Bochs/bochs/cpu/exception.cc

1336 lines
42 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////
// $Id: exception.cc,v 1.43 2004-11-02 16:10:01 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "iodev/iodev.h"
#define LOG_THIS BX_CPU_THIS_PTR
/* Exception classes. These are used as indexes into the 'is_exception_OK'
* array below, and are stored in the 'exception' array also
*/
#define BX_ET_BENIGN 0
#define BX_ET_CONTRIBUTORY 1
#define BX_ET_PAGE_FAULT 2
#define BX_ET_DOUBLE_FAULT 10
static const bx_bool is_exception_OK[3][3] = {
{ 1, 1, 1 }, /* 1st exception is BENIGN */
{ 1, 0, 1 }, /* 1st exception is CONTRIBUTORY */
{ 1, 0, 0 } /* 1st exception is PAGE_FAULT */
};
void
2004-07-12 23:20:55 +04:00
BX_CPU_C::interrupt(Bit8u vector, bx_bool is_INT, bx_bool is_error_code, Bit16u error_code)
{
#if BX_DEBUGGER
if (bx_guard.special_unwind_stack) {
BX_INFO (("interrupt() returning early because special_unwind_stack is set"));
return;
}
BX_CPU_THIS_PTR show_flag |= Flag_intsig;
#if BX_DEBUG_LINUX
if (bx_dbg.linux_syscall) {
if (vector == 0x80) bx_dbg_linux_syscall ();
}
#endif
#endif
//BX_DEBUG(( "::interrupt(%u)", vector ));
BX_INSTR_INTERRUPT(BX_CPU_ID, vector);
invalidate_prefetch_q();
// Discard any traps and inhibits for new context; traps will
// resume upon return.
BX_CPU_THIS_PTR debug_trap = 0;
BX_CPU_THIS_PTR inhibit_mask = 0;
#if BX_CPU_LEVEL >= 2
// unsigned prev_errno;
BX_DEBUG(("interrupt(): vector = %u, INT = %u, EXT = %u",
(unsigned) vector, (unsigned) is_INT, (unsigned) BX_CPU_THIS_PTR EXT));
BX_CPU_THIS_PTR save_cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS];
BX_CPU_THIS_PTR save_ss = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS];
BX_CPU_THIS_PTR save_eip = EIP;
BX_CPU_THIS_PTR save_esp = ESP;
// prev_errno = BX_CPU_THIS_PTR errorno;
2002-09-14 21:29:47 +04:00
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR msr.lma) {
// long mode interrupt
Bit64u idtindex;
Bit32u save_upper;
Bit32u dword1, dword2, dword3;
bx_descriptor_t gate_descriptor, cs_descriptor;
bx_selector_t cs_selector;
Bit16u gate_dest_selector;
Bit64u gate_dest_offset;
unsigned ist;
2002-09-14 21:29:47 +04:00
// interrupt vector must be within IDT table limits,
// else #GP(vector number*16 + 2 + EXT)
idtindex = vector*16;
if ( (idtindex + 15) > BX_CPU_THIS_PTR idtr.limit) {
BX_DEBUG(("IDT.limit = %04x", (unsigned) BX_CPU_THIS_PTR idtr.limit));
BX_DEBUG(("IDT.base = %06x", (unsigned) BX_CPU_THIS_PTR idtr.base));
BX_DEBUG(("interrupt vector must be within IDT table limits"));
BX_DEBUG(("bailing"));
BX_DEBUG(("interrupt(): vector > idtr.limit"));
exception(BX_GP_EXCEPTION, vector*16 + 2, 0);
}
// descriptor AR byte must indicate interrupt gate, trap gate,
// or task gate, else #GP(vector*8 + 2 + EXT)
idtindex += BX_CPU_THIS_PTR idtr.base;
2004-08-28 12:41:46 +04:00
access_linear(idtindex, 4, 0, BX_READ, &dword1);
access_linear(idtindex + 4, 4, 0, BX_READ, &dword2);
access_linear(idtindex + 8, 4, 0, BX_READ, &dword3);
2002-09-14 21:29:47 +04:00
parse_descriptor(dword1, dword2, &gate_descriptor);
if ( (gate_descriptor.valid==0) || gate_descriptor.segment) {
BX_DEBUG(("interrupt(): gate descriptor is not valid sys seg"));
exception(BX_GP_EXCEPTION, vector*8 + 2, 0);
}
switch (gate_descriptor.type) {
//case 5: // task gate
//case 6: // 286 interrupt gate
//case 7: // 286 trap gate
case 14: // 386 interrupt gate
case 15: // 386 trap gate
break;
default:
BX_DEBUG(("interrupt(): gate.type(%u) != {5,6,7,14,15}",
(unsigned) gate_descriptor.type));
exception(BX_GP_EXCEPTION, vector*8 + 2, 0);
return;
}
// if software interrupt, then gate descripor DPL must be >= CPL,
// else #GP(vector * 8 + 2 + EXT)
if (is_INT && (gate_descriptor.dpl < CPL)) {
/* ??? */
BX_DEBUG(("interrupt(): is_INT && (dpl < CPL)"));
exception(BX_GP_EXCEPTION, vector*8 + 2, 0);
return;
}
// Gate must be present, else #NP(vector * 8 + 2 + EXT)
if (gate_descriptor.p == 0) {
BX_DEBUG(("interrupt(): p == 0"));
exception(BX_NP_EXCEPTION, vector*8 + 2, 0);
}
gate_dest_selector = gate_descriptor.u.gate386.dest_selector;
gate_dest_offset = ((Bit64u)dword3 << 32) +
gate_descriptor.u.gate386.dest_offset;
ist = gate_descriptor.u.gate386.dword_count & 0x7;
2002-09-14 21:29:47 +04:00
// examine CS selector and descriptor given in gate descriptor
// selector must be non-null else #GP(EXT)
if ( (gate_dest_selector & 0xfffc) == 0 ) {
