2000-05-29 18:26:00 +04:00
|
|
|
/*
|
2001-09-16 04:13:26 +04:00
|
|
|
** 2001 September 15
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
2001-09-16 04:13:26 +04:00
|
|
|
** The author disclaims copyright to this source code. In place of
|
|
|
|
** a legal notice, here is a blessing:
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
2001-09-16 04:13:26 +04:00
|
|
|
** May you do good and not evil.
|
|
|
|
** May you find forgiveness for yourself and forgive others.
|
|
|
|
** May you share freely, never taking more than you give.
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
|
|
|
*************************************************************************
|
|
|
|
** This module contains C code that generates VDBE code used to process
|
2003-04-20 21:29:23 +04:00
|
|
|
** the WHERE clause of SQL statements.
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
2004-09-25 17:12:14 +04:00
|
|
|
** $Id: where.c,v 1.115 2004/09/25 13:12:16 drh Exp $
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
|
|
|
#include "sqliteInt.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The query generator uses an array of instances of this structure to
|
|
|
|
** help it analyze the subexpressions of the WHERE clause. Each WHERE
|
|
|
|
** clause subexpression is separated from the others by an AND operator.
|
|
|
|
*/
|
|
|
|
typedef struct ExprInfo ExprInfo;
|
|
|
|
struct ExprInfo {
|
|
|
|
Expr *p; /* Pointer to the subexpression */
|
2002-06-19 18:27:05 +04:00
|
|
|
u8 indexable; /* True if this subexprssion is usable by an index */
|
|
|
|
short int idxLeft; /* p->pLeft is a column in this table number. -1 if
|
2000-06-21 17:59:10 +04:00
|
|
|
** p->pLeft is not the column of any table */
|
2002-06-19 18:27:05 +04:00
|
|
|
short int idxRight; /* p->pRight is a column in this table number. -1 if
|
2000-06-21 17:59:10 +04:00
|
|
|
** p->pRight is not the column of any table */
|
2002-06-19 18:27:05 +04:00
|
|
|
unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */
|
|
|
|
unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */
|
|
|
|
unsigned prereqAll; /* Bitmask of tables referenced by p */
|
2000-05-29 18:26:00 +04:00
|
|
|
};
|
|
|
|
|
2003-05-02 18:32:12 +04:00
|
|
|
/*
|
|
|
|
** An instance of the following structure keeps track of a mapping
|
|
|
|
** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers
|
|
|
|
** are small integers contained in SrcList_item.iCursor and Expr.iTable
|
|
|
|
** fields. For any given WHERE clause, we want to track which cursors
|
|
|
|
** are being used, so we assign a single bit in a 32-bit word to track
|
|
|
|
** that cursor. Then a 32-bit integer is able to show the set of all
|
|
|
|
** cursors being used.
|
|
|
|
*/
|
|
|
|
typedef struct ExprMaskSet ExprMaskSet;
|
|
|
|
struct ExprMaskSet {
|
|
|
|
int n; /* Number of assigned cursor values */
|
2004-07-19 06:12:14 +04:00
|
|
|
int ix[31]; /* Cursor assigned to each bit */
|
2003-05-02 18:32:12 +04:00
|
|
|
};
|
|
|
|
|
2000-05-29 18:26:00 +04:00
|
|
|
/*
|
|
|
|
** Determine the number of elements in an array.
|
|
|
|
*/
|
|
|
|
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is used to divide the WHERE expression into subexpressions
|
|
|
|
** separated by the AND operator.
|
|
|
|
**
|
|
|
|
** aSlot[] is an array of subexpressions structures.
|
|
|
|
** There are nSlot spaces left in this array. This routine attempts to
|
|
|
|
** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
|
|
|
|
** The return value is the number of slots filled.
|
|
|
|
*/
|
|
|
|
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
|
|
|
|
int cnt = 0;
|
|
|
|
if( pExpr==0 || nSlot<1 ) return 0;
|
|
|
|
if( nSlot==1 || pExpr->op!=TK_AND ){
|
|
|
|
aSlot[0].p = pExpr;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if( pExpr->pLeft->op!=TK_AND ){
|
|
|
|
aSlot[0].p = pExpr->pLeft;
|
|
|
|
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
|
|
|
|
}else{
|
2003-01-31 20:21:49 +03:00
|
|
|
cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
|
|
|
|
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
return cnt;
|
|
|
|
}
|
|
|
|
|
2003-05-02 18:32:12 +04:00
|
|
|
/*
|
|
|
|
** Initialize an expression mask set
|
|
|
|
*/
|
|
|
|
#define initMaskSet(P) memset(P, 0, sizeof(*P))
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the bitmask for the given cursor. Assign a new bitmask
|
|
|
|
** if this is the first time the cursor has been seen.
|
|
|
|
*/
|
|
|
|
static int getMask(ExprMaskSet *pMaskSet, int iCursor){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<pMaskSet->n; i++){
|
|
|
|
if( pMaskSet->ix[i]==iCursor ) return 1<<i;
|
|
|
|
}
|
|
|
|
if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
|
|
|
|
pMaskSet->n++;
|
|
|
|
pMaskSet->ix[i] = iCursor;
|
|
|
|
return 1<<i;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Destroy an expression mask set
|
|
|
|
*/
|
|
|
|
#define freeMaskSet(P) /* NO-OP */
|
|
|
|
|
2000-05-29 18:26:00 +04:00
|
|
|
/*
|
|
|
|
** This routine walks (recursively) an expression tree and generates
|
|
|
|
** a bitmask indicating which tables are used in that expression
|
2003-05-02 18:32:12 +04:00
|
|
|
** tree.
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
|
|
|
** In order for this routine to work, the calling function must have
|
2004-05-08 12:23:19 +04:00
|
|
|
** previously invoked sqlite3ExprResolveIds() on the expression. See
|
2000-05-29 18:26:00 +04:00
|
|
|
** the header comment on that routine for additional information.
|
2004-05-08 12:23:19 +04:00
|
|
|
** The sqlite3ExprResolveIds() routines looks for column names and
|
2003-05-02 18:32:12 +04:00
|
|
|
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
|
|
|
|
** the VDBE cursor number of the table.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
2003-05-02 18:32:12 +04:00
|
|
|
static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
|
2000-05-29 18:26:00 +04:00
|
|
|
unsigned int mask = 0;
|
|
|
|
if( p==0 ) return 0;
|
2000-06-21 17:59:10 +04:00
|
|
|
if( p->op==TK_COLUMN ){
|
2004-07-19 06:12:14 +04:00
|
|
|
mask = getMask(pMaskSet, p->iTable);
|
|
|
|
if( mask==0 ) mask = -1;
|
|
|
|
return mask;
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
if( p->pRight ){
|
2003-05-02 18:32:12 +04:00
|
|
|
mask = exprTableUsage(pMaskSet, p->pRight);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
if( p->pLeft ){
|
2003-05-02 18:32:12 +04:00
|
|
|
mask |= exprTableUsage(pMaskSet, p->pLeft);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
2002-04-02 05:58:57 +04:00
|
|
|
if( p->pList ){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<p->pList->nExpr; i++){
|
2003-05-02 18:32:12 +04:00
|
|
|
mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
|
2002-04-02 05:58:57 +04:00
|
|
|
}
|
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
return mask;
|
|
|
|
}
|
|
|
|
|
2001-11-08 03:45:21 +03:00
|
|
|
/*
|
|
|
|
** Return TRUE if the given operator is one of the operators that is
|
|
|
|
** allowed for an indexable WHERE clause. The allowed operators are
|
2002-06-15 00:58:45 +04:00
|
|
|
** "=", "<", ">", "<=", ">=", and "IN".
|
2001-11-08 03:45:21 +03:00
|
|
|
*/
|
|
|
|
static int allowedOp(int op){
|
|
|
|
switch( op ){
|
|
|
|
case TK_LT:
|
|
|
|
case TK_LE:
|
|
|
|
case TK_GT:
|
|
|
|
case TK_GE:
|
|
|
|
case TK_EQ:
|
2002-06-09 03:25:08 +04:00
|
|
|
case TK_IN:
|
2001-11-08 03:45:21 +03:00
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2004-07-20 22:23:14 +04:00
|
|
|
/*
|
|
|
|
** Swap two integers.
|
|
|
|
*/
|
|
|
|
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Return the index in the SrcList that uses cursor iCur. If iCur is
|
|
|
|
** used by the first entry in SrcList return 0. If iCur is used by
|
|
|
|
** the second entry return 1. And so forth.
|
|
|
|
**
|
|
|
|
** SrcList is the set of tables in the FROM clause in the order that
|
|
|
|
** they will be processed. The value returned here gives us an index
|
|
|
|
** of which tables will be processed first.
|
|
|
|
*/
|
|
|
|
static int tableOrder(SrcList *pList, int iCur){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<pList->nSrc; i++){
|
|
|
|
if( pList->a[i].iCursor==iCur ) return i;
