sqlite/src/where.c

474 lines
16 KiB
C
Raw Normal View History

/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements. Also found here are subroutines
** to generate VDBE code to evaluate expressions.
**
** $Id: where.c,v 1.25 2001/11/07 16:48:28 drh Exp $
*/
#include "sqliteInt.h"
/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause. Each WHERE
** clause subexpression is separated from the others by an AND operator.
*/
typedef struct ExprInfo ExprInfo;
struct ExprInfo {
Expr *p; /* Pointer to the subexpression */
int indexable; /* True if this subexprssion is usable by an index */
int idxLeft; /* p->pLeft is a column in this table number. -1 if
** p->pLeft is not the column of any table */
int idxRight; /* p->pRight is a column in this table number. -1 if
** p->pRight is not the column of any table */
unsigned prereqLeft; /* Tables referenced by p->pLeft */
unsigned prereqRight; /* Tables referenced by p->pRight */
};
/*
** Determine the number of elements in an array.
*/
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
/*
** This routine is used to divide the WHERE expression into subexpressions
** separated by the AND operator.
**
** aSlot[] is an array of subexpressions structures.
** There are nSlot spaces left in this array. This routine attempts to
** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
** The return value is the number of slots filled.
*/
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
int cnt = 0;
if( pExpr==0 || nSlot<1 ) return 0;
if( nSlot==1 || pExpr->op!=TK_AND ){
aSlot[0].p = pExpr;
return 1;
}
if( pExpr->pLeft->op!=TK_AND ){
aSlot[0].p = pExpr->pLeft;
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
}else{
cnt = exprSplit(nSlot, aSlot, pExpr->pRight);
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pLeft);
}
return cnt;
}
/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree. Bit 0 of the mask is set if table 0 is used. But 1 is set
** if table 1 is used. And so forth.
**
** In order for this routine to work, the calling function must have
** previously invoked sqliteExprResolveIds() on the expression. See
** the header comment on that routine for additional information.
**
** "base" is the cursor number (the value of the iTable field) that
** corresponds to the first entry in the table list. This is the
** same as pParse->nTab.
*/
static int exprTableUsage(int base, Expr *p){
unsigned int mask = 0;
if( p==0 ) return 0;
if( p->op==TK_COLUMN ){
return 1<< (p->iTable - base);
}
if( p->pRight ){
mask = exprTableUsage(base, p->pRight);
}
if( p->pLeft ){
mask |= exprTableUsage(base, p->pLeft);
}
return mask;
}
/*
** The input to this routine is an ExprInfo structure with only the
** "p" field filled in. The job of this routine is to analyze the
** subexpression and populate all the other fields of the ExprInfo
** structure.
**
** "base" is the cursor number (the value of the iTable field) that
** corresponds to the first entry in the table list. This is the
** same as pParse->nTab.
*/
static void exprAnalyze(int base, ExprInfo *pInfo){
Expr *pExpr = pInfo->p;
pInfo->prereqLeft = exprTableUsage(base, pExpr->pLeft);
pInfo->prereqRight = exprTableUsage(base, pExpr->pRight);
pInfo->indexable = 0;
pInfo->idxLeft = -1;
pInfo->idxRight = -1;
if( pExpr->op==TK_EQ && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
if( pExpr->pRight->op==TK_COLUMN ){
pInfo->idxRight = pExpr->pRight->iTable - base;
pInfo->indexable = 1;
}
if( pExpr->pLeft->op==TK_COLUMN ){
pInfo->idxLeft = pExpr->pLeft->iTable - base;
pInfo->indexable = 1;