BX_PANIC(("int_trap_gate(): selector null"));
exception(BX_GP_EXCEPTION, 0, 0);
}
parse_selector(gate_dest_selector, &cs_selector);
// selector must be within its descriptor table limits
// else #GP(selector+EXT)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
// descriptor AR byte must indicate code seg
// and code segment descriptor DPL<=CPL, else #GP(selector+EXT)
if ( cs_descriptor.valid==0 ||
cs_descriptor.segment==0 ||
cs_descriptor.u.segment.executable==0 ||
2004-07-12 23:20:55 +04:00
cs_descriptor.dpl>CPL)
{
2002-09-14 21:29:47 +04:00
BX_DEBUG(("interrupt(): not code segment"));
exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0);
2004-07-12 23:20:55 +04:00
}
2002-09-14 21:29:47 +04:00
// check that it's a 64 bit segment
if ( cs_descriptor.u.segment.l == 0 ||
2004-07-12 23:20:55 +04:00
cs_descriptor.u.segment.d_b == 1)
{
2002-09-14 21:29:47 +04:00
BX_DEBUG(("interrupt(): must be 64 bit segment"));
exception(BX_GP_EXCEPTION, vector, 0);
}
// segment must be present, else #NP(selector + EXT)
if ( cs_descriptor.p==0 ) {
BX_DEBUG(("interrupt(): segment not present"));
exception(BX_NP_EXCEPTION, cs_selector.value & 0xfffc, 0);
2004-07-12 23:20:55 +04:00
}
2002-09-14 21:29:47 +04:00
// if code segment is non-conforming and DPL < CPL then
// INTERRUPT TO INNER PRIVILEGE:
2004-07-12 23:20:55 +04:00
if ((cs_descriptor.u.segment.c_ed==0 && cs_descriptor.dpl<CPL) || (ist > 0))
{
2002-09-14 21:29:47 +04:00
Bit16u old_SS, old_CS;
Bit64u RSP_for_cpl_x, old_RIP, old_RSP;
bx_descriptor_t ss_descriptor;
bx_selector_t ss_selector;
int bytes;
int savemode;
2002-09-14 21:29:47 +04:00
BX_DEBUG(("interrupt(): INTERRUPT TO INNER PRIVILEGE"));
// check selector and descriptor for new stack in current TSS
if (ist > 0) {
BX_DEBUG(("trap to IST, vector = %d\n",ist));
get_RSP_from_TSS(ist+3,&RSP_for_cpl_x);
}
else {
get_RSP_from_TSS(cs_descriptor.dpl,&RSP_for_cpl_x);
}
2002-09-14 21:29:47 +04:00
// set up a null descriptor
parse_selector(0,&ss_selector);
parse_descriptor(0,0,&ss_descriptor);
// 386 int/trap gate
// new stack must have room for 40|48 bytes, else #SS(0)
//if ( is_error_code )
// bytes = 48;
//else
// bytes = 40;
old_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
2002-09-14 21:29:47 +04:00
old_RSP = RSP;
// load new RSP values from TSS
savemode = BX_CPU_THIS_PTR cpu_mode;
BX_CPU_THIS_PTR cpu_mode = BX_MODE_LONG_64;
// need to switch to 64 bit mode temporarily here.
// this means that any exception after here might be delivered
// a little insanely. Like faults are page faults..
load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);
2002-09-14 21:29:47 +04:00
RSP = RSP_for_cpl_x;
// load new CS:IP values from gate
// set CPL to new code segment DPL
CPL = cs_descriptor.dpl;
2002-09-14 21:29:47 +04:00
// set RPL of CS to CPL
// push long pointer to old stack onto new stack
// align ESP
push_64(old_SS);
2002-09-14 21:29:47 +04:00
push_64(old_RSP);
// push EFLAGS
push_64(read_eflags());
// push long pointer to return address onto new stack
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_64(RIP);
if ( is_error_code )
push_64(error_code);
BX_CPU_THIS_PTR cpu_mode = savemode;
2002-09-14 21:29:47 +04:00
load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);
2002-09-14 21:29:47 +04:00
RIP = gate_dest_offset;
// if INTERRUPT GATE set IF to 0
if ( !(gate_descriptor.type & 1) ) // even is int-gate
BX_CPU_THIS_PTR clear_IF ();
BX_CPU_THIS_PTR clear_TF ();
BX_CPU_THIS_PTR clear_VM ();
BX_CPU_THIS_PTR clear_RF ();
BX_CPU_THIS_PTR clear_NT ();
return;
2004-07-12 23:20:55 +04:00
}
2002-09-14 21:29:47 +04:00
// if code segment is conforming OR code segment DPL = CPL then
// INTERRUPT TO SAME PRIVILEGE LEVEL:
2004-07-12 23:20:55 +04:00
if (cs_descriptor.u.segment.c_ed==1 || cs_descriptor.dpl==CPL )
{
2002-09-14 21:29:47 +04:00
Bit64u old_RSP;
BX_DEBUG(("int_trap_gate286(): INTERRUPT TO SAME PRIVILEGE"));
old_RSP = RSP;
// align stack
RSP = RSP & BX_CONST64(0xfffffffffffffff0);
// push flags onto stack
// push current CS selector onto stack
// push return offset onto stack
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
push_64(old_RSP);
push_64(read_eflags());
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_64(RIP);
if ( is_error_code )
push_64(error_code);
// load CS:IP from gate
// load CS descriptor
// set the RPL field of CS to CPL