|
|
|
|
}
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2000-05-29 18:26:00 +04:00
|
|
|
/*
|
|
|
|
** The input to this routine is an ExprInfo structure with only the
|
|
|
|
** "p" field filled in. The job of this routine is to analyze the
|
|
|
|
** subexpression and populate all the other fields of the ExprInfo
|
|
|
|
** structure.
|
|
|
|
*/
|
2004-07-20 22:23:14 +04:00
|
|
|
static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){
|
2000-05-29 18:26:00 +04:00
|
|
|
Expr *pExpr = pInfo->p;
|
2003-05-02 18:32:12 +04:00
|
|
|
pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
|
|
|
|
pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
|
|
|
|
pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
|
2000-05-29 18:26:00 +04:00
|
|
|
pInfo->indexable = 0;
|
|
|
|
pInfo->idxLeft = -1;
|
|
|
|
pInfo->idxRight = -1;
|
2001-11-08 03:45:21 +03:00
|
|
|
if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
|
2002-06-09 03:25:08 +04:00
|
|
|
if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
|
2003-05-02 18:32:12 +04:00
|
|
|
pInfo->idxRight = pExpr->pRight->iTable;
|
2000-05-29 18:26:00 +04:00
|
|
|
pInfo->indexable = 1;
|
|
|
|
}
|
2000-06-21 17:59:10 +04:00
|
|
|
if( pExpr->pLeft->op==TK_COLUMN ){
|
2003-05-02 18:32:12 +04:00
|
|
|
pInfo->idxLeft = pExpr->pLeft->iTable;
|
2000-05-29 18:26:00 +04:00
|
|
|
pInfo->indexable = 1;
|
|
|
|
}
|
|
|
|
}
|
2004-07-20 22:23:14 +04:00
|
|
|
if( pInfo->indexable ){
|
|
|
|
assert( pInfo->idxLeft!=pInfo->idxRight );
|
|
|
|
|
|
|
|
/* We want the expression to be of the form "X = expr", not "expr = X".
|
|
|
|
** So flip it over if necessary. If the expression is "X = Y", then
|
|
|
|
** we want Y to come from an earlier table than X.
|
|
|
|
**
|
|
|
|
** The collating sequence rule is to always choose the left expression.
|
|
|
|
** So if we do a flip, we also have to move the collating sequence.
|
|
|
|
*/
|
|
|
|
if( tableOrder(pSrc,pInfo->idxLeft)<tableOrder(pSrc,pInfo->idxRight) ){
|
|
|
|
assert( pExpr->op!=TK_IN );
|
|
|
|
SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
|
|
|
|
SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
|
|
|
|
switch( pExpr->op ){
|
|
|
|
case TK_LT: pExpr->op = TK_GT; break;
|
|
|
|
case TK_LE: pExpr->op = TK_GE; break;
|
|
|
|
case TK_GT: pExpr->op = TK_LT; break;
|
|
|
|
case TK_GE: pExpr->op = TK_LE; break;
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight);
|
|
|
|
SWAP(short int, pInfo->idxLeft, pInfo->idxRight);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2002-06-19 18:27:05 +04:00
|
|
|
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
|
|
|
|
** left-most table in the FROM clause of that same SELECT statement and
|
|
|
|
** the table has a cursor number of "base".
|
|
|
|
**
|
|
|
|
** This routine attempts to find an index for pTab that generates the
|
|
|
|
** correct record sequence for the given ORDER BY clause. The return value
|
|
|
|
** is a pointer to an index that does the job. NULL is returned if the
|
|
|
|
** table has no index that will generate the correct sort order.
|
|
|
|
**
|
|
|
|
** If there are two or more indices that generate the correct sort order
|
|
|
|
** and pPreferredIdx is one of those indices, then return pPreferredIdx.
|
2002-12-05 00:50:16 +03:00
|
|
|
**
|
|
|
|
** nEqCol is the number of columns of pPreferredIdx that are used as
|
|
|
|
** equality constraints. Any index returned must have exactly this same
|
|
|
|
** set of columns. The ORDER BY clause only matches index columns beyond the
|
|
|
|
** the first nEqCol columns.
|
|
|
|
**
|
|
|
|
** All terms of the ORDER BY clause must be either ASC or DESC. The
|
|
|
|
** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
|
|
|
|
** set to 0 if the ORDER BY clause is all ASC.
|
2002-06-19 18:27:05 +04:00
|
|
|
*/
|
|
|
|
static Index *findSortingIndex(
|
2004-06-10 14:51:47 +04:00
|
|
|
Parse *pParse,
|
2002-06-19 18:27:05 +04:00
|
|
|
Table *pTab, /* The table to be sorted */
|
|
|
|
int base, /* Cursor number for pTab */
|
|
|
|
ExprList *pOrderBy, /* The ORDER BY clause */
|
2002-12-04 23:01:06 +03:00
|
|
|
Index *pPreferredIdx, /* Use this index, if possible and not NULL */
|
2002-12-05 00:50:16 +03:00
|
|
|
int nEqCol, /* Number of index columns used with == constraints */
|
2002-12-04 23:01:06 +03:00
|
|
|
int *pbRev /* Set to 1 if ORDER BY is DESC */
|
2002-06-19 18:27:05 +04:00
|
|
|
){
|
2002-12-05 00:50:16 +03:00
|
|
|
int i, j;
|
2002-06-19 18:27:05 +04:00
|
|
|
Index *pMatch;
|
|
|
|
Index *pIdx;
|
2002-12-04 23:01:06 +03:00
|
|
|
int sortOrder;
|
2004-09-06 21:24:11 +04:00
|
|
|
sqlite3 *db = pParse->db;
|
2002-06-19 18:27:05 +04:00
|
|
|
|
|
|
|
assert( pOrderBy!=0 );
|
|
|
|
assert( pOrderBy->nExpr>0 );
|
2004-05-21 02:16:29 +04:00
|
|
|
sortOrder = pOrderBy->a[0].sortOrder;
|
2002-06-19 18:27:05 +04:00
|
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
|
|
Expr *p;
|
2004-05-21 02:16:29 +04:00
|
|
|
if( pOrderBy->a[i].sortOrder!=sortOrder ){
|
2002-12-04 23:01:06 +03:00
|
|
|
/* Indices can only be used if all ORDER BY terms are either
|
|
|
|
** DESC or ASC. Indices cannot be used on a mixture. */
|
2002-06-19 18:27:05 +04:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
p = pOrderBy->a[i].pExpr;
|
|
|
|
if( p->op!=TK_COLUMN || p->iTable!=base ){
|
|
|
|
/* Can not use an index sort on anything that is not a column in the
|
|
|
|
** left-most table of the FROM clause */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
2004-06-09 13:55:16 +04:00
|
|
|
|
2002-06-19 18:27:05 +04:00
|
|
|
/* If we get this far, it means the ORDER BY clause consists only of
|
|
|
|
** ascending columns in the left-most table of the FROM clause. Now
|
|
|
|
** check for a matching index.
|
|
|
|
*/
|
|
|
|
pMatch = 0;
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
2002-12-05 00:50:16 +03:00
|
|
|
int nExpr = pOrderBy->nExpr;
|
|
|
|
if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
|
|
|
|
for(i=j=0; i<nEqCol; i++){
|
2004-06-10 14:51:47 +04:00
|
|
|
CollSeq *pColl = sqlite3ExprCollSeq(pParse, pOrderBy->a[j].pExpr);
|
2004-06-09 13:55:16 +04:00
|
|
|
if( !pColl ) pColl = db->pDfltColl;
|
2002-12-05 00:50:16 +03:00
|
|
|
if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
|
2004-06-09 13:55:16 +04:00
|
|
|
if( pPreferredIdx->keyInfo.aColl[i]!=pIdx->keyInfo.aColl[i] ) break;
|
|
|
|
if( j<nExpr &&
|
|
|
|
pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] &&
|
|
|
|
pColl==pIdx->keyInfo.aColl[i]
|
|
|
|
){
|
|
|
|
j++;
|
|
|
|
}
|
2002-12-05 00:50:16 +03:00
|
|
|
}
|
|
|
|
if( i<nEqCol ) continue;
|
|
|
|
for(i=0; i+j<nExpr; i++){
|
2004-06-10 14:51:47 +04:00
|
|
|
CollSeq *pColl = sqlite3ExprCollSeq(pParse, pOrderBy->a[i+j].pExpr);
|
2004-06-09 13:55:16 +04:00
|
|
|
if( !pColl ) pColl = db->pDfltColl;
|
|
|
|
if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ||
|
|
|
|
pColl!=pIdx->keyInfo.aColl[i+nEqCol] ) break;
|
2002-06-19 18:27:05 +04:00
|
|
|
}
|
2002-12-05 00:50:16 +03:00
|
|
|
if( i+j>=nExpr ){
|
2002-06-19 18:27:05 +04:00
|
|
|
pMatch = pIdx;
|
|
|
|
if( pIdx==pPreferredIdx ) break;
|
|
|
|
}
|
|
|
|
}
|
2002-12-04 23:01:06 +03:00
|
|
|
if( pMatch && pbRev ){
|
|
|
|
*pbRev = sortOrder==SQLITE_SO_DESC;
|
|
|
|
}
|
2002-06-19 18:27:05 +04:00
|
|
|
return pMatch;
