19570420f5
Attached are a revised set of SSL patches. Many of these patches are motivated by security concerns, it's not just bug fixes. The key differences (from stock 7.2.1) are: *) almost all code that directly uses the OpenSSL library is in two new files, src/interfaces/libpq/fe-ssl.c src/backend/postmaster/be-ssl.c in the long run, it would be nice to merge these two files. *) the legacy code to read and write network data have been encapsulated into read_SSL() and write_SSL(). These functions should probably be renamed - they handle both SSL and non-SSL cases. the remaining code should eliminate the problems identified earlier, albeit not very cleanly. *) both front- and back-ends will send a SSL shutdown via the new close_SSL() function. This is necessary for sessions to work properly. (Sessions are not yet fully supported, but by cleanly closing the SSL connection instead of just sending a TCP FIN packet other SSL tools will be much happier.) *) The client certificate and key are now expected in a subdirectory of the user's home directory. Specifically, - the directory .postgresql must be owned by the user, and allow no access by 'group' or 'other.' - the file .postgresql/postgresql.crt must be a regular file owned by the user. - the file .postgresql/postgresql.key must be a regular file owned by the user, and allow no access by 'group' or 'other'. At the current time encrypted private keys are not supported. There should also be a way to support multiple client certs/keys. *) the front-end performs minimal validation of the back-end cert. Self-signed certs are permitted, but the common name *must* match the hostname used by the front-end. (The cert itself should always use a fully qualified domain name (FDQN) in its common name field.) This means that psql -h eris db will fail, but psql -h eris.example.com db will succeed. At the current time this must be an exact match; future patches may support any FQDN that resolves to the address returned by getpeername(2). Another common "problem" is expiring certs. For now, it may be a good idea to use a very-long-lived self-signed cert. As a compile-time option, the front-end can specify a file containing valid root certificates, but it is not yet required. *) the back-end performs minimal validation of the client cert. It allows self-signed certs. It checks for expiration. It supports a compile-time option specifying a file containing valid root certificates. *) both front- and back-ends default to TLSv1, not SSLv3/SSLv2. *) both front- and back-ends support DSA keys. DSA keys are moderately more expensive on startup, but many people consider them preferable than RSA keys. (E.g., SSH2 prefers DSA keys.) *) if /dev/urandom exists, both client and server will read 16k of randomization data from it. *) the server can read empheral DH parameters from the files $DataDir/dh512.pem $DataDir/dh1024.pem $DataDir/dh2048.pem $DataDir/dh4096.pem if none are provided, the server will default to hardcoded parameter files provided by the OpenSSL project. Remaining tasks: *) the select() clauses need to be revisited - the SSL abstraction layer may need to absorb more of the current code to avoid rare deadlock conditions. This also touches on a true solution to the pg_eof() problem. *) the SIGPIPE signal handler may need to be revisited. *) support encrypted private keys. *) sessions are not yet fully supported. (SSL sessions can span multiple "connections," and allow the client and server to avoid costly renegotiations.) *) makecert - a script that creates back-end certs. *) pgkeygen - a tool that creates front-end certs. *) the whole protocol issue, SASL, etc. *) certs are fully validated - valid root certs must be available. This is a hassle, but it means that you *can* trust the identity of the server. *) the client library can handle hardcoded root certificates, to avoid the need to copy these files. *) host name of server cert must resolve to IP address, or be a recognized alias. This is more liberal than the previous iteration. *) the number of bytes transferred is tracked, and the session key is periodically renegotiated. *) basic cert generation scripts (mkcert.sh, pgkeygen.sh). The configuration files have reasonable defaults for each type of use. Bear Giles |
||
---|---|---|
config | ||
contrib | ||
doc | ||
src | ||
aclocal.m4 | ||
configure | ||
configure.in | ||
COPYRIGHT | ||
GNUmakefile.in | ||
HISTORY | ||
INSTALL | ||
Makefile | ||
README | ||
register.txt |
PostgreSQL Database Management System ===================================== This directory contains the source code distribution of the PostgreSQL database management system. PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. This distribution also contains several language bindings, including C, C++, Perl, Python, and Tcl, as well as drivers for JDBC and ODBC. See the file INSTALL for instructions on how to build and install PostgreSQL. That file also lists supported operating systems and hardware platforms and contains information regarding any other software packages that are required to build or run the PostgreSQL system. Changes between all PostgreSQL releases are recorded in the file HISTORY. Copyright and license information can be found in the file COPYRIGHT. A comprehensive documentation set is included in this distribution; it can be read as described in the installation instructions. The latest version of this software may be obtained at ftp://ftp.postgresql.org/pub/. For more information look at our web site located at http://www.postgresql.org/.