load_cs(&cs_selector, &cs_descriptor, CPL);
RIP = gate_dest_offset;
// if interrupt gate then set IF to 0
if ( !(gate_descriptor.type & 1) ) // even is int-gate
BX_CPU_THIS_PTR clear_IF ();
BX_CPU_THIS_PTR clear_TF ();
BX_CPU_THIS_PTR clear_VM ();
BX_CPU_THIS_PTR clear_RF ();
BX_CPU_THIS_PTR clear_NT ();
return;
2004-07-12 23:20:55 +04:00
}
2002-09-14 21:29:47 +04:00
// else #GP(CS selector + ext)
BX_DEBUG(("interrupt: bad descriptor"));
BX_DEBUG(("c_ed=%u, descriptor.dpl=%u, CPL=%u",
(unsigned) cs_descriptor.u.segment.c_ed,
(unsigned) cs_descriptor.dpl,
(unsigned) CPL));
BX_DEBUG(("cs.segment = %u", (unsigned) cs_descriptor.segment));
exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0);
2004-07-12 23:20:55 +04:00
}
2002-09-14 21:29:47 +04:00
else
#endif // #if BX_SUPPORT_X86_64
if(!real_mode()) {
Bit32u dword1, dword2;
bx_descriptor_t gate_descriptor, cs_descriptor;
bx_selector_t cs_selector;
Bit16u raw_tss_selector;
bx_selector_t tss_selector;
bx_descriptor_t tss_descriptor;
Bit16u gate_dest_selector;
Bit32u gate_dest_offset;
// interrupt vector must be within IDT table limits,
// else #GP(vector number*8 + 2 + EXT)
if ( (vector*8 + 7) > BX_CPU_THIS_PTR idtr.limit) {
BX_DEBUG(("IDT.limit = %04x", (unsigned) BX_CPU_THIS_PTR idtr.limit));
BX_DEBUG(("IDT.base = %06x", (unsigned) BX_CPU_THIS_PTR idtr.base));
BX_DEBUG(("interrupt vector must be within IDT table limits"));
BX_DEBUG(("bailing"));
BX_DEBUG(("interrupt(): vector > idtr.limit"));
exception(BX_GP_EXCEPTION, vector*8 + 2, 0);
2004-07-12 23:20:55 +04:00
}
// descriptor AR byte must indicate interrupt gate, trap gate,
// or task gate, else #GP(vector*8 + 2 + EXT)
access_linear(BX_CPU_THIS_PTR idtr.base + vector*8, 4, 0,
BX_READ, &dword1);
access_linear(BX_CPU_THIS_PTR idtr.base + vector*8 + 4, 4, 0,
BX_READ, &dword2);
parse_descriptor(dword1, dword2, &gate_descriptor);
if ( (gate_descriptor.valid==0) || gate_descriptor.segment) {
BX_DEBUG(("interrupt(): gate descriptor is not valid sys seg"));
exception(BX_GP_EXCEPTION, vector*8 + 2, 0);
}
switch (gate_descriptor.type) {
case 5: // task gate
case 6: // 286 interrupt gate
case 7: // 286 trap gate
case 14: // 386 interrupt gate
case 15: // 386 trap gate
break;
default:
BX_DEBUG(("interrupt(): gate.type(%u) != {5,6,7,14,15}",
(unsigned) gate_descriptor.type));
exception(BX_GP_EXCEPTION, vector*8 + 2, 0);
return;
}
// if software interrupt, then gate descripor DPL must be >= CPL,
// else #GP(vector * 8 + 2 + EXT)
if (is_INT && (gate_descriptor.dpl < CPL)) {
/* ??? */
BX_DEBUG(("interrupt(): is_INT && (dpl < CPL)"));
exception(BX_GP_EXCEPTION, vector*8 + 2, 0);
return;
}
// Gate must be present, else #NP(vector * 8 + 2 + EXT)
if (gate_descriptor.p == 0) {
BX_DEBUG(("interrupt(): p == 0"));
exception(BX_NP_EXCEPTION, vector*8 + 2, 0);
}
switch (gate_descriptor.type) {
case 5: // 286/386 task gate
// examine selector to TSS, given in task gate descriptor
raw_tss_selector = gate_descriptor.u.taskgate.tss_selector;
parse_selector(raw_tss_selector, &tss_selector);
// must specify global in the local/global bit,
// else #TS(TSS selector)
// +++
// 486/Pent books say #TSS(selector)
// PPro+ says #GP(selector)
if (tss_selector.ti) {
BX_PANIC(("interrupt: tss_selector.ti=1"));
exception(BX_TS_EXCEPTION, raw_tss_selector & 0xfffc, 0);
return;
}
// index must be within GDT limits, else #TS(TSS selector)
2004-07-12 23:20:55 +04:00
fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
// AR byte must specify available TSS,
// else #TS(TSS selector)
parse_descriptor(dword1, dword2, &tss_descriptor);
if (tss_descriptor.valid==0 || tss_descriptor.segment) {
BX_PANIC(("exception: TSS selector points to bad TSS"));
exception(BX_TS_EXCEPTION, raw_tss_selector & 0xfffc, 0);
return;
}
if (tss_descriptor.type!=9 && tss_descriptor.type!=1) {
BX_PANIC(("exception: TSS selector points to bad TSS"));
exception(BX_TS_EXCEPTION, raw_tss_selector & 0xfffc, 0);
return;
}
// TSS must be present, else #NP(TSS selector)
// done in task_switch()
// switch tasks with nesting to TSS
task_switch(&tss_selector, &tss_descriptor,
BX_TASK_FROM_CALL_OR_INT, dword1, dword2);
// if interrupt was caused by fault with error code
// stack limits must allow push of 2 more bytes, else #SS(0)
// push error code onto stack
//??? push_16 vs push_32
if ( is_error_code ) {
//if (tss_descriptor.type==9)
