called cpu_mode. Now there is one for cpu32, but it is declared:
static const unsigned cpu_mode=BX_MODE_IA32;
This way the compiler can compile-out if-then-else clauses based
on it, allowing for easier code sharing.
BX_READ_8BIT_REG() --> BX_READ_8BIT_REGx()
BX_WRITE_8BIT_REG() --> BX_WRITE_8BIT_REGx()
They use an extra parameter "extended". I coded this
as the macro without the "x" for cpu32 compiles. This
allows for ease of merging and code sharing.
to incrementally merge files. For a test, shift16.cc is always
compiled in the cpu/ directory regardless of 32/64-bit configure.
Ultimately, all files will migrate from cpu64 to cpu.
This adds a whole new directory cpu64 with the new emulation code.
Very few changes were necessary outside cpu64. To try it, configure
with --enable-x86-64 and make.
- also this adds Peter Tattam's external debugger interface.
- modified files: Makefile.in bochs.h config.h.in configure.in
load32bitOShack.cc logio.cc cpu/Makefile.in cpu/cpu.cc debug/dbg_main.cc
- added files: cpu/extdb.cc cpu/extdb.h and cpu64/*
which were generated with gcc -MM to the end of each Makefile.in
so that make understands which files depend on which. Basically,
everything depends on bochs.h, which depends on everything, which
is not ideal.
in BRANCH-smp-bochs revisions.
- The general task was to make multiple CPU's which communicate
through their APICs. So instead of BX_CPU and BX_MEM, we now have
BX_CPU(x) and BX_MEM(y). For an SMP simulation you have several
processors in a shared memory space, so there might be processors
BX_CPU(0..3) but only one memory space BX_MEM(0). For cosimulation,
you could have BX_CPU(0) with BX_MEM(0), then BX_CPU(1) with
BX_MEM(1). WARNING: Cosimulation is almost certainly broken by the
SMP changes.
- to simulate multiple CPUs, you have to give each CPU time to execute
in turn. This is currently implemented using debugger guards. The
cpu loop steps one CPU for a few instructions, then steps the
next CPU for a few instructions, etc.
- there is some limited support in the debugger for two CPUs, for
example printing information from each CPU when single stepping.