Function 'leaveblock' was generating "break" label before removing
variables from the closing block. If 'createlabel' created a 'close'
instruction (which it did when matching a goto/break that exited
the scope of an upvalue), that instruction would use the wrong level.
'luaD_growstack' already checks that. This commit also fixes an
internal bug in 'luaD_growstack': a large 'n' could cause an arithmetic
overflow when computing 'needed'.
The flag CIST_FIN does not mark a finalizer, but the function that was
running when the finalizer was called. (So, the function did not call
the finalizer, but it looks that way in the stack.)
When closing variables during 'coroutine.close' or 'lua_resetthread',
the status of a coroutine must be set to LUA_OK; a coroutine should
not run with any other status. (See assertion in 'lua_callk'.)
After the reset, the status should be kept as normal, as any error
was already reported.
Any C function can receive maxinteger as an integer argument, and
therefore cannot increment it without some care (e.g., doing unsigned
arithmetic as the core does).
In 'lcode.c', when adding constants to the list of constants of a
function, integers represent themselves in the cache and floats
with integral values get a small delta to avoid collision with
integers. (This change avoids creating artificial addresses; the old
implementation converted integers to pointers to index the cache.)
The existence of 'lua_closeslot' is no reason for lua_pop not to close
to-be-closed variables too. It is too error-prone for lua_pop not to
close tbc variables being popped from the stack.
Instead of assuming that shrinking a block may be an emergency
collection, use an explicit field ('gcstopem') to stop emergency
collections while GC is working.
The function 'isinstack' tried to work around the undefined behavior
of subtracting two pointers that do not point to the same object,
but the compiler killed to trick. (It optimizes out the safety check,
because in a correct execution it will be always true.)
When, inside a coroutine, a C function with to-be-closed slots return,
the corresponding metamethods can yield. ('__close' metamethods called
through 'lua_closeslot' still cannot yield, as there is no continuation
to go when resuming.)
To-be-closed variables are linked in their own list, embedded into the
stack elements. (Due to alignment, this information does not change
the size of the stack elements in most architectures.) This new list
does not produce garbage and avoids memory errors when creating tbc
variables.
- 'L->top' is set once in 'luaD_hook', instead of being set in
'luaD_hookcall' and 'rethook';
- resume discard arguments when returning after an yield inside a hook
(arguments may interfere with the coroutine stack);
- yield inside a hook asserts it has no arguments.
The return hook should be called only after closing variables (which
are still part of the function). C functions were calling the hook
before the metamethods.
Completes commit b07fc10e91. '__close' metamethods can yield even
when they are being called due to an error. '__close' metamethods from
C functions are still not allowed to yield.
Initial implementation to allow yields inside '__close' metamethods.
This current version still does not allow a '__close' metamethod
to yield when called due to an error. '__close' metamethods from
C functions also are not allowed to yield.
Closing a to-be-closed variable with 'lua_settop' is too restrictive,
as it erases all slots above the variable. Moreover, it adds side
effects to 'lua_settop', which should be a fairly basic function.
When available, use the calling code to find a suitable name for what
was being called; this is particularly useful for errors of non-callable
metamethods. This commit also improved the debug information for
order metamethods.
A to-be-closed variable is constant and it must have a close metamethod
when it is created. A program has to go out of its way (e.g., by
changing the variable's metamethod) to invalidate that check. So,
it is not worth to test that again. If the program tampers with the
metamethod, Lua will raise a regular error when attempting to call it.
Undo commit c220b0a5d0: '__close' is not called again in case of
errors. (Upvalue is removed from the list before the call.) The
common error that justified that change was C stack overflows, which
are much rarer with the stackless implementation.
* Avoids multiple definitions of 'lua_assert' in test file.
* Smaller C-stack limit in test mode.
* Note in the manual about the use of false
* Extra test for constant reuse.
Fixed the bug that a key removed from a table might not be found
again by 'next'. (This is needed to allow keys to be removed during a
traversal.) This bug was introduced in commit 73ec04fc.