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b)
push_32(error_code);
else
push_16(error_code);
}
// instruction pointer must be in CS limit, else #GP(0)
if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
BX_ERROR(("exception(): eIP > CS.limit"));
exception(BX_GP_EXCEPTION, 0, 0);
}
return;
case 6: // 286 interrupt gate
case 7: // 286 trap gate
case 14: // 386 interrupt gate
case 15: // 386 trap gate
if ( gate_descriptor.type >= 14 ) { // 386 gate
gate_dest_selector = gate_descriptor.u.gate386.dest_selector;
gate_dest_offset = gate_descriptor.u.gate386.dest_offset;
}
else { // 286 gate
gate_dest_selector = gate_descriptor.u.gate286.dest_selector;
gate_dest_offset = gate_descriptor.u.gate286.dest_offset;
}
// examine CS selector and descriptor given in gate descriptor
// selector must be non-null else #GP(EXT)
if ( (gate_dest_selector & 0xfffc) == 0 ) {
BX_PANIC(("int_trap_gate(): selector null"));
exception(BX_GP_EXCEPTION, 0, 0);
}
parse_selector(gate_dest_selector, &cs_selector);
// selector must be within its descriptor table limits
// else #GP(selector+EXT)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2,
BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
// descriptor AR byte must indicate code seg
// and code segment descriptor DPL<=CPL, else #GP(selector+EXT)
if ( cs_descriptor.valid==0 ||
cs_descriptor.segment==0 ||
cs_descriptor.u.segment.executable==0 ||
cs_descriptor.dpl>CPL ) {
BX_DEBUG(("interrupt(): not code segment"));
exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0);
}
// segment must be present, else #NP(selector + EXT)
if ( cs_descriptor.p==0 ) {
BX_DEBUG(("interrupt(): segment not present"));
exception(BX_NP_EXCEPTION, cs_selector.value & 0xfffc, 0);
}
// if code segment is non-conforming and DPL < CPL then
// INTERRUPT TO INNER PRIVILEGE:
if ( cs_descriptor.u.segment.c_ed==0 && cs_descriptor.dpl<CPL ) {
Bit16u old_SS, old_CS, SS_for_cpl_x;
Bit32u ESP_for_cpl_x, old_EIP, old_ESP;
bx_descriptor_t ss_descriptor;
bx_selector_t ss_selector;
int bytes;
BX_DEBUG(("interrupt(): INTERRUPT TO INNER PRIVILEGE"));
// check selector and descriptor for new stack in current TSS
get_SS_ESP_from_TSS(cs_descriptor.dpl,
&SS_for_cpl_x, &ESP_for_cpl_x);
// Selector must be non-null else #TS(EXT)
if ( (SS_for_cpl_x & 0xfffc) == 0 ) {
BX_PANIC(("interrupt(): SS selector null"));
/* TS(ext) */
exception(BX_TS_EXCEPTION, 0, 0);
}
// selector index must be within its descriptor table limits
// else #TS(SS selector + EXT)
parse_selector(SS_for_cpl_x, &ss_selector);
// fetch 2 dwords of descriptor; call handles out of limits checks
fetch_raw_descriptor(&ss_selector, &dword1, &dword2,
BX_TS_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
// selector rpl must = dpl of code segment,
// else #TS(SS selector + ext)
if (ss_selector.rpl != cs_descriptor.dpl) {
BX_PANIC(("interrupt(): SS.rpl != CS.dpl"));
exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
}
// stack seg DPL must = DPL of code segment,
// else #TS(SS selector + ext)
if (ss_descriptor.dpl != cs_descriptor.dpl) {
BX_PANIC(("interrupt(): SS.dpl != CS.dpl"));
exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
}
// descriptor must indicate writable data segment,
// else #TS(SS selector + EXT)
if (ss_descriptor.valid==0 ||
ss_descriptor.segment==0 ||
ss_descriptor.u.segment.executable==1 ||
ss_descriptor.u.segment.r_w==0) {
BX_PANIC(("interrupt(): SS not writable data segment"));
exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
}
// seg must be present, else #SS(SS selector + ext)
if (ss_descriptor.p==0) {
BX_PANIC(("interrupt(): SS not present"));
exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
}
if (gate_descriptor.type>=14) {
// 386 int/trap gate
// new stack must have room for 20|24 bytes, else #SS(0)
if ( is_error_code )
bytes = 24;
else
bytes = 20;
if (v8086_mode())
bytes += 16;
}
else {
// new stack must have room for 10|12 bytes, else #SS(0)
if ( is_error_code )
bytes = 12;
else
bytes = 10;
if (v8086_mode()) {
bytes += 8;
BX_PANIC(("interrupt: int/trap gate VM"));
}
}
// 486,Pentium books
// new stack must have room for 10/12 bytes, else #SS(0) 486 book
// PPro+
// new stack must have room for 10/12 bytes, else #SS(seg selector)
if ( !can_push(&ss_descriptor, ESP_for_cpl_x, bytes) ) {
BX_PANIC(("interrupt(): new stack doesn't have room for %u bytes",
(unsigned) bytes));
// SS(???)