|
|
|
|
}
|
|
|
|
|
2004-07-19 23:14:01 +04:00
|
|
|
/*
|
|
|
|
** Disable a term in the WHERE clause. Except, do not disable the term
|
|
|
|
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
|
|
|
|
** or USING clause of that join.
|
|
|
|
**
|
|
|
|
** Consider the term t2.z='ok' in the following queries:
|
|
|
|
**
|
|
|
|
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
|
|
|
|
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
|
|
|
|
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
|
|
|
|
**
|
|
|
|
** The t2.z='ok' is disabled in the in (2) because it did not originate
|
|
|
|
** in the ON clause. The term is disabled in (3) because it is not part
|
|
|
|
** of a LEFT OUTER JOIN. In (1), the term is not disabled.
|
|
|
|
**
|
|
|
|
** Disabling a term causes that term to not be tested in the inner loop
|
|
|
|
** of the join. Disabling is an optimization. We would get the correct
|
|
|
|
** results if nothing were ever disabled, but joins might run a little
|
|
|
|
** slower. The trick is to disable as much as we can without disabling
|
|
|
|
** too much. If we disabled in (1), we'd get the wrong answer.
|
|
|
|
** See ticket #813.
|
|
|
|
*/
|
|
|
|
static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
|
|
|
|
Expr *pExpr = *ppExpr;
|
|
|
|
if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
|
|
|
|
*ppExpr = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2004-09-25 17:12:14 +04:00
|
|
|
/*
|
|
|
|
** Generate code that builds a probe for an index. Details:
|
|
|
|
**
|
|
|
|
** * Check the top nColumn entries on the stack. If any
|
|
|
|
** of those entries are NULL, jump immediately to brk,
|
|
|
|
** which is the loop exit, since no index entry will match
|
|
|
|
** if any part of the key is NULL.
|
|
|
|
**
|
|
|
|
** * Construct a probe entry from the top nColumn entries in
|
|
|
|
** the stack with affinities appropriate for index pIdx.
|
|
|
|
*/
|
|
|
|
static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){
|
|
|
|
sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3);
|
|
|
|
sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
|
|
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, brk);
|
|
|
|
sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
|
|
|
|
sqlite3IndexAffinityStr(v, pIdx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate code for an equality term of the WHERE clause. An equality
|
|
|
|
** term can be either X=expr or X IN (...). pTerm is the X.
|
|
|
|
*/
|
|
|
|
static void codeEqualityTerm(
|
|
|
|
Parse *pParse, /* The parsing context */
|
|
|
|
ExprInfo *pTerm, /* The term of the WHERE clause to be coded */
|
|
|
|
int brk, /* Jump here to abandon the loop */
|
|
|
|
WhereLevel *pLevel /* When level of the FROM clause we are working on */
|
|
|
|
){
|
|
|
|
Expr *pX = pTerm->p;
|
|
|
|
if( pX->op!=TK_IN ){
|
|
|
|
assert( pX->op==TK_EQ );
|
|
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
|
|
|
}else{
|
|
|
|
int iTab = pX->iTable;
|
|
|
|
Vdbe *v = pParse->pVdbe;
|
|
|
|
sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk);
|
|
|
|
sqlite3VdbeAddOp(v, OP_KeyAsData, iTab, 1);
|
|
|
|
pLevel->inP2 = sqlite3VdbeAddOp(v, OP_IdxColumn, iTab, 0);
|
|
|
|
pLevel->inOp = OP_Next;
|
|
|
|
pLevel->inP1 = iTab;
|
|
|
|
}
|
|
|
|
disableTerm(pLevel, &pTerm->p);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2002-06-19 18:27:05 +04:00
|
|
|
/*
|
|
|
|
** Generate the beginning of the loop used for WHERE clause processing.
|
2000-05-29 18:26:00 +04:00
|
|
|
** The return value is a pointer to an (opaque) structure that contains
|
|
|
|
** information needed to terminate the loop. Later, the calling routine
|
2004-05-08 12:23:19 +04:00
|
|
|
** should invoke sqlite3WhereEnd() with the return value of this function
|
2000-05-29 18:26:00 +04:00
|
|
|
** in order to complete the WHERE clause processing.
|
|
|
|
**
|
|
|
|
** If an error occurs, this routine returns NULL.
|
2002-06-15 00:58:45 +04:00
|
|
|
**
|
|
|
|
** The basic idea is to do a nested loop, one loop for each table in
|
|
|
|
** the FROM clause of a select. (INSERT and UPDATE statements are the
|
|
|
|
** same as a SELECT with only a single table in the FROM clause.) For
|
|
|
|
** example, if the SQL is this:
|
|
|
|
**
|
|
|
|
** SELECT * FROM t1, t2, t3 WHERE ...;
|
|
|
|
**
|
|
|
|
** Then the code generated is conceptually like the following:
|
|
|
|
**
|
|
|
|
** foreach row1 in t1 do \ Code generated
|
2004-05-08 12:23:19 +04:00
|
|
|
** foreach row2 in t2 do |-- by sqlite3WhereBegin()
|
2002-06-15 00:58:45 +04:00
|
|
|
** foreach row3 in t3 do /
|
|
|
|
** ...
|
|
|
|
** end \ Code generated
|
2004-05-08 12:23:19 +04:00
|
|
|
** end |-- by sqlite3WhereEnd()
|
2002-06-15 00:58:45 +04:00
|
|
|
** end /
|
|
|
|
**
|
|
|
|
** There are Btree cursors associated with each table. t1 uses cursor
|
2003-05-02 18:32:12 +04:00
|
|
|
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
|
|
|
|
** And so forth. This routine generates code to open those VDBE cursors
|
2004-05-08 12:23:19 +04:00
|
|
|
** and sqlite3WhereEnd() generates the code to close them.
|
2002-06-15 00:58:45 +04:00
|
|
|
**
|
|
|
|
** If the WHERE clause is empty, the foreach loops must each scan their
|
|
|
|
** entire tables. Thus a three-way join is an O(N^3) operation. But if
|
|
|
|
** the tables have indices and there are terms in the WHERE clause that
|
|
|
|
** refer to those indices, a complete table scan can be avoided and the
|
|
|
|
** code will run much faster. Most of the work of this routine is checking
|
|
|
|
** to see if there are indices that can be used to speed up the loop.
|
|
|
|
**
|
|
|
|
** Terms of the WHERE clause are also used to limit which rows actually
|
|
|
|
** make it to the "..." in the middle of the loop. After each "foreach",
|
|
|
|
** terms of the WHERE clause that use only terms in that loop and outer
|
|
|
|
** loops are evaluated and if false a jump is made around all subsequent
|
|
|
|
** inner loops (or around the "..." if the test occurs within the inner-
|
|
|
|
** most loop)
|
|
|
|
**
|
|
|
|
** OUTER JOINS
|
|
|
|
**
|
|
|
|
** An outer join of tables t1 and t2 is conceptally coded as follows:
|
|
|
|
**
|
|
|
|
** foreach row1 in t1 do
|
|
|
|
** flag = 0
|
|
|
|
** foreach row2 in t2 do
|
|
|
|
** start:
|
|
|
|
** ...
|
|
|
|
** flag = 1
|
|
|
|
** end
|
2002-06-19 18:27:05 +04:00
|
|
|
** if flag==0 then
|
|
|
|
** move the row2 cursor to a null row
|
|
|
|
** goto start
|
|
|
|
** fi
|
2002-06-15 00:58:45 +04:00
|
|
|
** end
|
|
|
|
**
|
2002-06-19 18:27:05 +04:00
|
|
|
** ORDER BY CLAUSE PROCESSING
|
|
|
|
**
|
|
|
|
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
|
|
|
|
** if there is one. If there is no ORDER BY clause or if this routine
|
|
|
|
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
|
|
|
|
**
|
|
|
|
** If an index can be used so that the natural output order of the table
|
|
|
|
** scan is correct for the ORDER BY clause, then that index is used and
|
|
|
|
** *ppOrderBy is set to NULL. This is an optimization that prevents an
|
|
|
|
** unnecessary sort of the result set if an index appropriate for the
|
|
|
|
** ORDER BY clause already exists.
|
|
|
|
**
|
|
|
|
** If the where clause loops cannot be arranged to provide the correct
|
|
|
|
** output order, then the *ppOrderBy is unchanged.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
2004-05-08 12:23:19 +04:00
|
|
|
WhereInfo *sqlite3WhereBegin(
|
2000-05-29 18:26:00 +04:00
|
|
|
Parse *pParse, /* The parser context */
|
2002-05-24 06:04:32 +04:00
|
|
|
SrcList *pTabList, /* A list of all tables to be scanned */
|
2000-05-29 18:26:00 +04:00
|
|
|
Expr *pWhere, /* The WHERE clause */
|
2002-06-19 18:27:05 +04:00
|
|
|
int pushKey, /* If TRUE, leave the table key on the stack */
|
|
|
|
ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
|
2000-05-29 18:26:00 +04:00
|
|
|
){
|
|
|
|
int i; /* Loop counter */
|
|
|
|
WhereInfo *pWInfo; /* Will become the return value of this function */
|
|
|
|
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
2003-07-16 04:54:31 +04:00
|
|
|
int brk, cont = 0; /* Addresses used during code generation */
|
2000-05-29 18:26:00 +04:00
|
|
|
int nExpr; /* Number of subexpressions in the WHERE clause */
|
|
|
|
int loopMask; /* One bit set for each outer loop */
|
2004-06-16 16:02:47 +04:00
|
|
|
int haveKey = 0; /* True if KEY is on the stack */
|
2004-07-20 22:23:14 +04:00
|
|
|
ExprInfo *pTerm; /* A single term in the WHERE clause; ptr to aExpr[] */
|
2003-05-02 18:32:12 +04:00
|
|
|
ExprMaskSet maskSet; /* The expression mask set */
|
2001-12-22 17:49:24 +03:00
|
|
|
int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
|
|
|
|
int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
|
|
|
|
int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
|
2004-07-20 22:23:14 +04:00
|
|
|
ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */
|
2000-05-29 18:26:00 +04:00
|
|
|
|
2002-06-15 00:58:45 +04:00
|
|
|
/* pushKey is only allowed if there is a single table (as in an INSERT or
|
|
|
|
** UPDATE statement)
|
|
|
|
*/
|
|
|
|
assert( pushKey==0 || pTabList->nSrc==1 );
