Attached are a revised set of SSL patches. Many of these patches
are motivated by security concerns, it's not just bug fixes. The key
differences (from stock 7.2.1) are:
*) almost all code that directly uses the OpenSSL library is in two
new files,
src/interfaces/libpq/fe-ssl.c
src/backend/postmaster/be-ssl.c
in the long run, it would be nice to merge these two files.
*) the legacy code to read and write network data have been
encapsulated into read_SSL() and write_SSL(). These functions
should probably be renamed - they handle both SSL and non-SSL
cases.
the remaining code should eliminate the problems identified
earlier, albeit not very cleanly.
*) both front- and back-ends will send a SSL shutdown via the
new close_SSL() function. This is necessary for sessions to
work properly.
(Sessions are not yet fully supported, but by cleanly closing
the SSL connection instead of just sending a TCP FIN packet
other SSL tools will be much happier.)
*) The client certificate and key are now expected in a subdirectory
of the user's home directory. Specifically,
- the directory .postgresql must be owned by the user, and
allow no access by 'group' or 'other.'
- the file .postgresql/postgresql.crt must be a regular file
owned by the user.
- the file .postgresql/postgresql.key must be a regular file
owned by the user, and allow no access by 'group' or 'other'.
At the current time encrypted private keys are not supported.
There should also be a way to support multiple client certs/keys.
*) the front-end performs minimal validation of the back-end cert.
Self-signed certs are permitted, but the common name *must*
match the hostname used by the front-end. (The cert itself
should always use a fully qualified domain name (FDQN) in its
common name field.)
This means that
psql -h eris db
will fail, but
psql -h eris.example.com db
will succeed. At the current time this must be an exact match;
future patches may support any FQDN that resolves to the address
returned by getpeername(2).
Another common "problem" is expiring certs. For now, it may be
a good idea to use a very-long-lived self-signed cert.
As a compile-time option, the front-end can specify a file
containing valid root certificates, but it is not yet required.
*) the back-end performs minimal validation of the client cert.
It allows self-signed certs. It checks for expiration. It
supports a compile-time option specifying a file containing
valid root certificates.
*) both front- and back-ends default to TLSv1, not SSLv3/SSLv2.
*) both front- and back-ends support DSA keys. DSA keys are
moderately more expensive on startup, but many people consider
them preferable than RSA keys. (E.g., SSH2 prefers DSA keys.)
*) if /dev/urandom exists, both client and server will read 16k
of randomization data from it.
*) the server can read empheral DH parameters from the files
$DataDir/dh512.pem
$DataDir/dh1024.pem
$DataDir/dh2048.pem
$DataDir/dh4096.pem
if none are provided, the server will default to hardcoded
parameter files provided by the OpenSSL project.
Remaining tasks:
*) the select() clauses need to be revisited - the SSL abstraction
layer may need to absorb more of the current code to avoid rare
deadlock conditions. This also touches on a true solution to
the pg_eof() problem.
*) the SIGPIPE signal handler may need to be revisited.
*) support encrypted private keys.
*) sessions are not yet fully supported. (SSL sessions can span
multiple "connections," and allow the client and server to avoid
costly renegotiations.)
*) makecert - a script that creates back-end certs.
*) pgkeygen - a tool that creates front-end certs.
*) the whole protocol issue, SASL, etc.
*) certs are fully validated - valid root certs must be available.
This is a hassle, but it means that you *can* trust the identity
of the server.
*) the client library can handle hardcoded root certificates, to
avoid the need to copy these files.
*) host name of server cert must resolve to IP address, or be a
recognized alias. This is more liberal than the previous
iteration.
*) the number of bytes transferred is tracked, and the session
key is periodically renegotiated.
*) basic cert generation scripts (mkcert.sh, pgkeygen.sh). The
configuration files have reasonable defaults for each type
of use.
Bear Giles
are motivated by security concerns, it's not just bug fixes. The key
differences (from stock 7.2.1) are:
*) almost all code that directly uses the OpenSSL library is in two
new files,
src/interfaces/libpq/fe-ssl.c
src/backend/postmaster/be-ssl.c
in the long run, it would be nice to merge these two files.
*) the legacy code to read and write network data have been
encapsulated into read_SSL() and write_SSL(). These functions
should probably be renamed - they handle both SSL and non-SSL
cases.
the remaining code should eliminate the problems identified
earlier, albeit not very cleanly.
*) both front- and back-ends will send a SSL shutdown via the
new close_SSL() function. This is necessary for sessions to
work properly.
(Sessions are not yet fully supported, but by cleanly closing
the SSL connection instead of just sending a TCP FIN packet
other SSL tools will be much happier.)
*) The client certificate and key are now expected in a subdirectory
of the user's home directory. Specifically,
- the directory .postgresql must be owned by the user, and
allow no access by 'group' or 'other.'
- the file .postgresql/postgresql.crt must be a regular file
owned by the user.
- the file .postgresql/postgresql.key must be a regular file
owned by the user, and allow no access by 'group' or 'other'.
At the current time encrypted private keys are not supported.
There should also be a way to support multiple client certs/keys.