exception(BX_SS_EXCEPTION, 0, 0);
}
// IP must be within CS segment boundaries, else #GP(0)
if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) {
BX_PANIC(("interrupt(): gate eIP > CS.limit"));
exception(BX_GP_EXCEPTION, 0, 0);
}
old_ESP = ESP;
old_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
old_EIP = EIP;
old_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
// load new SS:SP values from TSS
load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);
if (ss_descriptor.u.segment.d_b)
ESP = ESP_for_cpl_x;
else
SP = ESP_for_cpl_x; // leave upper 16bits
// load new CS:IP values from gate
// set CPL to new code segment DPL
// set RPL of CS to CPL
load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);
EIP = gate_dest_offset;
Bit32u eflags = read_eflags();
Bit16u flags = read_flags();
int is_v8086_mode = v8086_mode();
// if INTERRUPT GATE set IF to 0
if ( !(gate_descriptor.type & 1) ) // even is int-gate
BX_CPU_THIS_PTR clear_IF ();
BX_CPU_THIS_PTR clear_TF ();
BX_CPU_THIS_PTR clear_VM ();
BX_CPU_THIS_PTR clear_RF ();
BX_CPU_THIS_PTR clear_NT ();
if (gate_descriptor.type>=14) { // 386 int/trap gate
if (is_v8086_mode) {
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = 0;
}
// push long pointer to old stack onto new stack
push_32(old_SS);
push_32(old_ESP);
// push EFLAGS
push_32(eflags);
// push long pointer to return address onto new stack
push_32(old_CS);
push_32(old_EIP);
if ( is_error_code )
push_32(error_code);
}
else { // 286 int/trap gate
if (is_v8086_mode) {
BX_PANIC(("286 int/trap gate, VM"));
}
// push long pointer to old stack onto new stack
push_16(old_SS);
push_16(old_ESP); // ignores upper 16bits
// push FLAGS
push_16(flags);
// push return address onto new stack
push_16(old_CS);
push_16(old_EIP); // ignores upper 16bits
if ( is_error_code )
push_16(error_code);
}
return;
}
if (v8086_mode()) {
exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0);
}
// if code segment is conforming OR code segment DPL = CPL then
// INTERRUPT TO SAME PRIVILEGE LEVEL:
if ( cs_descriptor.u.segment.c_ed==1 || cs_descriptor.dpl==CPL ) {
int bytes;
Bit32u temp_ESP;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
BX_DEBUG(("int_trap_gate286(): INTERRUPT TO SAME PRIVILEGE"));
// Current stack limits must allow pushing 6|8 bytes, else #SS(0)
if (gate_descriptor.type >= 14) { // 386 gate
if ( is_error_code )
bytes = 16;
else
bytes = 12;
}
else { // 286 gate
if ( is_error_code )
bytes = 8;
else
bytes = 6;
}
if (! can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, bytes))
{
BX_DEBUG(("interrupt(): stack doesn't have room"));
exception(BX_SS_EXCEPTION, 0, 0);
}
// eIP must be in CS limit else #GP(0)
if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) {
BX_ERROR(("interrupt(): IP > cs descriptor limit"));
exception(BX_GP_EXCEPTION, 0, 0);
}
// push flags onto stack
// push current CS selector onto stack
// push return offset onto stack
if (gate_descriptor.type >= 14) { // 386 gate
push_32(read_eflags());
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_32(EIP);
if ( is_error_code )
push_32(error_code);
}
else { // 286 gate
push_16(read_flags());
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_16(IP);
if ( is_error_code )
push_16(error_code);
}
// load CS:IP from gate
// load CS descriptor
// set the RPL field of CS to CPL
load_cs(&cs_selector, &cs_descriptor, CPL);
EIP = gate_dest_offset;
// if interrupt gate then set IF to 0
if ( !(gate_descriptor.type & 1) ) // even is int-gate
BX_CPU_THIS_PTR clear_IF ();
BX_CPU_THIS_PTR clear_TF ();
BX_CPU_THIS_PTR clear_NT ();
BX_CPU_THIS_PTR clear_VM ();
BX_CPU_THIS_PTR clear_RF ();
return;
}
// else #GP(CS selector + ext)
BX_DEBUG(("interrupt: bad descriptor"));
BX_DEBUG(("c_ed=%u, descriptor.dpl=%u, CPL=%u",
(unsigned) cs_descriptor.u.segment.c_ed,
(unsigned) cs_descriptor.dpl,
(unsigned) CPL));
BX_DEBUG(("cs.segment = %u", (unsigned) cs_descriptor.segment));
exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0);
break;
default:
BX_PANIC(("bad descriptor type in interrupt()!"));
break;
}
}
else
#endif
{ /* real mode */
Bit16u cs_selector, ip;
if ( (vector*4+3) > BX_CPU_THIS_PTR idtr.limit )
BX_PANIC(("interrupt(real mode) vector > limit"));
push_16(read_flags());
cs_selector = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
push_16(cs_selector);
ip = EIP;
push_16(ip);
access_linear(BX_CPU_THIS_PTR idtr.base + 4 * vector, 2, 0, BX_READ, &ip);
IP = ip;
access_linear(BX_CPU_THIS_PTR idtr.base + 4 * vector + 2, 2, 0, BX_READ, &cs_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_selector);
/* INT affects the following flags: I,T */
BX_CPU_THIS_PTR clear_IF ();
BX_CPU_THIS_PTR clear_TF ();
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR clear_AC ();
#endif
BX_CPU_THIS_PTR clear_RF ();
}
}
void
- Apply patch.replace-Boolean rev 1.3. Every "Boolean" is now changed to a "bx_bool" which is always defined as Bit32u on all platforms. In Carbon specific code, Boolean is still used because the Carbon header files define it to unsigned char. - this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95. The bug was that some code in Bochs depends on Boolean to be a 32 bit value. (This should be fixed, but I don't know all the places where it needs to be fixed yet.) Because Carbon defined Boolean as an unsigned char, Bochs just followed along and used the unsigned char definition to avoid compile problems. This exposed the dependency on 32 bit Boolean on MacOS X only and led to major simulation problems, that could only be reproduced and debugged on that platform. - On the mailing list we debated whether to make all Booleans into "bool" or our own type. I chose bx_bool for several reasons. 