: William Roche <william.roche@oracle.com>
Signed-off-by: John Allen <john.allen@amd.com>
Message-ID: <20240603193622.47156-2-john.allen@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-08 10:33:38 +02:00
Xin Li
4ebd98eb3a target/i386: Add get/set/migrate support for FRED MSRs
FRED CPU states are managed in 9 new FRED MSRs, in addtion to a few
existing CPU registers and MSRs, e.g., CR4.FRED and MSR_IA32_PL0_SSP.

Save/restore/migrate FRED MSRs if FRED is exposed to the guest.

Tested-by: Shan Kang <shan.kang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Message-ID: <20231109072012.8078-7-xin3.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-08 10:33:38 +02:00
Xin Li
ef202d64c3 target/i386: enumerate VMX nested-exception support
Allow VMX nested-exception support to be exposed in KVM guests, thus
nested KVM guests can enumerate it.

Tested-by: Shan Kang <shan.kang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Message-ID: <20231109072012.8078-6-xin3.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-08 10:33:38 +02:00
Xin Li
f88ddc40c6 target/i386: mark CR4.FRED not reserved
The CR4.FRED bit, i.e., CR4[32], is no longer a reserved bit when FRED
is exposed to guests, otherwise it is still a reserved bit.

Tested-by: Shan Kang <shan.kang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Message-ID: <20231109072012.8078-3-xin3.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-08 10:33:38 +02:00
Xin Li
c1acad9f72 target/i386: add support for FRED in CPUID enumeration
FRED, i.e., the Intel flexible return and event delivery architecture,
defines simple new transitions that change privilege level (ring
transitions).

The new transitions defined by the FRED architecture are FRED event
delivery and, for returning from events, two FRED return instructions.
FRED event delivery can effect a transition from ring 3 to ring 0, but
it is used also to deliver events incident to ring 0.  One FRED
instruction (ERETU) effects a return from ring 0 to ring 3, while the
other (ERETS) returns while remaining in ring 0.  Collectively, FRED
event delivery and the FRED return instructions are FRED transitions.

In addition to these transitions, the FRED architecture defines a new
instruction (LKGS) for managing the state of the GS segment register.
The LKGS instruction can be used by 64-bit operating systems that do
not use the new FRED transitions.

WRMSRNS is an instruction that behaves exactly like WRMSR, with the
only difference being that it is not a serializing instruction by
default.  Under certain conditions, WRMSRNS may replace WRMSR to improve
performance.  FRED uses it to switch RSP0 in a faster manner.

Search for the latest FRED spec in most search engines with this search
pattern:

  site:intel.com FRED (flexible return and event delivery) specification

The CPUID feature flag CPUID.(EAX=7,ECX=1):EAX[17] enumerates FRED, and
the CPUID feature flag CPUID.(EAX=7,ECX=1):EAX[18] enumerates LKGS, and
the CPUID feature flag CPUID.(EAX=7,ECX=1):EAX[19] enumerates WRMSRNS.

Add CPUID definitions for FRED/LKGS/WRMSRNS, and expose them to KVM guests.

Because FRED relies on LKGS and WRMSRNS, add that to feature dependency
map.

Tested-by: Shan Kang <shan.kang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Message-ID: <20231109072012.8078-2-xin3.li@intel.com>
[Fix order of dependencies, add dependencies from LM to FRED. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-08 10:33:38 +02:00
Richard Henderson
701890bdd0 target/i386: Pass host pointer and size to cpu_x86_{xsave,xrstor}
We have already validated the memory region in the course of
validating the signal frame.  No need to do it again within
the helper function.

In addition, return failure when the header contains invalid
xstate_bv.  The kernel handles this via exception handling
within XSTATE_OP within xrstor_from_user_sigframe.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2024-05-26 15:49:58 -07:00
Richard Henderson
9c2fb9e1d5 target/i386: Pass host pointer and size to cpu_x86_{fxsave,fxrstor}
We have already validated the memory region in the course of
validating the signal frame.  No need to do it again within
the helper function.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2024-05-26 15:45:27 -07:00
Richard Henderson
76d8d0f85c target/i386: Pass host pointer and size to cpu_x86_{fsave,frstor}
We have already validated the memory region in the course of
validating the signal frame.  No need to do it again within
the helper function.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2024-05-26 15:45:27 -07:00
Richard Henderson
6dba8b471c target/i386: Add {hw,sw}_reserved to X86LegacyXSaveArea
This completes the 512 byte structure, allowing the union to
be removed.  Assert that the structure layout is as expected.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2024-05-26 12:51:50 -07:00
Richard Henderson
a2d64d61c1 target/i386: Add rbfm argument to cpu_x86_{xsave,xrstor}
For now, continue to pass all 1's from signal.c.

Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2024-05-26 12:51:50 -07:00
Zhao Liu
f602eb925a i386/cpu: Use CPUCacheInfo.share_level to encode CPUID[4]
CPUID[4].EAX[bits 25:14] is used to represent the cache topology for
Intel CPUs.

After cache models have topology information, we can use
CPUCacheInfo.share_level to decide which topology level to be encoded
into CPUID[4].EAX[bits 25:14].

And since with the helper max_processor_ids_for_cache(), the filed
CPUID[4].EAX[bits 25:14] (original virable "num_apic_ids") is parsed
based on cpu topology levels, which are verified when parsing -smp, it's
no need to check this value by "assert(num_apic_ids > 0)" again, so
remove this assert().

Additionally, wrap the encoding of CPUID[4].EAX[bits 31:26] into a
helper to make the code cleaner.

Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Message-ID: <20240424154929.1487382-21-zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-22 19:56:27 +02:00
Zhao Liu
9fcba76ab9 i386: Add cache topology info in CPUCacheInfo
Currently, by default, the cache topology is encoded as:
1. i/d cache is shared in one core.
2. L2 cache is shared in one core.
3. L3 cache is shared in one die.

This default general setting has caused a misunderstanding, that is, the
cache topology is completely equated with a specific cpu topology, such
as the connection between L2 cache and core level, and the connection
between L3 cache and die level.

In fact, the settings of these topologies depend on the specific
platform and are not static. For example, on Alder Lake-P, every
four Atom cores share the same L2 cache.

Thus, we should explicitly define the corresponding cache topology for
different cache models to increase scalability.

Except legacy_l2_cache_cpuid2 (its default topo level is
CPU_TOPO_LEVEL_UNKNOW), explicitly set the corresponding topology level
for all other cache models. In order to be compatible with the existing
cache topology, set the CPU_TOPO_LEVEL_CORE level for the i/d cache, set
the CPU_TOPO_LEVEL_CORE level for L2 cache, and set the
CPU_TOPO_LEVEL_DIE level for L3 cache.

The field for CPUID[4].EAX[bits 25:14] or CPUID[0x8000001D].EAX[bits
25:14] will be set based on CPUCacheInfo.share_level.

Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Message-ID: <20240424154929.1487382-20-zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-22 19:43:29 +02:00
Zhao Liu
588208346f i386/cpu: Introduce module-id to X86CPU
Introduce module-id to be consistent with the module-id field in
CpuInstanceProperties.

Following the legacy smp check rules, also add the module_id validity
into x86_cpu_pre_plug().

Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Co-developed-by: Zhuocheng Ding <zhuocheng.ding@intel.com>
Signed-off-by: Zhuocheng Ding <zhuocheng.ding@intel.com>
Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Message-ID: <20240424154929.1487382-17-zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-22 19:43:29 +02:00
Zhao Liu
5304873acd i386: Expose module level in CPUID[0x1F]
Linux kernel (from v6.4, with commit edc0a2b595765 ("x86/topology: Fix
erroneous smp_num_siblings on Intel Hybrid platforms") is able to
handle platforms with Module level enumerated via CPUID.1F.

Expose the module level in CPUID[0x1F] if the machine has more than 1
modules.

Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Message-ID: <20240424154929.1487382-15-zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-22 19:43:29 +02:00
Zhao Liu
81c392ab5c i386: Introduce module level cpu topology to CPUX86State
Intel CPUs implement module level on hybrid client products (e.g.,
ADL-N, MTL, etc) and E-core server products.

A module contains a set of cores that share certain resources (in
current products, the resource usually includes L2 cache, as well as
module scoped features and MSRs).

Module level support is the prerequisite for L2 cache topology on
module level. With module level, we can implement the Guest's CPU
topology and future cache topology to be consistent with the Host's on
Intel hybrid client/E-core server platforms.

Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Co-developed-by: Zhuocheng Ding <zhuocheng.ding@intel.com>
Signed-off-by: Zhuocheng Ding <zhuocheng.ding@intel.com>
Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Message-ID: <20240424154929.1487382-13-zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-22 19:43:29 +02:00
Zhao Liu
0f6ed7ba13 i386: Split topology types of CPUID[0x1F] from the definitions of CPUID[0xB]
CPUID[0xB] defines SMT, Core and Invalid types, and this leaf is shared
by Intel and AMD CPUs.

But for extended topology levels, Intel CPU (in CPUID[0x1F]) and AMD CPU
(in CPUID[0x80000026]) have the different definitions with different
enumeration values.

Though CPUID[0x80000026] hasn't been implemented in QEMU, to avoid
possible misunderstanding, split topology types of CPUID[0x1F] from the
definitions of CPUID[0xB] and introduce CPUID[0x1F]-specific topology
types.

Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Babu Moger <babu.moger@amd.com>
Message-ID: <20240424154929.1487382-11-zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-22 19:43:29 +02:00
Zhao Liu
6ddeb0ec8c i386/cpu: Introduce bitmap to cache available CPU topology levels
Currently, QEMU checks the specify number of topology domains to detect
if there's extended topology levels (e.g., checking nr_dies).

With this bitmap, the extended CPU topology (the levels other than SMT,
core and package) could be easier to detect without touching the
topology details.

This is also in preparation for the follow-up to decouple CPUID[0x1F]
subleaf with specific topology level.

Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-ID: <20240424154929.1487382-10-zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-22 19:43:29 +02:00
Binbin Wu
0117067131 target/i386: add control bits support for LAM
LAM uses CR3[61] and CR3[62] to configure/enable LAM on user pointers.
LAM uses CR4[28] to configure/enable LAM on supervisor pointers.

For CR3 LAM bits, no additional handling needed:
- TCG
  LAM is not supported for TCG of target-i386.  helper_write_crN() and
  helper_vmrun() check max physical address bits before calling
  cpu_x86_update_cr3(), no change needed, i.e. CR3 LAM bits are not allowed
  to be set in TCG.
- gdbstub
  x86_cpu_gdb_write_register() will call cpu_x86_update_cr3() to update cr3.
  Allow gdb to set the LAM bit(s) to CR3, if vcpu doesn't support LAM,
  KVM_SET_SREGS will fail as other reserved bits.

For CR4 LAM bit, its reservation depends on vcpu supporting LAM feature or
not.
- TCG
  LAM is not supported for TCG of target-i386.  helper_write_crN() and
  helper_vmrun() check CR4 reserved bit before calling cpu_x86_update_cr4(),
  i.e. CR4 LAM bit is not allowed to be set in TCG.
- gdbstub
  x86_cpu_gdb_write_register() will call cpu_x86_update_cr4() to update cr4.
  Mask out LAM bit on CR4 if vcpu doesn't support LAM.
- x86_cpu_reset_hold() doesn't need special handling.

Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Message-ID: <20240112060042.19925-3-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-22 15:53:30 +02:00
Robert Hoo
ba67809059 target/i386: add support for LAM in CPUID enumeration
Linear Address Masking (LAM) is a new Intel CPU feature, which allows
software to use of the untranslated address bits for metadata.

The bit definition:
CPUID.(EAX=7,ECX=1):EAX[26]

Add CPUID definition for LAM.

Note LAM feature is not supported for TCG of target-i386, LAM CPIUD bit
will not be added to TCG_7_1_EAX_FEATURES.

More info can be found in Intel ISE Chapter "LINEAR ADDRESS MASKING(LAM)"
https://cdrdv2.intel.com/v1/dl/getContent/671368

Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Message-ID: <20240112060042.19925-2-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-22 15:53:30 +02:00
Paolo Bonzini
9f07e47a5e target/i386: remove PCOMMIT from TCG, deprecate property
The PCOMMIT instruction was never included in any physical processor.
TCG implements it as a no-op instruction, but its utility is debatable
to say the least.  Drop it from the decoder since it is only available
with "-cpu max", which does not guarantee migration compatibility
across versions, and deprecate the property just in case someone is
using it as "pcommit=off".

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-10 15:45:14 +02:00
Babu Moger
b776569a53 target/i386: Fix CPUID encoding of Fn8000001E_ECX
Observed the following failure while booting the SEV-SNP guest and the
guest fails to boot with the smp parameters:
"-smp 192,sockets=1,dies=12,cores=8,threads=2".

qemu-system-x86_64: sev_snp_launch_update: SNP_LAUNCH_UPDATE ret=-5 fw_error=22 'Invalid parameter'
qemu-system-x86_64: SEV-SNP: CPUID validation failed for function 0x8000001e, index: 0x0.
provided: eax:0x00000000, ebx: 0x00000100, ecx: 0x00000b00, edx: 0x00000000
expected: eax:0x00000000, ebx: 0x00000100, ecx: 0x00000300, edx: 0x00000000
qemu-system-x86_64: SEV-SNP: failed update CPUID page

Reason for the failure is due to overflowing of bits used for "Node per
processor" in CPUID Fn8000001E_ECX. This field's width is 3 bits wide and
can hold maximum value 0x7. With dies=12 (0xB), it overflows and spills
over into the reserved bits. In the case of SEV-SNP, this causes CPUID
enforcement failure and guest fails to boot.

The PPR documentation for CPUID_Fn8000001E_ECX [Node Identifiers]
=================================================================
Bits    Description
31:11   Reserved.

10:8    NodesPerProcessor: Node per processor. Read-only.
        ValidValues:
        Value   Description
        0h      1 node per processor.
        7h-1h   Reserved.

7:0     NodeId: Node ID. Read-only. Reset: Fixed,XXh.
=================================================================

As in the spec, the valid value for "node per processor" is 0 and rest
are reserved.