*) the front-end performs minimal validation of the back-end cert.
Self-signed certs are permitted, but the common name *must*
match the hostname used by the front-end. (The cert itself
should always use a fully qualified domain name (FDQN) in its
common name field.)
This means that
psql -h eris db
will fail, but
psql -h eris.example.com db
will succeed. At the current time this must be an exact match;
future patches may support any FQDN that resolves to the address
returned by getpeername(2).
Another common "problem" is expiring certs. For now, it may be
a good idea to use a very-long-lived self-signed cert.
As a compile-time option, the front-end can specify a file
containing valid root certificates, but it is not yet required.
*) the back-end performs minimal validation of the client cert.
It allows self-signed certs. It checks for expiration. It
supports a compile-time option specifying a file containing
valid root certificates.
*) both front- and back-ends default to TLSv1, not SSLv3/SSLv2.
*) both front- and back-ends support DSA keys. DSA keys are
moderately more expensive on startup, but many people consider
them preferable than RSA keys. (E.g., SSH2 prefers DSA keys.)
*) if /dev/urandom exists, both client and server will read 16k
of randomization data from it.
*) the server can read empheral DH parameters from the files
$DataDir/dh512.pem
$DataDir/dh1024.pem
$DataDir/dh2048.pem
$DataDir/dh4096.pem
if none are provided, the server will default to hardcoded
parameter files provided by the OpenSSL project.
Remaining tasks:
*) the select() clauses need to be revisited - the SSL abstraction
layer may need to absorb more of the current code to avoid rare
deadlock conditions. This also touches on a true solution to
the pg_eof() problem.
*) the SIGPIPE signal handler may need to be revisited.
*) support encrypted private keys.
*) sessions are not yet fully supported. (SSL sessions can span
multiple "connections," and allow the client and server to avoid
costly renegotiations.)
*) makecert - a script that creates back-end certs.
*) pgkeygen - a tool that creates front-end certs.
*) the whole protocol issue, SASL, etc.
*) certs are fully validated - valid root certs must be available.
This is a hassle, but it means that you *can* trust the identity
of the server.
*) the client library can handle hardcoded root certificates, to
avoid the need to copy these files.
*) host name of server cert must resolve to IP address, or be a
recognized alias. This is more liberal than the previous
iteration.
*) the number of bytes transferred is tracked, and the session
key is periodically renegotiated.
*) basic cert generation scripts (mkcert.sh, pgkeygen.sh). The
configuration files have reasonable defaults for each type
of use.
Bear Giles
applied when the select is a UNION (or other set-operation).
An alternative route to a fix would be to leave analyze.c alone and
change plan_set_operations in prepunion.c to take column names from
the topmost targetlist. But I am not sure that would work in all
cases. This patch seems the minimum-risk fix.
Implement SQL99 SIMILAR TO as a synonym for our existing operator "~".
Implement SQL99 regular expression SUBSTRING(string FROM pat FOR escape).
Extend the definition to make the FOR clause optional.
Define textregexsubstr() to actually implement this feature.
Update the regression test to include these new string features.
All tests pass.
Rename the regular expression support routines from "pg95_xxx" to "pg_xxx".
Define CREATE CHARACTER SET in the parser per SQL99. No implementation yet.
Implement SQL99 SIMILAR TO as a synonym for our existing operator "~".
Implement SQL99 regular expression SUBSTRING(string FROM pat FOR escape).
Extend the definition to make the FOR clause optional.
Define textregexsubstr() to actually implement this feature.
Update the regression test to include these new string features.
All tests pass.
Rename the regular expression support routines from "pg95_xxx" to "pg_xxx".
Define CREATE CHARACTER SET in the parser per SQL99. No implementation yet.
> Changes to avoid collisions with WIN32 & MFC names...
> 1. Renamed:
> a. PROC => PGPROC
> b. GetUserName() => GetUserNameFromId()
> c. GetCurrentTime() => GetCurrentDateTime()
> d. IGNORE => IGNORE_DTF in include/utils/datetime.h & utils/adt/datetim
>
> 2. Added _P to some lex/yacc tokens:
> CONST, CHAR, DELETE, FLOAT, GROUP, IN, OUT
Jan
Allows you to set the loglevel at runtime by adding ?loglevel=X to the connection URL, where 1 = INFO and 2 = DEBUG.
Automatically turns on logging by calling DriverManager.setPrintWriter(new PrintWriter(System.out)) if one is not already set.
Adds a Driver.info() message that prints out the version number
Adds member variables logDebug and logInfo that can be checked before making logging methods calls
Adds a build number to the version number string. This build number will need to be manually incremented when we see fit.
----------------------------------------------------------------------
Modified Files:
org/postgresql/Connection.java org/postgresql/Driver.java.in
org/postgresql/fastpath/Fastpath.java
org/postgresql/jdbc1/DatabaseMetaData.java
org/postgresql/jdbc2/Connection.java
org/postgresql/jdbc2/DatabaseMetaData.java
org/postgresql/largeobject/LargeObjectManager.java
org/postgresql/util/PSQLException.java
org/postgresql/util/Serialize.java
----------------------------------------------------------------------