|
2002-06-28 05:02:38 +04:00
|
|
|
|
|
|
|
/* Split the WHERE clause into separate subexpressions where each
|
|
|
|
** subexpression is separated by an AND operator. If the aExpr[]
|
|
|
|
** array fills up, the last entry might point to an expression which
|
|
|
|
** contains additional unfactored AND operators.
|
|
|
|
*/
|
2003-05-02 18:32:12 +04:00
|
|
|
initMaskSet(&maskSet);
|
2002-06-28 05:02:38 +04:00
|
|
|
memset(aExpr, 0, sizeof(aExpr));
|
|
|
|
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
|
|
|
|
if( nExpr==ARRAYSIZE(aExpr) ){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3ErrorMsg(pParse, "WHERE clause too complex - no more "
|
2004-02-22 21:40:56 +03:00
|
|
|
"than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
|
2002-06-28 05:02:38 +04:00
|
|
|
return 0;
|
|
|
|
}
|
2002-06-15 00:58:45 +04:00
|
|
|
|
2000-05-29 18:26:00 +04:00
|
|
|
/* Allocate and initialize the WhereInfo structure that will become the
|
|
|
|
** return value.
|
|
|
|
*/
|
2002-05-24 06:04:32 +04:00
|
|
|
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
|
2004-05-10 14:37:18 +04:00
|
|
|
if( sqlite3_malloc_failed ){
|
2004-07-20 22:23:14 +04:00
|
|
|
/* sqliteFree(pWInfo); // Leak memory when malloc fails */
|
2000-05-29 18:26:00 +04:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
pWInfo->pParse = pParse;
|
|
|
|
pWInfo->pTabList = pTabList;
|
2004-05-08 12:23:19 +04:00
|
|
|
pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
|
2002-04-30 23:20:28 +04:00
|
|
|
|
|
|
|
/* Special case: a WHERE clause that is constant. Evaluate the
|
|
|
|
** expression and either jump over all of the code or fall thru.
|
|
|
|
*/
|
2004-05-08 12:23:19 +04:00
|
|
|
if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
|
|
|
|
sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
|
2002-06-15 02:38:41 +04:00
|
|
|
pWhere = 0;
|
2002-04-30 23:20:28 +04:00
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
|
|
|
|
/* Analyze all of the subexpressions.
|
|
|
|
*/
|
2004-07-20 22:23:14 +04:00
|
|
|
for(pTerm=aExpr, i=0; i<nExpr; i++, pTerm++){
|
|
|
|
TriggerStack *pStack;
|
|
|
|
exprAnalyze(pTabList, &maskSet, pTerm);
|
2002-05-21 17:18:25 +04:00
|
|
|
|
|
|
|
/* If we are executing a trigger body, remove all references to
|
|
|
|
** new.* and old.* tables from the prerequisite masks.
|
|
|
|
*/
|
2004-07-20 22:23:14 +04:00
|
|
|
if( (pStack = pParse->trigStack)!=0 ){
|
2002-05-21 17:18:25 +04:00
|
|
|
int x;
|
2004-07-20 22:23:14 +04:00
|
|
|
if( (x=pStack->newIdx) >= 0 ){
|
2003-05-02 18:32:12 +04:00
|
|
|
int mask = ~getMask(&maskSet, x);
|
2004-07-20 22:23:14 +04:00
|
|
|
pTerm->prereqRight &= mask;
|
|
|
|
pTerm->prereqLeft &= mask;
|
|
|
|
pTerm->prereqAll &= mask;
|
2002-05-21 17:18:25 +04:00
|
|
|
}
|
2004-07-20 22:23:14 +04:00
|
|
|
if( (x=pStack->oldIdx) >= 0 ){
|
2003-05-02 18:32:12 +04:00
|
|
|
int mask = ~getMask(&maskSet, x);
|
2004-07-20 22:23:14 +04:00
|
|
|
pTerm->prereqRight &= mask;
|
|
|
|
pTerm->prereqLeft &= mask;
|
|
|
|
pTerm->prereqAll &= mask;
|
2002-05-21 17:18:25 +04:00
|
|
|
}
|
2002-05-15 12:30:12 +04:00
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Figure out what index to use (if any) for each nested loop.
|
2001-11-07 19:48:26 +03:00
|
|
|
** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
|
2002-05-24 06:04:32 +04:00
|
|
|
** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
|
2001-12-22 17:49:24 +03:00
|
|
|
** loop.
|
|
|
|
**
|
|
|
|
** If terms exist that use the ROWID of any table, then set the
|
|
|
|
** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
|
|
|
|
** to the index of the term containing the ROWID. We always prefer
|
|
|
|
** to use a ROWID which can directly access a table rather than an
|
2002-02-19 01:49:59 +03:00
|
|
|
** index which requires reading an index first to get the rowid then
|
|
|
|
** doing a second read of the actual database table.
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
|
|
|
** Actually, if there are more than 32 tables in the join, only the
|
2002-02-19 01:49:59 +03:00
|
|
|
** first 32 tables are candidates for indices. This is (again) due
|
|
|
|
** to the limit of 32 bits in an integer bitmask.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
|
|
|
loopMask = 0;
|
2002-08-15 17:50:48 +04:00
|
|
|
for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
|
2001-04-04 15:48:57 +04:00
|
|
|
int j;
|
2004-09-25 17:12:14 +04:00
|
|
|
WhereLevel *pLevel = &pWInfo->a[i];
|
2003-05-02 18:32:12 +04:00
|
|
|
int iCur = pTabList->a[i].iCursor; /* The cursor for this table */
|
|
|
|
int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
|
|
|
|
Table *pTab = pTabList->a[i].pTab;
|
2000-05-29 18:26:00 +04:00
|
|
|
Index *pIdx;
|
|
|
|
Index *pBestIdx = 0;
|
2001-11-08 03:45:21 +03:00
|
|
|
int bestScore = 0;
|
2000-05-29 18:26:00 +04:00
|
|
|
|
2001-04-04 15:48:57 +04:00
|
|
|
/* Check to see if there is an expression that uses only the
|
2001-12-22 17:49:24 +03:00
|
|
|
** ROWID field of this table. For terms of the form ROWID==expr
|
|
|
|
** set iDirectEq[i] to the index of the term. For terms of the
|
|
|
|
** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
|
|
|
|
** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
|
2002-12-03 05:22:52 +03:00
|
|
|
**
|
|
|
|
** (Added:) Treat ROWID IN expr like ROWID=expr.
|
2001-04-04 15:48:57 +04:00
|
|
|
*/
|
2004-09-25 17:12:14 +04:00
|
|
|
pLevel->iCur = -1;
|
2001-12-22 17:49:24 +03:00
|
|
|
iDirectEq[i] = -1;
|
|
|
|
iDirectLt[i] = -1;
|
|
|
|
iDirectGt[i] = -1;
|
2004-07-20 22:23:14 +04:00
|
|
|
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
|
|
|
|
Expr *pX = pTerm->p;
|
|
|
|
if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0
|
|
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
|
|
|
|
switch( pX->op ){
|
2002-06-09 03:25:08 +04:00
|
|
|
case TK_IN:
|
2001-12-22 17:49:24 +03:00
|
|
|
case TK_EQ: iDirectEq[i] = j; break;
|
|
|
|
case TK_LE:
|
|
|
|
case TK_LT: iDirectLt[i] = j; break;
|
|
|
|
case TK_GE:
|
|
|
|
case TK_GT: iDirectGt[i] = j; break;
|
|
|
|
}
|
2001-04-04 15:48:57 +04:00
|
|
|
}
|
|
|
|
}
|
2001-12-22 17:49:24 +03:00
|
|
|
if( iDirectEq[i]>=0 ){
|
2003-05-02 18:32:12 +04:00
|
|
|
loopMask |= mask;
|
2004-09-25 17:12:14 +04:00
|
|
|
pLevel->pIdx = 0;
|
2001-04-04 15:48:57 +04:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2000-05-29 18:26:00 +04:00