1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all platforms, which makes it much less likely to have more platform-specific simulation differences in the future. (I spent hours on a borrowed MacOSX machine chasing bug 618388 before discovering that different sized Booleans were the problem, and I don't want to repeat that.) 2. We still have at least one dependency on 32 bit Booleans which must be fixed some time, but I don't want to risk introducing new bugs into the simulation just before the 2.0 release. Modified Files: bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile docs-html/cosimulation.html fpu/wmFPUemu_glue.cc gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h gui/x.cc instrument/example0/instrument.cc instrument/example0/instrument.h instrument/example1/instrument.cc instrument/example1/instrument.h instrument/stubs/instrument.cc instrument/stubs/instrument.h iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc iodev/eth_packetmaker.cc iodev/eth_packetmaker.h iodev/floppy.cc iodev/floppy.h iodev/guest2host.h iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
2002-10-25 15:44:41 +04:00
BX_CPU_C::exception(unsigned vector, Bit16u error_code, bx_bool is_INT)
// vector: 0..255: vector in IDT
// error_code: if exception generates and error, push this error code
{
- Apply patch.replace-Boolean rev 1.3. Every "Boolean" is now changed to a "bx_bool" which is always defined as Bit32u on all platforms. In Carbon specific code, Boolean is still used because the Carbon header files define it to unsigned char. - this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95. The bug was that some code in Bochs depends on Boolean to be a 32 bit value. (This should be fixed, but I don't know all the places where it needs to be fixed yet.) Because Carbon defined Boolean as an unsigned char, Bochs just followed along and used the unsigned char definition to avoid compile problems. This exposed the dependency on 32 bit Boolean on MacOS X only and led to major simulation problems, that could only be reproduced and debugged on that platform. - On the mailing list we debated whether to make all Booleans into "bool" or our own type. I chose bx_bool for several reasons. 1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all platforms, which makes it much less likely to have more platform-specific simulation differences in the future. (I spent hours on a borrowed MacOSX machine chasing bug 618388 before discovering that different sized Booleans were the problem, and I don't want to repeat that.) 2. We still have at least one dependency on 32 bit Booleans which must be fixed some time, but I don't want to risk introducing new bugs into the simulation just before the 2.0 release. Modified Files: bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile docs-html/cosimulation.html fpu/wmFPUemu_glue.cc gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h gui/x.cc instrument/example0/instrument.cc instrument/example0/instrument.h instrument/example1/instrument.cc instrument/example1/instrument.h instrument/stubs/instrument.cc instrument/stubs/instrument.h iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc iodev/eth_packetmaker.cc iodev/eth_packetmaker.h iodev/floppy.cc iodev/floppy.h iodev/guest2host.h iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
2002-10-25 15:44:41 +04:00
bx_bool push_error;
Bit8u exception_type;
unsigned prev_errno;
invalidate_prefetch_q();
UNUSED(is_INT);
#if BX_DEBUGGER
2002-03-12 12:16:41 +03:00
if (bx_guard.special_unwind_stack) {
BX_INFO (("exception() returning early because special_unwind_stack is set"));
longjmp(BX_CPU_THIS_PTR jmp_buf_env, 1); // go back to main decode loop
}
#endif
2002-03-12 12:16:41 +03:00
2002-09-14 21:29:47 +04:00
#if BX_EXTERNAL_DEBUGGER
//trap_debugger(1);
2002-09-14 21:29:47 +04:00
#endif
BX_INSTR_EXCEPTION(BX_CPU_ID, vector);
BX_DEBUG(("exception(%02x h)", (unsigned) vector));
// if not initial error, restore previous register values from
// previous attempt to handle exception
if (BX_CPU_THIS_PTR errorno) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS] = BX_CPU_THIS_PTR save_cs;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS] = BX_CPU_THIS_PTR save_ss;
EIP = BX_CPU_THIS_PTR save_eip;
ESP = BX_CPU_THIS_PTR save_esp;
}
BX_CPU_THIS_PTR errorno++;
if (BX_CPU_THIS_PTR errorno >= 3) {
2003-08-28 04:10:40 +04:00
#if BX_RESET_ON_TRIPLE_FAULT
BX_ERROR(("exception(): 3rd (%d) exception with no resolution, shutdown status is %02xh, resetting", vector, DEV_cmos_get_reg(0x0f)));
bx_pc_system.Reset( BX_RESET_SOFTWARE );
2003-08-28 04:10:40 +04:00
#else
BX_PANIC(("exception(): 3rd (%d) exception with no resolution", vector));
2002-03-12 12:16:41 +03:00
BX_ERROR(("WARNING: Any simulation after this point is completely bogus."));
2003-08-28 04:10:40 +04:00
#endif
#if BX_DEBUGGER
2002-03-12 12:16:41 +03:00
bx_guard.special_unwind_stack = true;
#endif
longjmp(BX_CPU_THIS_PTR jmp_buf_env, 1); // go back to main decode loop
}
/* careful not to get here with curr_exception[1]==DOUBLE_FAULT */
/* ...index on DOUBLE_FAULT below, will be out of bounds */
/* if 1st was a double fault (software INT?), then shutdown */
if ( (BX_CPU_THIS_PTR errorno==2) && (BX_CPU_THIS_PTR curr_exception[0]==BX_ET_DOUBLE_FAULT) ) {
#if BX_RESET_ON_TRIPLE_FAULT
BX_INFO(("exception(): triple fault encountered, shutdown status is %02xh, resetting", DEV_cmos_get_reg(0x0f)));
bx_pc_system.Reset( BX_RESET_SOFTWARE );
#else
2002-03-12 12:16:41 +03:00
BX_PANIC(("exception(): triple fault encountered"));
BX_ERROR(("WARNING: Any simulation after this point is completely bogus."));
#endif
#if BX_DEBUGGER
2002-03-12 12:16:41 +03:00
bx_guard.special_unwind_stack = true;
#endif
longjmp(BX_CPU_THIS_PTR jmp_buf_env, 1); // go back to main decode loop
}
/* ??? this is not totally correct, should be done depending on
* vector */
/* backup IP to value before error occurred */
EIP = BX_CPU_THIS_PTR prev_eip;
ESP = BX_CPU_THIS_PTR prev_esp;
// note: fault-class exceptions _except_ #DB set RF in
// eflags image.