- After converting a generic GCObject to a specific type ('gco2*'),
avoid using the original GCObject (to reduce aliasing).
- Small corrections in comments in 'lopcodes.h'
- Added tests about who calls __close metamethods
Shrink a stack only when the final stack size can be at most 2/3 the
previous size with half of its entries empty. This commit also
improves the clarity of 'luaD_growstack'.
A "with stack" implementation gains too little in performance to be
worth all the noise from C-stack overflows.
This commit is almost a sketch, to test performance. There are several
pending stuff:
- review control of C-stack overflow and error messages;
- what to do with setcstacklimit;
- review comments;
- review unroll of Lua calls.
When "undumping" a long string, the function 'loadVector' can call the
reader function, which can run the garbage collector, which can collect
the string being read. So, the string must be anchored during the call
to 'loadVector'.
This commit fixes a bug introduced in commit 9cf3299fa. TOUCHED2
objects are always black while the mutator runs, but they can become
temporarily gray inside a minor collection (e.g., if the object is a
weak table).
Tables were using this bit to indicate their array sizes were real
('isrealasize'), but this bit can be useful for tests. Instead, they
can use bit 7 of their 'flag' field for that purpose. (There are only
six fast-access metamethods.) This 'flag' field only exists in tables,
so this use does not affect other types.
OLD1 objects can be potentially anywhere in the 'allgc' list (up
to 'reallyold'), but frequently they are all after 'old1' (natural
evolution of survivals) or do not exist at all (when all objects die
young). So, instead of 'markold' starts looking for them always
from the start of 'allgc', the collector keeps an extra pointer,
'firstold1', that points to the first OLD1 object in the 'allgc' list,
or is NULL if there are no OLD1 objects in that list.
Barriers cannot be active during sweep, even in generational mode.
(Although gen. mode is not incremental, it can hit a barrier when
deleting a thread and closing its upvalues.) The colors of objects are
being changed during sweep and, therefore, cannot be trusted.
When entering a coroutine, the computation of nCcalls added 'from->nci'
to correct for preallocated CallInfos, but 'nci' includes also the
Callinfos already used.
Allow memory errors to be raised through the API (throwing the
error with the memory error message); error in external allocations
raises a memory error; memory errors in coroutines are re-raised
as memory errors.
To allow their use in memory tests, some functions in 'ltests.c'
should never allocate memory. To avoid this allocation, the
library registers the strings used for status codes, and keeps
the variable '_WARN' always defined (with false instead of nil).
In 'lundump.c', when loading the upvalues of a function, there can be
a read error if the chunk is truncated. In that case, the creation
of the error message can trigger an emergency collection while the
prototype is still anchored. So, the prototype must be GC consistent
before loading the upvales, which implies that it the 'name' fields
must be filled with NULL before the reading.
The parser were mixing compiler indices of variables with stack indices,
so that when a to-be-closed variable was used inside the scope of
compile-time constants (which may be optimized away), it might be closed
in the wrong place. (See new tests for examples.)
Besides fixing the bugs, this commit also changed comments and variable
names to avoid that kind of confusion and added tests.
(Undoing part of commit f53eabeed8.) It is better to keep this encoding
stable, so that all Lua versions can read at least the version of a
binary file.
Instead of an explicit value (field 'b'), true and false use different
tag variants. This avoids reading an extra field and results in more
direct code. (Most code that uses booleans needs to distinguish between
true and false anyway.)
The initial "\n\t" to properly indent a searcher message is being added
by 'findloader' when building the error message, instead of being
included in the original message by each searcher itself.
- Several details in 'lcode.c'
- A few more tests for code generation
- Bug in assert in 'lcode.c' ("=" x "==")
- Comments in 'lopcodes.h' and 'ltable.c'
The difference in performance between immediate operands and K operands
does not seem to justify all those extra opcodes. We only keep OP_ADDI,
due to its ubiquity and because the difference is a little more relevant.
(Later, OP_SUBI will be implemented by OP_ADDI, negating the constant.)