|
|
|
/* Do a search for usable indices. Leave pBestIdx pointing to
|
2001-11-08 03:45:21 +03:00
|
|
|
** the "best" index. pBestIdx is left set to NULL if no indices
|
|
|
|
** are usable.
|
|
|
|
**
|
|
|
|
** The best index is determined as follows. For each of the
|
|
|
|
** left-most terms that is fixed by an equality operator, add
|
2002-12-04 23:01:06 +03:00
|
|
|
** 8 to the score. The right-most term of the index may be
|
2001-11-08 03:45:21 +03:00
|
|
|
** constrained by an inequality. Add 1 if for an "x<..." constraint
|
|
|
|
** and add 2 for an "x>..." constraint. Chose the index that
|
|
|
|
** gives the best score.
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
2001-11-08 03:45:21 +03:00
|
|
|
** This scoring system is designed so that the score can later be
|
2002-12-04 23:01:06 +03:00
|
|
|
** used to determine how the index is used. If the score&7 is 0
|
2001-11-08 03:45:21 +03:00
|
|
|
** then all constraints are equalities. If score&1 is not 0 then
|
|
|
|
** there is an inequality used as a termination key. (ex: "x<...")
|
|
|
|
** If score&2 is not 0 then there is an inequality used as the
|
2002-12-04 23:01:06 +03:00
|
|
|
** start key. (ex: "x>..."). A score or 4 is the special case
|
|
|
|
** of an IN operator constraint. (ex: "x IN ...").
|
2002-06-09 03:25:08 +04:00
|
|
|
**
|
2002-06-15 00:58:45 +04:00
|
|
|
** The IN operator (as in "<expr> IN (...)") is treated the same as
|
|
|
|
** an equality comparison except that it can only be used on the
|
|
|
|
** left-most column of an index and other terms of the WHERE clause
|
|
|
|
** cannot be used in conjunction with the IN operator to help satisfy
|
|
|
|
** other columns of the index.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
2002-06-15 00:58:45 +04:00
|
|
|
int eqMask = 0; /* Index columns covered by an x=... term */
|
|
|
|
int ltMask = 0; /* Index columns covered by an x<... term */
|
|
|
|
int gtMask = 0; /* Index columns covered by an x>... term */
|
|
|
|
int inMask = 0; /* Index columns covered by an x IN .. term */
|
2001-11-08 03:45:21 +03:00
|
|
|
int nEq, m, score;
|
2000-05-29 18:26:00 +04:00
|
|
|
|
2001-11-08 03:45:21 +03:00
|
|
|
if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
|
2004-07-20 22:23:14 +04:00
|
|
|
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
|
|
|
|
Expr *pX = pTerm->p;
|
2004-09-25 17:12:14 +04:00
|
|
|
CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
|
2004-07-20 22:23:14 +04:00
|
|
|
if( !pColl && pX->pRight ){
|
|
|
|
pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
|
2004-06-09 13:55:16 +04:00
|
|
|
}
|
|
|
|
if( !pColl ){
|
|
|
|
pColl = pParse->db->pDfltColl;
|
|
|
|
}
|
2004-07-20 22:23:14 +04:00
|
|
|
if( pTerm->idxLeft==iCur
|
|
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
|
|
|
|
int iColumn = pX->pLeft->iColumn;
|
2000-05-29 18:26:00 +04:00
|
|
|
int k;
|
2004-05-17 14:48:57 +04:00
|
|
|
char idxaff = pIdx->pTable->aCol[iColumn].affinity;
|
2000-06-21 17:59:10 +04:00
|
|
|
for(k=0; k<pIdx->nColumn; k++){
|
2004-06-09 13:55:16 +04:00
|
|
|
/* If the collating sequences or affinities don't match,
|
|
|
|
** ignore this index. */
|
|
|
|
if( pColl!=pIdx->keyInfo.aColl[k] ) continue;
|
2004-07-20 22:23:14 +04:00
|
|
|
if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
|
2004-06-09 13:55:16 +04:00
|
|
|
if( pIdx->aiColumn[k]==iColumn ){
|
2004-07-20 22:23:14 +04:00
|
|
|
switch( pX->op ){
|
2002-06-09 05:55:20 +04:00
|
|
|
case TK_IN: {
|
|
|
|
if( k==0 ) inMask |= 1;
|
|
|
|
break;
|
|
|
|
}
|
2001-11-08 03:45:21 +03:00
|
|
|
case TK_EQ: {
|
|
|
|
eqMask |= 1<<k;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TK_LE:
|
|
|
|
case TK_LT: {
|
|
|
|
ltMask |= 1<<k;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TK_GE:
|
|
|
|
case TK_GT: {
|
|
|
|
gtMask |= 1<<k;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
/* CANT_HAPPEN */
|
|
|
|
assert( 0 );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2002-12-04 23:01:06 +03:00
|
|
|
|
|
|
|
/* The following loop ends with nEq set to the number of columns
|
|
|
|
** on the left of the index with == constraints.
|
|
|
|
*/
|
2001-11-08 03:45:21 +03:00
|
|
|
for(nEq=0; nEq<pIdx->nColumn; nEq++){
|
|
|
|
m = (1<<(nEq+1))-1;
|
|
|
|
if( (m & eqMask)!=m ) break;
|
|
|
|
}
|
2002-12-04 23:01:06 +03:00
|
|
|
score = nEq*8; /* Base score is 8 times number of == constraints */
|
2001-11-08 03:45:21 +03:00
|
|
|
m = 1<<nEq;
|
2002-12-04 23:01:06 +03:00
|
|
|
if( m & ltMask ) score++; /* Increase score for a < constraint */
|
|
|
|
if( m & gtMask ) score+=2; /* Increase score for a > constraint */
|
|
|
|
if( score==0 && inMask ) score = 4; /* Default score for IN constraint */
|
2001-11-08 03:45:21 +03:00
|
|
|
if( score>bestScore ){
|
|
|
|
pBestIdx = pIdx;
|
|
|
|
bestScore = score;
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
}
|
2004-09-25 17:12:14 +04:00
|
|
|
pLevel->pIdx = pBestIdx;
|
|
|
|
pLevel->score = bestScore;
|
|
|
|
pLevel->bRev = 0;
|
2003-05-02 18:32:12 +04:00
|
|
|
loopMask |= mask;
|
2001-11-07 19:48:26 +03:00
|
|
|
if( pBestIdx ){
|
2004-09-25 17:12:14 +04:00
|
|
|
pLevel->iCur = pParse->nTab++;
|
2001-11-07 19:48:26 +03:00
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
|
2002-06-19 18:27:05 +04:00
|
|
|
/* Check to see if the ORDER BY clause is or can be satisfied by the
|
|
|
|
** use of an index on the first table.
|
|
|
|
*/
|
|
|
|
if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
|
|
|
|
Index *pSortIdx;
|
|
|
|
Index *pIdx;
|
|
|
|
Table *pTab;
|
2002-12-04 23:01:06 +03:00
|
|
|
int bRev = 0;
|
2002-06-19 18:27:05 +04:00
|
|
|
|
|
|
|
pTab = pTabList->a[0].pTab;
|
|
|
|
pIdx = pWInfo->a[0].pIdx;
|
|
|
|
if( pIdx && pWInfo->a[0].score==4 ){
|
2002-12-04 23:01:06 +03:00
|
|
|
/* If there is already an IN index on the left-most table,
|
|
|
|
** it will not give the correct sort order.
|
|
|
|
** So, pretend that no suitable index is found.
|
2002-06-19 18:27:05 +04:00
|
|
|
*/
|
|
|
|
pSortIdx = 0;
|
|
|
|
}else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
|
|
|
|
/* If the left-most column is accessed using its ROWID, then do
|
|
|
|
** not try to sort by index.
|
|
|
|
*/
|
|
|
|
pSortIdx = 0;
|
|
|
|
}else{
|
2002-12-05 00:50:16 +03:00
|
|
|
int nEqCol = (pWInfo->a[0].score+4)/8;
|
2004-06-10 14:51:47 +04:00
|
|
|
pSortIdx = findSortingIndex(pParse, pTab, pTabList->a[0].iCursor,
|
2003-05-02 18:32:12 +04:00
|
|
|
*ppOrderBy, pIdx, nEqCol, &bRev);
|
2002-06-19 18:27:05 +04:00
|
|
|
}
|
|
|
|
if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
|
|
|
|
if( pIdx==0 ){
|
|
|
|
pWInfo->a[0].pIdx = pSortIdx;
|
|
|
|
pWInfo->a[0].iCur = pParse->nTab++;
|
|
|
|
}
|
2002-12-04 23:01:06 +03:00
|
|
|
pWInfo->a[0].bRev = bRev;
|
2002-06-19 18:27:05 +04:00
|
|
|
*ppOrderBy = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2001-11-07 19:48:26 +03:00
|
|
|
/* Open all tables in the pTabList and all indices used by those tables.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
2004-07-19 21:25:24 +04:00
|
|
|
sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
|
2002-05-24 06:04:32 +04:00
|
|
|
for(i=0; i<pTabList->nSrc; i++){
|
2001-10-08 17:22:32 +04:00
|
|
|
Table *pTab;
|
2004-02-22 23:05:00 +03:00
|
|
|
Index *pIx;
|
2001-10-08 17:22:32 +04:00
|
|
|
|
|
|
|
pTab = pTabList->a[i].pTab;
|
2002-02-23 05:32:10 +03:00
|
|
|
if( pTab->isTransient || pTab->pSelect ) continue;
|
2004-09-19 06:15:24 +04:00
|
|
|
sqlite3OpenTableForReading(v, pTabList->a[i].iCursor, pTab);
|
2004-06-14 12:26:35 +04:00
|
|
|
sqlite3CodeVerifySchema(pParse, pTab->iDb);
|
2004-02-22 23:05:00 +03:00
|
|
|
if( (pIx = pWInfo->a[i].pIdx)!=0 ){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
|
2004-05-21 02:16:29 +04:00
|
|
|
sqlite3VdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum,
|
|
|
|
(char*)&pIx->keyInfo, P3_KEYINFO);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate the code to do the search
|
|
|
|
*/
|
|
|
|
loopMask = 0;
|
2002-05-24 06:04:32 +04:00
|
|
|
for(i=0; i<pTabList->nSrc; i++){
|
2000-05-29 18:26:00 +04:00
|
|
|
int j, k;
|
2003-05-02 18:32:12 +04:00
|
|
|
int iCur = pTabList->a[i].iCursor;
|
2001-04-04 15:48:57 +04:00
|
|
|
Index *pIdx;
|
2001-11-07 19:48:26 +03:00
|
|
|
WhereLevel *pLevel = &pWInfo->a[i];
