Any parameters (key/value pairs after the '?' in a URL) that have a keyname
that starts with `SDL_` will be put into Emscripten's environment variable
emulation table at startup, before SDL_main runs.
This lets users set hints the same way they might set them from a shell's
command line on a desktop platform:
For example:
`https://example.com/my_sdl3_application.html?SDL_RENDER_DRIVER=software`
Fixes#10154.
- Also add watchos support to CMake (SDL does not support this platform yet)
Co-authored-by: Ravbug <ravbug@users.noreply.github.com>
Co-authored-by: Anonymous Maarten <anonymous.maarten@gmail.com>
Co-authored-by: Anonymous Maarten <madebr@users.noreply.github.com>
- Add a globally-accessible function to handle the parsing of filter extensions
- Remove the ability of putting the wildcard ('*') among other patterns; it's either a list of patterns or a single '*' now
- Add a hint to select between portals and Zenity on Unix
SDL_strcasecmp (even when calling into a C runtime) does not work with
Unicode chars, and depending on the user's locale, might not work with
even basic ASCII strings.
This implements the function from scratch, using "case-folding,"
which is a more robust method that deals with various languages. It
involves a hashtable of a few hundred codepoints that are "uppercase" and
how to map them to lowercase equivalents (possibly increasing the size of
the string in the process). The vast majority of human languages (and
Unicode) do not have letters with different cases, but still, this static
table takes about 10 kilobytes on a 64-bit machine.
Even this will fail in one known case: the Turkish 'i' folds differently
if you're writing in Turkish vs other languages. Generally this is seen as
unfortunate collateral damage in cases where you can't specify the language
in use.
In addition to case-folding the codepoints, the new functions also know how
to decode the various formats to turn them into codepoints in the first
place, instead of blindly stepping by one byte (or one wchar_t) per
character.
Also included is casefolding.txt from the Unicode Consortium and a perl
script to generate the hashtable from that text file, so we can trivially
update this if new languages are added in the future.
A simple test using the new function:
```c
#include <SDL3/SDL.h>
int main(void)
{
const char *a = "α ε η";
const char *b = "Α Ε Η";
SDL_Log(" strcasecmp(\"%s\", \"%s\") == %d\n", a, b, strcasecmp(a, b));
SDL_Log("SDL_strcasecmp(\"%s\", \"%s\") == %d\n", a, b, SDL_strcasecmp(a, b));
return 0;
}
```
Produces:
```
INFO: strcasecmp("α ε η", "Α Ε Η") == 32
INFO: SDL_strcasecmp("α ε η", "Α Ε Η") == 0
```
glibc strcasecmp() fails to compare a Greek lowercase string to its uppercase
equivalent, even with a UTF-8 locale, but SDL_strcasecmp() works.
Other SDL_stdinc.h functions are changed to be more consistent, which is to
say they now ignore any C runtime and often dictate that only English-based
low-ASCII works with them.
Fixes Issue #9313.
Some POSIX platforms don't define macros to note the presence of the POSIX.1-2008 st_*tim timespec members of the stat struct, so check if this member exists during CMake configuration and conditionally enable it.
Apple platforms use st_*timespec naming, which is supported as of OSX 10.6. SDL3 requires 10.9+, so no fallback is needed.
Android only supports the POSIX.1-2008 semantics as of API version 26 or higher, so this has to be conditionally enabled in the makefile build via an API version definition check.
In other cases, file times fall back to the legacy path with second precision.
Adds functions to query the system's realtime clock, convert time intervals to/from a calendar date and time in either UTC or the local time, and perform time related calculations.
An SDL_Time type (a time interval represented in nanoseconds), and SDL_DateTime struct (broken down calendar date and time) were added to facilitate this functionality.
Querying the system time results in a value expressed in nanoseconds since the Unix epoch (Jan 1, 1970) in UTC +0000. Conversions to and from the various platform epochs and units are performed when required.
