1) use interrupt vectors for specific zs chips rather than polling
all of them.
2) use softintr_schedule() and schedule it for a particular device
rather than poll all devices.
broken/fragile. Unlikely to be of much use, and confuses new users
when their system crashes when they, or their dhclient stumble over
it. See kern/10500, kern/8994 for the gory details.
names, as we need to convert `pci' to both `psycho' and `simba'. add
a member to dev_compat_table[] for this, using BUSCLASS_NONE for when
we don't care (all other cases, currently). add `ide' -> `pciide' and
`disk' -> `wd' mappings here, also.
- "psycho" is a BUSCLASS_MAINBUS device; it has UPA attachment semantics.
this fixes bootpath detection for IDE disks.
- TRAPWIN is defined in locore.s
- don't config netbsd_wd0
- enable MSDOSFS and FFS_IE
- enable INET6 & IPSEC*
- enable ipfilter
- comment sbus & zs at sbus
- enable scsi devices seeing we have scsi bus support
- hardwire the onboard hme as 'hme0'
- disable audiocs for now
- disable rnd for now
EX_BOUNDZERO, to extent_alloc(). this fixes problems with it
(extent_alloc()) returning incorrect values, when the start of
the extent is not aligned as strongly as the requested area..
raw access to ide disks now works.
* put #includes of opt headers and headers to get protos used by
net/netisr_dispatch.h in net/netisr.h (if !defined(_LOCORE)) (rather than
in netisr_dispatch.h itself, and potentially nowhere, respectively).
* require netisr.h to be included before netisr_dispatch.h.
* minor additional cleanup of both netisr.h and netisr_dispatch.h.
* clean up uses to remove now-unnecessary header file inclusions, and
local prototypes of the fns.
* convert netisr dispatch implementations which didn't use
netisr_dispatch.h (pc532) to use it.
- for sizeof(void *) == 8 arch, this is mandatory. MHLEN is too small
already (less than 80) and there are chances for unwanted packet loss due
to m_pullup restriction.
- for other cases, the change should avoid allocating clusters in most cases
(even when you have IPv4 IPsec tunnel, or IPv6 with moderate amount of
extension header)
portmasters: if your arch chokes with the change (high memory usage or
whatever), please backout the change for your arch.
<vm/pglist.h> -> <uvm/uvm_pglist.h>
<vm/vm_inherit.h> -> <uvm/uvm_inherit.h>
<vm/vm_kern.h> -> into <uvm/uvm_extern.h>
<vm/vm_object.h> -> nothing
<vm/vm_pager.h> -> into <uvm/uvm_pager.h>
also includes a bunch of <vm/vm_page.h> include removals (due to redudancy
with <vm/vm.h>), and a scattering of other similar headers.
"off_t" and the return value is a "paddr_t" to allow mappings
at offsets past 2^31 bytes. Somewhat inspired by FreeBSD, which
only changed the offset to a "vm_offset_t".
Includes updates for the i386, pc532 and sh3 mmmmap from Jason Thorpe.
Move the cpu_info structure above the interrupt stack so it won't
get corrupted if the stack overflows.
Flush the D$ before and after all MMU bypass accesses since the
D$ latches all of those.
doing a cpu_set_kpc(), just pass the entry point and argument all
the way down the fork path starting with fork1(). In order to
avoid special-casing the normal fork in every cpu_fork(), MI code
passes down child_return() and the child process pointer explicitly.
This fixes a race condition on multiprocessor systems; a CPU could
grab the newly created processes (which has been placed on a run queue)
before cpu_set_kpc() would be performed.
- Change ktrace interface to pass in the current process, rather than
p->p_tracep, since the various ktr* function need curproc anyway.
- Add curproc as a parameter to mi_switch() since all callers had it
handy anyway.
- Add a second proc argument for inferior() since callers all had
curproc handy.
Also, miscellaneous cleanups in ktrace:
- ktrace now always uses file-based, rather than vnode-based I/O
(simplifies, increases type safety); eliminate KTRFLAG_FD & KTRFAC_FD.
Do non-blocking I/O, and yield a finite number of times when receiving
EWOULDBLOCK before giving up.
- move code duplicated between sys_fktrace and sys_ktrace into ktrace_common.
- simplify interface to ktrwrite()
state into global and per-CPU scheduler state:
- Global state: sched_qs (run queues), sched_whichqs (bitmap
of non-empty run queues), sched_slpque (sleep queues).
NOTE: These may collectively move into a struct schedstate
at some point in the future.
- Per-CPU state, struct schedstate_percpu: spc_runtime
(time process on this CPU started running), spc_flags
(replaces struct proc's p_schedflags), and
spc_curpriority (usrpri of processes on this CPU).
- Every platform must now supply a struct cpu_info and
a curcpu() macro. Simplify existing cpu_info declarations
where appropriate.
- All references to per-CPU scheduler state now made through
curcpu(). NOTE: this will likely be adjusted in the future
after further changes to struct proc are made.
Tested on i386 and Alpha. Changes are mostly mechanical, but apologies
in advance if it doesn't compile on a particular platform.
from db_stack_trace_cmd() to db_stack_trace_print(),
and add an additional argument, a function pointer for an
output routine (i.e. printf() or db_printf()).