|
2000-05-29 18:26:00 +04:00
|
|
|
|
2002-05-25 00:31:36 +04:00
|
|
|
/* If this is the right table of a LEFT OUTER JOIN, allocate and
|
2002-12-03 05:22:52 +03:00
|
|
|
** initialize a memory cell that records if this table matches any
|
2002-06-15 00:58:45 +04:00
|
|
|
** row of the left table of the join.
|
2002-05-25 00:31:36 +04:00
|
|
|
*/
|
|
|
|
if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
|
|
|
|
if( !pParse->nMem ) pParse->nMem++;
|
|
|
|
pLevel->iLeftJoin = pParse->nMem++;
|
2004-05-29 15:24:50 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_String8, 0, 0);
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
2004-09-19 06:15:24 +04:00
|
|
|
VdbeComment((v, "# init LEFT JOIN no-match flag"));
|
2002-05-25 00:31:36 +04:00
|
|
|
}
|
|
|
|
|
2001-12-22 17:49:24 +03:00
|
|
|
pIdx = pLevel->pIdx;
|
2002-06-09 03:25:08 +04:00
|
|
|
pLevel->inOp = OP_Noop;
|
2004-09-25 17:12:14 +04:00
|
|
|
if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){
|
2001-12-22 17:49:24 +03:00
|
|
|
/* Case 1: We can directly reference a single row using an
|
2002-06-15 00:58:45 +04:00
|
|
|
** equality comparison against the ROWID field. Or
|
|
|
|
** we reference multiple rows using a "rowid IN (...)"
|
|
|
|
** construct.
|
2001-04-04 15:48:57 +04:00
|
|
|
*/
|
2001-12-22 17:49:24 +03:00
|
|
|
assert( k<nExpr );
|
2004-07-20 22:23:14 +04:00
|
|
|
pTerm = &aExpr[k];
|
|
|
|
assert( pTerm->p!=0 );
|
|
|
|
assert( pTerm->idxLeft==iCur );
|
2004-09-25 17:12:14 +04:00
|
|
|
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
|
|
|
|
codeEqualityTerm(pParse, pTerm, brk, pLevel);
|
2004-05-08 12:23:19 +04:00
|
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
|
|
|
sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
|
2002-06-09 03:25:08 +04:00
|
|
|
haveKey = 0;
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
|
2001-11-07 19:48:26 +03:00
|
|
|
pLevel->op = OP_Noop;
|
2002-06-19 18:27:05 +04:00
|
|
|
}else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
|
2002-06-15 00:58:45 +04:00
|
|
|
/* Case 2: There is an index and all terms of the WHERE clause that
|
|
|
|
** refer to the index use the "==" or "IN" operators.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
2001-11-07 19:48:26 +03:00
|
|
|
int start;
|
2002-12-04 23:01:06 +03:00
|
|
|
int nColumn = (pLevel->score+4)/8;
|
2004-05-08 12:23:19 +04:00
|
|
|
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
|
2004-05-19 17:13:08 +04:00
|
|
|
|
|
|
|
/* For each column of the index, find the term of the WHERE clause that
|
|
|
|
** constraints that column. If the WHERE clause term is X=expr, then
|
|
|
|
** evaluation expr and leave the result on the stack */
|
2001-11-08 03:45:21 +03:00
|
|
|
for(j=0; j<nColumn; j++){
|
2004-07-20 22:23:14 +04:00
|
|
|
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
|
|
|
|
Expr *pX = pTerm->p;
|
2002-06-09 03:25:08 +04:00
|
|
|
if( pX==0 ) continue;
|
2004-07-20 22:23:14 +04:00
|
|
|
if( pTerm->idxLeft==iCur
|
|
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
|
2002-06-09 03:25:08 +04:00
|
|
|
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
|
2000-05-29 18:26:00 +04:00
|
|
|
){
|
2004-05-17 14:48:57 +04:00
|
|
|
char idxaff = pIdx->pTable->aCol[pX->pLeft->iColumn].affinity;
|
2004-09-25 17:12:14 +04:00
|
|
|
if( sqlite3IndexAffinityOk(pX, idxaff) ){
|
|
|
|
codeEqualityTerm(pParse, pTerm, brk, pLevel);
|
|
|
|
break;
|
2002-06-09 03:25:08 +04:00
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2001-11-07 19:48:26 +03:00
|
|
|
pLevel->iMem = pParse->nMem++;
|
2004-05-08 12:23:19 +04:00
|
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
2004-09-25 17:12:14 +04:00
|
|
|
buildIndexProbe(v, nColumn, brk, pIdx);
|
2004-05-14 15:00:53 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
|
2004-05-19 17:13:08 +04:00
|
|
|
|
|
|
|
/* Generate code (1) to move to the first matching element of the table.
|
|
|
|
** Then generate code (2) that jumps to "brk" after the cursor is past
|
|
|
|
** the last matching element of the table. The code (1) is executed
|
|
|
|
** once to initialize the search, the code (2) is executed before each
|
|
|
|
** iteration of the scan to see if the scan has finished. */
|
2002-12-04 23:01:06 +03:00
|
|
|
if( pLevel->bRev ){
|
|
|
|
/* Scan in reverse order */
|
2004-05-19 18:56:55 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MoveLe, pLevel->iCur, brk);
|
2004-05-08 12:23:19 +04:00
|
|
|
start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
|
|
sqlite3VdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
|
2002-12-04 23:01:06 +03:00
|
|
|
pLevel->op = OP_Prev;
|
|
|
|
}else{
|
|
|
|
/* Scan in the forward order */
|
2004-05-19 18:56:55 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, pLevel->iCur, brk);
|
2004-05-08 12:23:19 +04:00
|
|
|
start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
2004-05-20 00:41:03 +04:00
|
|
|
sqlite3VdbeOp3(v, OP_IdxGE, pLevel->iCur, brk, "+", P3_STATIC);
|
2002-12-04 23:01:06 +03:00
|
|
|
pLevel->op = OP_Next;
|
|
|
|
}
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
|
|
|
|
sqlite3VdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
|
|
|
|
sqlite3VdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
2002-05-24 06:04:32 +04:00
|
|
|
if( i==pTabList->nSrc-1 && pushKey ){
|
2000-05-29 18:26:00 +04:00
|
|
|
haveKey = 1;
|
|
|
|
}else{
|
2004-05-19 18:56:55 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
2000-05-29 18:26:00 +04:00
|
|
|
haveKey = 0;
|
|
|
|
}
|
2001-11-07 19:48:26 +03:00
|
|
|
pLevel->p1 = pLevel->iCur;
|
|
|
|
pLevel->p2 = start;
|
2001-12-22 17:49:24 +03:00
|
|
|
}else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
|
|
|
|
/* Case 3: We have an inequality comparison against the ROWID field.
|
|
|
|
*/
|
|
|
|
int testOp = OP_Noop;
|
|
|
|
int start;
|
|
|
|
|
2004-05-08 12:23:19 +04:00
|
|
|
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
|
|
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
2001-12-22 17:49:24 +03:00
|
|
|
if( iDirectGt[i]>=0 ){
|
2004-09-25 17:12:14 +04:00
|
|
|
Expr *pX;
|
2001-12-22 17:49:24 +03:00
|
|
|
k = iDirectGt[i];
|
|
|
|
assert( k<nExpr );
|
2004-07-20 22:23:14 +04:00
|
|
|
pTerm = &aExpr[k];
|
2004-09-25 17:12:14 +04:00
|
|
|
pX = pTerm->p;
|
|
|
|
assert( pX!=0 );
|
2004-07-20 22:23:14 +04:00
|
|
|
assert( pTerm->idxLeft==iCur );
|
2004-09-25 17:12:14 +04:00
|
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
|
|
|
sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LT || pX->op==TK_GT, brk);
|
2004-05-19 18:56:55 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, brk);
|
2004-07-20 22:23:14 +04:00
|
|
|
disableTerm(pLevel, &pTerm->p);
|
2001-12-22 17:49:24 +03:00
|
|
|
}else{
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
|
2001-12-22 17:49:24 +03:00
|
|
|
}
|
|
|
|
if( iDirectLt[i]>=0 ){
|
2004-09-25 17:12:14 +04:00
|
|
|
Expr *pX;
|
2001-12-22 17:49:24 +03:00
|
|
|
k = iDirectLt[i];
|
|
|
|
assert( k<nExpr );
|
2004-07-20 22:23:14 +04:00
|
|
|
pTerm = &aExpr[k];
|
2004-09-25 17:12:14 +04:00
|
|
|
pX = pTerm->p;
|
|
|
|
assert( pX!=0 );
|
2004-07-20 22:23:14 +04:00
|
|
|
assert( pTerm->idxLeft==iCur );
|
2004-09-25 17:12:14 +04:00
|
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
2001-12-22 17:49:24 +03:00
|
|
|
pLevel->iMem = pParse->nMem++;
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
2004-09-25 17:12:14 +04:00
|
|
|
if( pX->op==TK_LT || pX->op==TK_GT ){
|
2001-12-22 17:49:24 +03:00
|
|
|
testOp = OP_Ge;
|
|
|
|
}else{
|
|
|
|
testOp = OP_Gt;
|
|
|
|
}
|
2004-07-20 22:23:14 +04:00
|
|
|
disableTerm(pLevel, &pTerm->p);
|
2001-12-22 17:49:24 +03:00
|
|
|
}
|
2004-05-08 12:23:19 +04:00
|
|
|
start = sqlite3VdbeCurrentAddr(v);
|
2001-12-22 17:49:24 +03:00
|
|
|
pLevel->op = OP_Next;
|
2003-05-02 18:32:12 +04:00
|
|
|
pLevel->p1 = iCur;
|
2001-12-22 17:49:24 +03:00
|
|
|
pLevel->p2 = start;
|
|
|
|
if( testOp!=OP_Noop ){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_Recno, iCur, 0);
|
|
|
|
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
|
|
sqlite3VdbeAddOp(v, testOp, 0, brk);
|
2001-12-22 17:49:24 +03:00
|
|
|
}
|
|
|
|
haveKey = 0;