Looking back at the history of decoding of CPUID_Fn8000001E_ECX, noticed
that there were cases where "node per processor" can be more than 1. It
is valid only for pre-F17h (pre-EPYC) architectures. For EPYC or later
CPUs, the linux kernel does not use this information to build the L3
topology.

Also noted that the CPUID Function 0x8000001E_ECX is available only when
TOPOEXT feature is enabled. This feature is enabled only for EPYC(F17h)
or later processors. So, previous generation of processors do not not
enumerate 0x8000001E_ECX leaf.

There could be some corner cases where the older guests could enable the
TOPOEXT feature by running with -cpu host, in which case legacy guests
might notice the topology change. To address those cases introduced a
new CPU property "legacy-multi-node". It will be true for older machine
types to maintain compatibility. By default, it will be false, so new
decoding will be used going forward.

The documentation is taken from Preliminary Processor Programming
Reference (PPR) for AMD Family 19h Model 11h, Revision B1 Processors 55901
Rev 0.25 - Oct 6, 2022.

Cc: qemu-stable@nongnu.org
Fixes: 31ada106d8 ("Simplify CPUID_8000_001E for AMD")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-ID: <0ee4b0a8293188a53970a2b0e4f4ef713425055e.1714757834.git.babu.moger@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07 08:50:38 +02:00
Philippe Mathieu-Daudé
e92dd33224 target: Define TCG_GUEST_DEFAULT_MO in 'cpu-param.h'
accel/tcg/ files requires the following definitions:

  - TARGET_LONG_BITS
  - TARGET_PAGE_BITS
  - TARGET_PHYS_ADDR_SPACE_BITS
  - TCG_GUEST_DEFAULT_MO

The first 3 are defined in "cpu-param.h". The last one
in "cpu.h", with a bunch of definitions irrelevant for
TCG. By moving the TCG_GUEST_DEFAULT_MO definition to
"cpu-param.h", we can simplify various accel/tcg includes.

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Message-Id: <20231211212003.21686-4-philmd@linaro.org>
2024-04-26 15:31:37 +02:00
Gerd Hoffmann
513ba32dcc target/i386: add guest-phys-bits cpu property
Allows to set guest-phys-bits (cpuid leaf 80000008, eax[23:16])
via -cpu $model,guest-phys-bits=$nr.

Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Message-ID: <20240318155336.156197-3-kraxel@redhat.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-18 11:17:28 +02:00
Paolo Bonzini
2cc68629a6 target/i386: fix direction of "32-bit MMU" test
The low bit of MMU indices for x86 TCG indicates whether the processor is
in 32-bit mode and therefore linear addresses have to be masked to 32 bits.
However, the index was computed incorrectly, leading to possible conflicts
in the TLB for any address above 4G.

Analyzed-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Fixes: b1661801c1 ("target/i386: Fix physical address truncation", 2024-02-28)
Cc: qemu-stable@nongnu.org
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2206
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-03-18 22:53:23 +01:00
Paolo Bonzini
b1661801c1 target/i386: Fix physical address truncation
The address translation logic in get_physical_address() will currently
truncate physical addresses to 32 bits unless long mode is enabled.
This is incorrect when using physical address extensions (PAE) outside
of long mode, with the result that a 32-bit operating system using PAE
to access memory above 4G will experience undefined behaviour.

The truncation code was originally introduced in commit 33dfdb5 ("x86:
only allow real mode to access 32bit without LMA"), where it applied
only to translations performed while paging is disabled (and so cannot
affect guests using PAE).

Commit 9828198 ("target/i386: Add MMU_PHYS_IDX and MMU_NESTED_IDX")
rearranged the code such that the truncation also applied to the use
of MMU_PHYS_IDX and MMU_NESTED_IDX.  Commit 4a1e9d4 ("target/i386: Use
atomic operations for pte updates") brought this truncation into scope
for page table entry accesses, and is the first commit for which a
Windows 10 32-bit guest will reliably fail to boot if memory above 4G
is present.

The truncation code however is not completely redundant.  Even though the
maximum address size for any executed instruction is 32 bits, helpers for
operations such as BOUND, FSAVE or XSAVE may ask get_physical_address()
to translate an address outside of the 32-bit range, if invoked with an
argument that is close to the 4G boundary.  Likewise for processor
accesses, for example TSS or IDT accesses, when EFER.LMA==0.

So, move the address truncation in get_physical_address() so that it
applies to 32-bit MMU indexes, but not to MMU_PHYS_IDX and MMU_NESTED_IDX.

Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2040
Fixes: 4a1e9d4d11 ("target/i386: Use atomic operations for pte updates", 2022-10-18)
Cc: qemu-stable@nongnu.org
Co-developed-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Michael Brown <mcb30@ipxe.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-02-28 00:23:39 +01:00