Add db_stack_trace_cmd() in db_command.[ch], calling
db_stack_trace_print() with db_printf() as the printer.
Move count==-1 special handling from db_stack_trace_print() [nee
db_stack_trace_cmd()] to db_stack_trace_cmd() [nascent here].
Again, I'm unable to test compilation on all affected platforms,
so advance apologies for potential brokenness.
which indicates that the process is actually running on a
processor. Test against SONPROC as appropriate rather than
combinations of SRUN and curproc. Update all context switch code
to properly set SONPROC when the process becomes the current
process on the CPU.
pointer indicating how to print the symbol. This allows db_printsym()
to called in places where db_printf() is not an appropriate output
function.
While straightforward, apologies in advance if I've introduced any minor
syntax errors; I was unable to test compilation this on all the affected
platforms.
PCI config space. Since PCI config space is mostly used by PCI bus drivers,
we won't actually map it in. Instead we use MMU bypass ASI accesses to read
and write PCI config space.
change these from bp->b_un.b_addr to bp->b_data, as well. This also
allows us more flexibility to experiment with other data buffer types
hung off of struct buf.
Unlike the other Sun machines, UltraSPARCs can have consoles run on different
chips than zs, so we need to support them. So, here we go:
Add a new PROM console driver with a major number and everything.
This is the default driver if nothing else attaches. It does not
use the keyboard driver since the PROM translates keystrokes itself.
(Unfortunately it also swallows L1-A).
Have the keyboard driver take over the console when it attaches on a
serial port. When a serial port detects a keyboard and attaches the
keyboard driver, it needs to provide a set of consdev vectors. They
keyboard driver will use those to send I/O to the keyboard and mouse.
just one copy of this.
- remove duplicate setting of sgsize in iommu_dvmamap_load().
- fix DIAGNOSTIC check in iommu_dvmamap_load_raw() to panic() in unexpected
conditions only (not normal ones), and also add an extra case.
it to determine the boot device: mvme68k, pc532, macppc, ofppc. Those
platforms should be changed to use device_register(). In the mean time,
those ports defined __BROKEN_DK_ESTABLISH.
contains the values __SIMPLELOCK_LOCKED and __SIMPLELOCK_UNLOCKED, which
replace the old SIMPLELOCK_LOCKED and SIMPLELOCK_UNLOCKED. These files
are also required to supply inline functions __cpu_simple_lock(),
__cpu_simple_lock_try(), and __cpu_simple_unlock() if locking is to be
supported on that platform (i.e. if MULTIPROCESSOR is defined in the
_KERNEL case). Change these functions to take an int * (&alp->lock_data)
rather than the struct simplelock * itself.
These changes make it possible for userland to use the locking primitives
by including <machine/lock.h>.
- make some debugging messages in iommu_remove() saner and add some more.
- decrement 'len' in the no streaming buffer case, also.
- in iommu_dvmamem_map(), do not enter these mappings into the IOMMU,
only into the CPU (the former is done at _load time).
- make a panic that shouldn't happen a DIAGNOSTIC.
- merge IOMMU DVMA code from sbus/psycho into iommu.c. this code was
identical and a few minor inconsistencies had crept in. this way
keeps them all in sync.
- with this code gone from psycho, merge the psycho.c and psycho_bus.c
files. same with ebus/ebus_bus.c. delete the _bus.c files.
- add a _ds_boundary member to the dma segment structure, so that later
dma mappings can find this value.
- set _ds_boundary in machdep.c:_bus_dmamem_alloc().
- kill much dead code.
- make GENERIC64 include GENERIC and set the 3 optoins it needs. suggested
by hubert feyrer.
- add a comment that we maybe should use the `bpp' driver, not the lpt, on
the ebus because the `bpp' driver does DMA already.
- ebus_attach_args got a member renamed
diag regsiter to work out why the (non-existant) strbufs don't work.
- check for malloc failure in _all_ places.
- setup the PCI control register as recommended in the IIi users manual.
install an interrupt handler, make sure we set these bits to 1. now,
interrupt_vector in locore can find our registered interrupt handlers
and at least try to setup a call to them.
where the floppy driver would wedge because a motor-on timeout would
be cancelled by another I/O operation cancelling a motor-off timeout.
From enami tsugutomo <enami@sm.sony.co.jp>.
* Remove the casts to vaddr_t from the round_page() and trunc_page() macros to
make them type-generic, which is necessary i.e. to operate on file offsets
without truncating them.
* In due course, cast pointer arguments to these macros to an appropriate
integral type (paddr_t, vaddr_t).
Originally done by Chuck Silvers, updated by myself.
timeout()/untimeout() API:
- Clients supply callout handle storage, thus eliminating problems of
resource allocation.
- Insertion and removal of callouts is constant time, important as
this facility is used quite a lot in the kernel.
The old timeout()/untimeout() API has been removed from the kernel.
Fix a bug causing interrmittent panics in interrupt dispatch.
Use interrupt vectors for softints.
Add a new send_softint interface.
Improved D$ flushing.
Improve traptrace and other debugging enhancements.
so that the right entries get added to dev_name2blk[]. Needed for / on RAID.
(Whoops! I missed checking these in when adding the RAID_AUTOCONFIG stuff.)