|
|
|
|
}else if( pIdx==0 ){
|
2002-06-15 00:58:45 +04:00
|
|
|
/* Case 4: There is no usable index. We must do a complete
|
2001-12-22 17:49:24 +03:00
|
|
|
** scan of the entire database table.
|
|
|
|
*/
|
|
|
|
int start;
|
|
|
|
|
2004-05-08 12:23:19 +04:00
|
|
|
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
|
|
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
|
|
|
sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
|
|
|
|
start = sqlite3VdbeCurrentAddr(v);
|
2001-12-22 17:49:24 +03:00
|
|
|
pLevel->op = OP_Next;
|
2003-05-02 18:32:12 +04:00
|
|
|
pLevel->p1 = iCur;
|
2001-12-22 17:49:24 +03:00
|
|
|
pLevel->p2 = start;
|
|
|
|
haveKey = 0;
|
2001-11-08 03:45:21 +03:00
|
|
|
}else{
|
2002-06-15 00:58:45 +04:00
|
|
|
/* Case 5: The WHERE clause term that refers to the right-most
|
|
|
|
** column of the index is an inequality. For example, if
|
|
|
|
** the index is on (x,y,z) and the WHERE clause is of the
|
|
|
|
** form "x=5 AND y<10" then this case is used. Only the
|
|
|
|
** right-most column can be an inequality - the rest must
|
|
|
|
** use the "==" operator.
|
2002-06-19 18:27:05 +04:00
|
|
|
**
|
|
|
|
** This case is also used when there are no WHERE clause
|
|
|
|
** constraints but an index is selected anyway, in order
|
|
|
|
** to force the output order to conform to an ORDER BY.
|
2001-11-08 03:45:21 +03:00
|
|
|
*/
|
|
|
|
int score = pLevel->score;
|
2002-12-04 23:01:06 +03:00
|
|
|
int nEqColumn = score/8;
|
2001-11-08 03:45:21 +03:00
|
|
|
int start;
|
2004-06-16 16:02:47 +04:00
|
|
|
int leFlag=0, geFlag=0;
|
2001-11-08 03:45:21 +03:00
|
|
|
int testOp;
|
|
|
|
|
|
|
|
/* Evaluate the equality constraints
|
|
|
|
*/
|
|
|
|
for(j=0; j<nEqColumn; j++){
|
2004-09-25 17:12:14 +04:00
|
|
|
int iIdxCol = pIdx->aiColumn[j];
|
2004-07-20 22:23:14 +04:00
|
|
|
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
|
2004-09-25 17:12:14 +04:00
|
|
|
Expr *pX = pTerm->p;
|
|
|
|
if( pX==0 ) continue;
|
2004-07-20 22:23:14 +04:00
|
|
|
if( pTerm->idxLeft==iCur
|
2004-09-25 17:12:14 +04:00
|
|
|
&& pX->op==TK_EQ
|
2004-07-20 22:23:14 +04:00
|
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
|
2004-09-25 17:12:14 +04:00
|
|
|
&& pX->pLeft->iColumn==iIdxCol
|
2001-11-08 03:45:21 +03:00
|
|
|
){
|
2004-09-25 17:12:14 +04:00
|
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
2004-07-20 22:23:14 +04:00
|
|
|
disableTerm(pLevel, &pTerm->p);
|
2001-11-08 03:45:21 +03:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2002-06-15 00:58:45 +04:00
|
|
|
/* Duplicate the equality term values because they will all be
|
2001-11-08 03:45:21 +03:00
|
|
|
** used twice: once to make the termination key and once to make the
|
|
|
|
** start key.
|
|
|
|
*/
|
|
|
|
for(j=0; j<nEqColumn; j++){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
|
2001-11-08 03:45:21 +03:00
|
|
|
}
|
|
|
|
|
2002-12-04 23:01:06 +03:00
|
|
|
/* Labels for the beginning and end of the loop
|
|
|
|
*/
|
2004-05-08 12:23:19 +04:00
|
|
|
cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
|
|
|
|
brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
|
2002-12-04 23:01:06 +03:00
|
|
|
|
2001-11-08 03:45:21 +03:00
|
|
|
/* Generate the termination key. This is the key value that
|
|
|
|
** will end the search. There is no termination key if there
|
2002-06-15 00:58:45 +04:00
|
|
|
** are no equality terms and no "X<..." term.
|
2002-12-04 23:01:06 +03:00
|
|
|
**
|
|
|
|
** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
|
|
|
|
** key computed here really ends up being the start key.
|
2001-11-08 03:45:21 +03:00
|
|
|
*/
|
|
|
|
if( (score & 1)!=0 ){
|
2004-07-20 22:23:14 +04:00
|
|
|
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
|
2004-09-25 17:12:14 +04:00
|
|
|
Expr *pX = pTerm->p;
|
|
|
|
if( pX==0 ) continue;
|
2004-07-20 22:23:14 +04:00
|
|
|
if( pTerm->idxLeft==iCur
|
2004-09-25 17:12:14 +04:00
|
|
|
&& (pX->op==TK_LT || pX->op==TK_LE)
|
2004-07-20 22:23:14 +04:00
|
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
|
2004-09-25 17:12:14 +04:00
|
|
|
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
|
2001-11-08 03:45:21 +03:00
|
|
|
){
|
2004-09-25 17:12:14 +04:00
|
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
|
|
|
leFlag = pX->op==TK_LE;
|
2004-07-20 22:23:14 +04:00
|
|
|
disableTerm(pLevel, &pTerm->p);
|
2001-11-08 03:45:21 +03:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
testOp = OP_IdxGE;
|
|
|
|
}else{
|
|
|
|
testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
|
|
|
|
leFlag = 1;
|
|
|
|
}
|
|
|
|
if( testOp!=OP_Noop ){
|
2004-01-07 23:37:52 +03:00
|
|
|
int nCol = nEqColumn + (score & 1);
|
2001-11-08 03:45:21 +03:00
|
|
|
pLevel->iMem = pParse->nMem++;
|
2004-09-25 17:12:14 +04:00
|
|
|
buildIndexProbe(v, nCol, brk, pIdx);
|
2002-12-04 23:01:06 +03:00
|
|
|
if( pLevel->bRev ){
|
2004-05-19 18:56:55 +04:00
|
|
|
int op = leFlag ? OP_MoveLe : OP_MoveLt;
|
|
|
|
sqlite3VdbeAddOp(v, op, pLevel->iCur, brk);
|
2002-12-04 23:01:06 +03:00
|
|
|
}else{
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
2002-12-04 23:01:06 +03:00
|
|
|
}
|
|
|
|
}else if( pLevel->bRev ){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_Last, pLevel->iCur, brk);
|
2001-11-08 03:45:21 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate the start key. This is the key that defines the lower