switch (vector) {
case 0: // DIV by 0
push_error = 0;
exception_type = BX_ET_CONTRIBUTORY;
BX_CPU_THIS_PTR assert_RF ();
break;
case 1: // debug exceptions
push_error = 0;
exception_type = BX_ET_BENIGN;
break;
case 2: // NMI
push_error = 0;
exception_type = BX_ET_BENIGN;
break;
case 3: // breakpoint
push_error = 0;
exception_type = BX_ET_BENIGN;
break;
case 4: // overflow
push_error = 0;
exception_type = BX_ET_BENIGN;
break;
case 5: // bounds check
push_error = 0;
exception_type = BX_ET_BENIGN;
BX_CPU_THIS_PTR assert_RF ();
break;
case 6: // invalid opcode
push_error = 0;
exception_type = BX_ET_BENIGN;
BX_CPU_THIS_PTR assert_RF ();
break;
case 7: // device not available
push_error = 0;
exception_type = BX_ET_BENIGN;
BX_CPU_THIS_PTR assert_RF ();
break;
case 8: // double fault
push_error = 1;
exception_type = BX_ET_DOUBLE_FAULT;
break;
case 9: // coprocessor segment overrun (286,386 only)
push_error = 0;
exception_type = BX_ET_CONTRIBUTORY;
BX_CPU_THIS_PTR assert_RF ();
BX_PANIC(("exception(9): unfinished"));
break;
case 10: // invalid TSS
push_error = 1;
exception_type = BX_ET_CONTRIBUTORY;
error_code = (error_code & 0xfffe) | BX_CPU_THIS_PTR EXT;
BX_CPU_THIS_PTR assert_RF ();
break;
case 11: // segment not present
push_error = 1;
exception_type = BX_ET_CONTRIBUTORY;
error_code = (error_code & 0xfffe) | BX_CPU_THIS_PTR EXT;
BX_CPU_THIS_PTR assert_RF ();
break;
case 12: // stack fault
push_error = 1;
exception_type = BX_ET_CONTRIBUTORY;
error_code = (error_code & 0xfffe) | BX_CPU_THIS_PTR EXT;
BX_CPU_THIS_PTR assert_RF ();
break;
case 13: // general protection
push_error = 1;
exception_type = BX_ET_CONTRIBUTORY;
error_code = (error_code & 0xfffe) | BX_CPU_THIS_PTR EXT;
BX_CPU_THIS_PTR assert_RF ();
break;
case 14: // page fault
if (BX_CPU_THIS_PTR except_chk) // Help with OS/2
{
BX_CPU_THIS_PTR except_chk = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = BX_CPU_THIS_PTR except_cs;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = BX_CPU_THIS_PTR except_ss;
}
push_error = 1;
exception_type = BX_ET_PAGE_FAULT;
// ??? special format error returned
BX_CPU_THIS_PTR assert_RF ();
break;
case 15: // reserved
BX_PANIC(("exception(15): reserved"));
push_error = 0; // keep compiler happy for now
exception_type = 0; // keep compiler happy for now
break;
case 16: // floating-point error
push_error = 0;
exception_type = BX_ET_BENIGN;
BX_CPU_THIS_PTR assert_RF ();
break;
#if BX_CPU_LEVEL >= 4
case 17: // alignment check
BX_PANIC(("exception(): alignment-check, vector 17 unimplemented"));
push_error = 0; // keep compiler happy for now
exception_type = 0; // keep compiler happy for now
BX_CPU_THIS_PTR assert_RF ();
break;
#endif
#if BX_CPU_LEVEL >= 5
case 18: // machine check
BX_PANIC(("exception(): machine-check, vector 18 unimplemented"));
push_error = 0; // keep compiler happy for now
exception_type = 0; // keep compiler happy for now
break;
#endif
default:
BX_PANIC(("exception(%u): bad vector", (unsigned) vector));
push_error = 0; // keep compiler happy for now
exception_type = 0; // keep compiler happy for now
break;
}
if (exception_type != BX_ET_PAGE_FAULT) {
// Page faults have different format
error_code = (error_code & 0xfffe) | BX_CPU_THIS_PTR EXT;
}
BX_CPU_THIS_PTR EXT = 1;
/* if we've already had 1st exception, see if 2nd causes a
* Double Fault instead. Otherwise, just record 1st exception
*/
if (BX_CPU_THIS_PTR errorno >= 2) {
if (is_exception_OK[BX_CPU_THIS_PTR curr_exception[0]][exception_type])
BX_CPU_THIS_PTR curr_exception[1] = exception_type;
else {
BX_CPU_THIS_PTR curr_exception[1] = BX_ET_DOUBLE_FAULT;
vector = 8;
}
}
else {
BX_CPU_THIS_PTR curr_exception[0] = exception_type;
}
#if BX_CPU_LEVEL >= 2
if (!real_mode()) {
prev_errno = BX_CPU_THIS_PTR errorno;
BX_CPU_THIS_PTR interrupt(vector, 0, push_error, error_code);
// if (BX_CPU_THIS_PTR errorno > prev_errno) {
// BX_INFO(("segment_exception(): errorno changed"));
// longjmp(jmp_buf_env, 1); // go back to main decode loop
// return;
// }
// if (push_error) {
// /* push error code on stack, after handling interrupt */
// /* pushed as a word or dword depending upon default size ??? */
// if (ss.cache.u.segment.d_b)
// push_32((Bit32u) error_code); /* upper bits reserved */
// else
// push_16(error_code);
// if (BX_CPU_THIS_PTR errorno > prev_errno) {
// BX_PANIC(("segment_exception(): errorno changed"));
// return;
// }
// }
BX_CPU_THIS_PTR errorno = 0; // error resolved
longjmp(BX_CPU_THIS_PTR jmp_buf_env, 1); // go back to main decode loop
}
else // real mode
#endif
2004-07-12 23:20:55 +04:00
{
// not INT, no error code pushed
BX_CPU_THIS_PTR interrupt(vector, 0, 0, 0);
BX_CPU_THIS_PTR errorno = 0; // error resolved
longjmp(BX_CPU_THIS_PTR jmp_buf_env, 1); // go back to main decode loop
2004-07-12 23:20:55 +04:00
}
}
int BX_CPU_C::int_number(bx_segment_reg_t *seg)
{
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS])
return(BX_SS_EXCEPTION);
else
return(BX_GP_EXCEPTION);
}
#if BX_SUPPORT_X86_64
void
BX_CPU_C::SYSCALL(bxInstruction_c *i)
{
/* pseudo code from AMD manual.
SYSCALL_START:
IF (MSR_EFER.SCE = 0) // Check if syscall/sysret are enabled.
EXCEPTION [#UD]
IF (LONG_MODE)
SYSCALL_LONG_MODE
ELSE // (LEGACY_MODE)
SYSCALL_LEGACY_MODE
SYSCALL_LONG_MODE:
RCX.q = next_RIP
R11.q = RFLAGS // with rf cleared
IF (64BIT_MODE)
temp_RIP.q = MSR_LSTAR
ELSE // (COMPATIBILITY_MODE)
temp_RIP.q = MSR_CSTAR
CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
CS.attr = 64-bit code,dpl0 // Always switch to 64-bit mode in long mode.