Any direct handling of timezones and DST were intentionally avoided. The offset from UTC is provided when converting from UTC to a local time by calculating the difference between the original UTC and the resulting local time, but no other timezone or DST information is used.
The preferred date formatting and 12/24 hour time for the system locale can be retrieved via global preferences.
Helper functions for obtaining the day of week or day or year for calendar date, and getting the number of days in a month in a given year are provided for convenience. These are simple, but useful for performing various time related calculations.
An automated test for time conversion is included, as is a simple standalone test to display the current system date and time onscreen along with a calendar, the rendering of which demonstrates the use of the utility functions (press up/down to increment or decrement the current month, and keys 1-5 to change the date and time formats).
Use memfd_create() to allocate the temporary SHM backing file in memory, and set the size with posix_fallocate(), which will return an error on insufficient space vs ftruncate(), which will silently succeed and allow a SIGBUS error to occur if the unbacked memory is accessed.
Additionally, make the legacy path more robust by unlinking the temp file, so it won't persist after close, and unmapping the shared memory buffer.
- Always use internal qsort and bsearch implementation.
- add "_r" reentrant versions.
The reasons for always using the internal versions is that the C runtime
versions' callbacks are not mark STDCALL, so we would have add bridge
functions for them anyhow, The C runtime qsort_r/qsort_s have different
orders of arguments on different platforms, and most importantly: qsort()
isn't a stable sort, and isn't guaranteed to give the same ordering for
two objects marked as equal by the callback...as such, Visual Studio and
glibc can give different sort results for the same data set...in this
sense, having one piece of code shared on all platforms makes sense here,
for reliabillity.
bsearch does not have a standard _r version at all, and suffers from the
same SDLCALL concern. Since the code is simple and we would have to work
around the C runtime, it's easier to just go with the built-in function
and remove all the CMake C runtime tests.
Fixes#9159.
This pull request adds an implementation of a Vulkan Render backend to SDL. I have so far tested this primarily on Windows, but also smoke tested on Linux and macOS (MoltenVK). I have not tried it yet on Android, but it should be usable there as well (sans any bugs I missed). This began as a port of the SDL Direct3D12 Renderer, which is the closest thing to Vulkan as existed in the SDL codebase. The shaders are more or less identical (with the only differences being in descriptor bindings vs root descriptors). The shaders are built using the HLSL frontend of glslang.
Everything in the code is pure Vulkan 1.0 (no extensions), with the exception of HDR support which requires the Vulkan instance extension `VK_EXT_swapchain_colorspace`. The code could have been simplified considerably if I used dynamic rendering, push descriptors, extended dynamic state, and other modern Vulkan-isms, but I felt it was more important to make the code as vanilla Vulkan as possible so that it would run on any Vulkan implementation.
The main differences with the Direct3D12 renderer are:
* Having to manage renderpasses for performing clears. There is likely some optimization that would still remain for more efficient use of TBDR hardware where there might be some unnecessary load/stores, but it does attempt to do clears using renderpasses.
* Constant buffer data couldn't be directly updated in the command buffer since I didn't want to rely on push descriptors, so there is a persistently mapped buffer with increasing offset per swapchain image where CB data gets written.
* Many more resources are dependent on the swapchain resizing due to i.e. Vulkan requiring the VkFramebuffer to reference the VkImageView of the swapchain, so there is a bit more code around handling that than was necessary in D3D12.
* For NV12/NV21 textures, rather than there being plane data in the texture itself, the UV data is placed in a separate `VkImage`/`VkImageView`.
I've verified that `testcolorspace` works with both sRGB and HDR linear. I've tested `testoverlay` works with the various YUV/NV12/NV21 formats. I've tested `testsprite`. I've checked that window resizing and swapchain out-of-date handling when minimizing are working. I've run through `testautomation` with the render tests. I also have run several of the tests with Vulkan validation and synchronization validation. Surely I will have missed some things, but I think it's in a good state to be merged and build out from here.