|
2002-06-15 00:58:45 +04:00
|
|
|
** bound on the search. There is no start key if there are no
|
|
|
|
** equality terms and if there is no "X>..." term. In
|
2001-11-08 03:45:21 +03:00
|
|
|
** that case, generate a "Rewind" instruction in place of the
|
|
|
|
** start key search.
|
2002-12-04 23:01:06 +03:00
|
|
|
**
|
|
|
|
** 2002-Dec-04: In the case of a reverse-order search, the so-called
|
|
|
|
** "start" key really ends up being used as the termination key.
|
2001-11-08 03:45:21 +03:00
|
|
|
*/
|
|
|
|
if( (score & 2)!=0 ){
|
2004-07-20 22:23:14 +04:00
|
|
|
for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
|
2004-09-25 17:12:14 +04:00
|
|
|
Expr *pX = pTerm->p;
|
|
|
|
if( pX==0 ) continue;
|
2004-07-20 22:23:14 +04:00
|
|
|
if( pTerm->idxLeft==iCur
|
2004-09-25 17:12:14 +04:00
|
|
|
&& (pX->op==TK_GT || pX->op==TK_GE)
|
2004-07-20 22:23:14 +04:00
|
|
|
&& (pTerm->prereqRight & loopMask)==pTerm->prereqRight
|
2004-09-25 17:12:14 +04:00
|
|
|
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
|
2001-11-08 03:45:21 +03:00
|
|
|
){
|
2004-09-25 17:12:14 +04:00
|
|
|
sqlite3ExprCode(pParse, pX->pRight);
|
|
|
|
geFlag = pX->op==TK_GE;
|
2004-07-20 22:23:14 +04:00
|
|
|
disableTerm(pLevel, &pTerm->p);
|
2001-11-08 03:45:21 +03:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2001-11-12 16:51:43 +03:00
|
|
|
}else{
|
|
|
|
geFlag = 1;
|
2001-11-08 03:45:21 +03:00
|
|
|
}
|
|
|
|
if( nEqColumn>0 || (score&2)!=0 ){
|
2004-01-07 23:37:52 +03:00
|
|
|
int nCol = nEqColumn + ((score&2)!=0);
|
2004-09-25 17:12:14 +04:00
|
|
|
buildIndexProbe(v, nCol, brk, pIdx);
|
2002-12-04 23:01:06 +03:00
|
|
|
if( pLevel->bRev ){
|
|
|
|
pLevel->iMem = pParse->nMem++;
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
2002-12-04 23:01:06 +03:00
|
|
|
testOp = OP_IdxLT;
|
|
|
|
}else{
|
2004-05-19 18:56:55 +04:00
|
|
|
int op = geFlag ? OP_MoveGe : OP_MoveGt;
|
|
|
|
sqlite3VdbeAddOp(v, op, pLevel->iCur, brk);
|
2002-12-04 23:01:06 +03:00
|
|
|
}
|
|
|
|
}else if( pLevel->bRev ){
|
|
|
|
testOp = OP_Noop;
|
2001-11-08 03:45:21 +03:00
|
|
|
}else{
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
|
2001-11-08 03:45:21 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate the the top of the loop. If there is a termination
|
|
|
|
** key we have to test for that key and abort at the top of the
|
|
|
|
** loop.
|
|
|
|
*/
|
2004-05-08 12:23:19 +04:00
|
|
|
start = sqlite3VdbeCurrentAddr(v);
|
2001-11-08 03:45:21 +03:00
|
|
|
if( testOp!=OP_Noop ){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
|
|
sqlite3VdbeAddOp(v, testOp, pLevel->iCur, brk);
|
2004-05-14 15:00:53 +04:00
|
|
|
if( (leFlag && !pLevel->bRev) || (!geFlag && pLevel->bRev) ){
|
|
|
|
sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
|
|
|
|
}
|
2001-11-08 03:45:21 +03:00
|
|
|
}
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
|
|
|
|
sqlite3VdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
|
|
|
|
sqlite3VdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
2002-05-24 06:04:32 +04:00
|
|
|
if( i==pTabList->nSrc-1 && pushKey ){
|
2001-11-08 03:45:21 +03:00
|
|
|
haveKey = 1;
|
|
|
|
}else{
|
2004-05-19 18:56:55 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
2001-11-08 03:45:21 +03:00
|
|
|
haveKey = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Record the instruction used to terminate the loop.
|
|
|
|
*/
|
2002-12-04 23:01:06 +03:00
|
|
|
pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
|
2001-11-08 03:45:21 +03:00
|
|
|
pLevel->p1 = pLevel->iCur;
|
|
|
|
pLevel->p2 = start;
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
2003-05-02 18:32:12 +04:00
|
|
|
loopMask |= getMask(&maskSet, iCur);
|
2000-05-29 18:26:00 +04:00
|
|
|
|
|
|
|
/* Insert code to test every subexpression that can be completely
|
|
|
|
** computed using the current set of tables.
|
|
|
|
*/
|
2004-07-20 22:23:14 +04:00
|
|
|
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
|
|
|
|
if( pTerm->p==0 ) continue;
|
|
|
|
if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
|
|
|
|
if( pLevel->iLeftJoin && !ExprHasProperty(pTerm->p,EP_FromJoin) ){
|
2002-10-27 22:35:33 +03:00
|
|
|
continue;
|
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
if( haveKey ){
|
2001-02-20 02:23:38 +03:00
|
|
|
haveKey = 0;
|
2004-05-19 18:56:55 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
2004-07-20 22:23:14 +04:00
|
|
|
sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
|
|
|
|
pTerm->p = 0;
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
brk = cont;
|
2002-05-25 00:31:36 +04:00
|
|
|
|
|
|
|
/* For a LEFT OUTER JOIN, generate code that will record the fact that
|
|
|
|
** at least one row of the right table has matched the left table.
|
|
|
|
*/
|
|
|
|
if( pLevel->iLeftJoin ){
|
2004-05-08 12:23:19 +04:00
|
|
|
pLevel->top = sqlite3VdbeCurrentAddr(v);
|
|
|
|
sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
|
|
|
|
sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
2004-09-19 06:15:24 +04:00
|
|
|
VdbeComment((v, "# record LEFT JOIN hit"));
|
2004-07-20 22:23:14 +04:00
|
|
|
for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
|
|
|
|
if( pTerm->p==0 ) continue;
|
|
|
|
if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
|
2002-06-25 02:01:57 +04:00
|
|
|
if( haveKey ){
|
2002-06-28 16:18:47 +04:00
|
|
|
/* Cannot happen. "haveKey" can only be true if pushKey is true
|
|
|
|
** an pushKey can only be true for DELETE and UPDATE and there are
|
|
|
|
** no outer joins with DELETE and UPDATE.
|
|
|
|
*/
|
2002-06-25 02:01:57 +04:00
|
|
|
haveKey = 0;
|
2004-05-19 18:56:55 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
|
2002-06-25 02:01:57 +04:00
|
|
|
}
|
2004-07-20 22:23:14 +04:00
|
|
|
sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
|
|
|
|
pTerm->p = 0;
|
2002-06-25 02:01:57 +04:00
|
|
|
}
|
2002-05-25 00:31:36 +04:00
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
pWInfo->iContinue = cont;
|
|
|
|
if( pushKey && !haveKey ){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
2003-05-02 18:32:12 +04:00
|
|
|
freeMaskSet(&maskSet);
|
2000-05-29 18:26:00 +04:00
|
|
|
return pWInfo;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2002-06-15 00:58:45 +04:00
|
|
|
** Generate the end of the WHERE loop. See comments on
|
2004-05-08 12:23:19 +04:00
|
|
|
** sqlite3WhereBegin() for additional information.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
2004-05-08 12:23:19 +04:00
|
|
|
void sqlite3WhereEnd(WhereInfo *pWInfo){
|
2000-05-29 18:26:00 +04:00
|
|
|
Vdbe *v = pWInfo->pParse->pVdbe;
|
2000-06-05 22:54:46 +04:00
|
|
|
int i;
|
2001-11-07 19:48:26 +03:00
|
|
|
WhereLevel *pLevel;
|
2002-05-24 06:04:32 +04:00
|
|
|
SrcList *pTabList = pWInfo->pTabList;
|
2000-06-05 22:54:46 +04:00
|
|
|
|
2002-05-24 06:04:32 +04:00
|
|
|
for(i=pTabList->nSrc-1; i>=0; i--){
|
2001-11-07 19:48:26 +03:00
|
|
|
pLevel = &pWInfo->a[i];
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeResolveLabel(v, pLevel->cont);
|
2001-11-07 19:48:26 +03:00
|
|
|
if( pLevel->op!=OP_Noop ){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
|
2001-11-07 19:48:26 +03:00
|
|
|
}
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeResolveLabel(v, pLevel->brk);
|
2002-06-09 03:25:08 +04:00
|
|
|
if( pLevel->inOp!=OP_Noop ){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
|
2002-06-09 03:25:08 +04:00
|
|
|
}
|
2002-05-25 00:31:36 +04:00
|
|
|
if( pLevel->iLeftJoin ){
|
|
|
|
int addr;
|
2004-05-08 12:23:19 +04:00
|
|
|
addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
|
|
|
|
sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
|
|
|
|
sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
|
2002-08-13 17:15:49 +04:00
|
|
|
if( pLevel->iCur>=0 ){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
|
2002-08-13 17:15:49 +04:00
|
|
|
}
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
|
2002-05-25 00:31:36 +04:00
|
|
|
}
|
2001-11-07 19:48:26 +03:00
|
|
|
}
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
|
2002-05-24 06:04:32 +04:00
|
|
|
for(i=0; i<pTabList->nSrc; i++){
|
2003-04-24 05:45:04 +04:00
|
|
|
Table *pTab = pTabList->a[i].pTab;
|
|
|
|
assert( pTab!=0 );
|
|
|
|
if( pTab->isTransient || pTab->pSelect ) continue;
|
2001-11-07 19:48:26 +03:00
|
|
|
pLevel = &pWInfo->a[i];
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
|
2001-11-07 19:48:26 +03:00
|
|
|
if( pLevel->pIdx!=0 ){
|
2004-05-08 12:23:19 +04:00
|
|
|
sqlite3VdbeAddOp(v, OP_Close, pLevel->iCur, 0);
|
2000-06-05 22:54:46 +04:00
|
|
|
}
|
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
sqliteFree(pWInfo);
|
|
|
|
return;
|
|
|
|
}
|