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
SS.sel = MSR_STAR.SYSCALL_CS + 8
SS.attr = 64-bit stack,dpl0
SS.base = 0x00000000
SS.limit = 0xFFFFFFFF
RFLAGS = RFLAGS AND ~MSR_SFMASK
RFLAGS.RF = 0
CPL = 0
RIP = temp_RIP
EXIT
SYSCALL_LEGACY_MODE:
RCX.d = next_RIP
temp_RIP.d = MSR_STAR.EIP
CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
CS.attr = 32-bit code,dpl0 // Always switch to 32-bit mode in legacy mode.
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
SS.sel = MSR_STAR.SYSCALL_CS + 8
SS.attr = 32-bit stack,dpl0
SS.base = 0x00000000
SS.limit = 0xFFFFFFFF
RFLAGS.VM,IF,RF=0
CPL = 0
RIP = temp_RIP
EXIT
*/
bx_address temp_RIP;
bx_descriptor_t cs_descriptor,ss_descriptor;
bx_selector_t cs_selector,ss_selector;
Bit32u dword1, dword2;
if (!BX_CPU_THIS_PTR msr.sce) {
exception(BX_GP_EXCEPTION, 0, 0);
}
invalidate_prefetch_q();
if (BX_CPU_THIS_PTR msr.lma) {
RCX = RIP;
#ifdef __GNUC__
#warning - PRT: SYSCALL -- do we reset RF/VM before saving to R11?
#endif
R11 = read_eflags();
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
temp_RIP = MSR_LSTAR;
}
else {
temp_RIP = MSR_CSTAR;
}
parse_selector((MSR_STAR >> 32) & 0xFFFC, &cs_selector);
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
load_cs(&cs_selector, &cs_descriptor, 0);
parse_selector((MSR_STAR >> 32) + 8, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
load_ss(&ss_selector, &ss_descriptor, 0);
write_eflags(read_eflags() & MSR_FMASK,1,1,1,0);
BX_CPU_THIS_PTR clear_RF ();
RIP = temp_RIP;
}
else {
// legacy mode
ECX = EIP;
temp_RIP = MSR_STAR & 0xFFFFFFFF;
parse_selector((MSR_STAR >> 32) & 0xFFFC, &cs_selector);
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
load_cs(&cs_selector, &cs_descriptor, 0);
parse_selector((MSR_STAR >> 32) + 8, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
load_ss(&ss_selector, &ss_descriptor, 0);
BX_CPU_THIS_PTR clear_VM ();
BX_CPU_THIS_PTR clear_IF ();
BX_CPU_THIS_PTR clear_RF ();
RIP = temp_RIP;
}
}
void
BX_CPU_C::SYSRET(bxInstruction_c *i)
{
/* from AMD manual
SYSRET_START:
IF (MSR_EFER.SCE = 0) // Check if syscall/sysret are enabled.
EXCEPTION [#UD]
IF ((!PROTECTED_MODE) || (CPL != 0))
EXCEPTION [#GP(0)] // SYSRET requires protected mode, cpl0
IF (64BIT_MODE)
SYSRET_64BIT_MODE
ELSE // (!64BIT_MODE)
SYSRET_NON_64BIT_MODE
SYSRET_64BIT_MODE:
IF (OPERAND_SIZE = 64) // Return to 64-bit mode.
{
CS.sel = (MSR_STAR.SYSRET_CS + 16) OR 3
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
CS.attr = 64-bit code,dpl3
temp_RIP.q = RCX
}
ELSE // Return to 32-bit compatibility mode.
{
CS.sel = MSR_STAR.SYSRET_CS OR 3
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
CS.attr = 32-bit code,dpl3
temp_RIP.d = RCX
}
SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed,
// SS base, limit, attributes unchanged.
RFLAGS.q = R11 // RF=0,VM=0
CPL = 3
RIP = temp_RIP
EXIT
SYSRET_NON_64BIT_MODE:
CS.sel = MSR_STAR.SYSRET_CS OR 3 // Return to 32-bit legacy protected mode.
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
CS.attr = 32-bit code,dpl3
temp_RIP.d = RCX
SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed.
// SS base, limit, attributes unchanged.
RFLAGS.IF = 1
CPL = 3
RIP = temp_RIP
EXIT
*/
bx_address temp_RIP;
bx_descriptor_t cs_descriptor,ss_descriptor;
bx_selector_t cs_selector,ss_selector;
Bit32u dword1, dword2;
if (!BX_CPU_THIS_PTR msr.sce) {
exception(BX_GP_EXCEPTION, 0, 0);
}
if(real_mode() || CPL != 0) {
exception(BX_GP_EXCEPTION, 0, 0);
}
invalidate_prefetch_q();
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
if (i->os64L()) { // Return to 64-bit mode.
parse_selector(((MSR_STAR >> 48) + 16) | 3, &cs_selector);
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
load_cs(&cs_selector, &cs_descriptor, 3);
temp_RIP = RCX;
}
else { // Return to 32-bit compatibility mode.
parse_selector((MSR_STAR >> 48) | 3, &cs_selector);
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
load_cs(&cs_selector, &cs_descriptor, 3);
temp_RIP = ECX;
}
parse_selector((MSR_STAR >> 48) + 8, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
load_ss(&ss_selector, &ss_descriptor, 0);
// SS base, limit, attributes unchanged.
write_eflags(R11,1,1,1,1);
RIP = temp_RIP;
}
else { // (!64BIT_MODE)
parse_selector((MSR_STAR >> 48) + 16, &cs_selector);
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
load_cs(&cs_selector, &cs_descriptor, 3);
temp_RIP = ECX;
parse_selector((MSR_STAR >> 48) + 8, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
load_ss(&ss_selector, &ss_descriptor, 0);
BX_CPU_THIS_PTR assert_IF ();
RIP = temp_RIP;
2004-07-12 23:20:55 +04:00
}
}
#endif // BX_SUPPORT_X86_64