}
}
}
/*
** Generating the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an (opaque) structure that contains
** information needed to terminate the loop. Later, the calling routine
** should invoke sqliteWhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
**
** If an error occurs, this routine returns NULL.
*/
WhereInfo *sqliteWhereBegin(
Parse *pParse, /* The parser context */
IdList *pTabList, /* A list of all tables */
Expr *pWhere, /* The WHERE clause */
int pushKey /* If TRUE, leave the table key on the stack */
){
int i; /* Loop counter */
WhereInfo *pWInfo; /* Will become the return value of this function */
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
int brk, cont; /* Addresses used during code generation */
int *aOrder; /* Order in which pTabList entries are searched */
int nExpr; /* Number of subexpressions in the WHERE clause */
int loopMask; /* One bit set for each outer loop */
int haveKey; /* True if KEY is on the stack */
int base; /* First available index for OP_Open opcodes */
int nCur; /* Next unused cursor number */
int aDirect[32]; /* If TRUE, then index this table using ROWID */
ExprInfo aExpr[50]; /* The WHERE clause is divided into these expressions */
/* Allocate space for aOrder[] and aiMem[]. */
aOrder = sqliteMalloc( sizeof(int) * pTabList->nId );
/* Allocate and initialize the WhereInfo structure that will become the
** return value.
*/
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nId*sizeof(WhereLevel) );
if( sqlite_malloc_failed ){
sqliteFree(aOrder);
sqliteFree(pWInfo);
return 0;
}
pWInfo->pParse = pParse;
pWInfo->pTabList = pTabList;
base = pWInfo->base = pParse->nTab;
nCur = base + pTabList->nId;
/* Split the WHERE clause into as many as 32 separate subexpressions
** where each subexpression is separated by an AND operator. Any additional
** subexpressions are attached in the aExpr[32] and will not enter
** into the query optimizer computations. 32 is chosen as the cutoff
** since that is the number of bits in an integer that we use for an
** expression-used mask.
*/
memset(aExpr, 0, sizeof(aExpr));
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
/* Analyze all of the subexpressions.
*/
for(i=0; i<nExpr; i++){
exprAnalyze(pParse->nTab, &aExpr[i]);
}
/* Figure out a good nesting order for the tables. aOrder[0] will
** be the index in pTabList of the outermost table. aOrder[1] will
** be the first nested loop and so on. aOrder[pTabList->nId-1] will
** be the innermost loop.
**
** Someday will put in a good algorithm here to reorder the loops
** for an effiecient query. But for now, just use whatever order the
** tables appear in in the pTabList.
*/
for(i=0; i<pTabList->nId; i++){
aOrder[i] = i;
}
/* Figure out what index to use (if any) for each nested loop.
** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
** loop where i==0 is the outer loop and i==pTabList->nId-1 is the inner
** loop. If the expression uses only the ROWID field, then set
** aDirect[i] to 1.
**
** Actually, if there are more than 32 tables in the join, only the
** first 32 tables are candidates for indices.
*/
loopMask = 0;
for(i=0; i<pTabList->nId && i<ARRAYSIZE(aDirect); i++){
int j;
int idx = aOrder[i];
Table *pTab = pTabList->a[idx].pTab;
Index *pIdx;
Index *pBestIdx = 0;
/* Check to see if there is an expression that uses only the
** ROWID field of this table. If so, set aDirect[i] to 1.
** If not, set aDirect[i] to 0.
*/
aDirect[i] = 0;
for(j=0; j<nExpr; j++){
if( aExpr[j].idxLeft==idx && aExpr[j].p->pLeft->iColumn<0
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
aDirect[i] = 1;
break;
}
if( aExpr[j].idxRight==idx && aExpr[j].p->pRight->iColumn<0
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
aDirect[i] = 1;
break;
}
}
if( aDirect[i] ){
loopMask |= 1<<idx;
pWInfo->a[i].pIdx = 0;
continue;
}
/* Do a search for usable indices. Leave pBestIdx pointing to
** the most specific usable index.
**
** "Most specific" means that pBestIdx is the usable index that
** has the largest value for nColumn. A usable index is one for
** which there are subexpressions to compute every column of the
** index.
*/
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int columnMask = 0;
if( pIdx->nColumn>32 ) continue;
for(j=0; j<nExpr; j++){
if( aExpr[j].idxLeft==idx
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
int iColumn = aExpr[j].p->pLeft->iColumn;
int k;
for(k=0; k<pIdx->nColumn; k++){
if( pIdx->aiColumn[k]==iColumn ){
columnMask |= 1<<k;
break;
}
}
}
if( aExpr[j].idxRight==idx
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
int iColumn = aExpr[j].p->pRight->iColumn;
int k;
for(k=0; k<pIdx->nColumn; k++){
if( pIdx->aiColumn[k]==iColumn ){
columnMask |= 1<<k;
break;
}
}
}
}
if( columnMask + 1 == (1<<pIdx->nColumn) ){
if( pBestIdx==0 || pBestIdx->nColumn<pIdx->nColumn ){
pBestIdx = pIdx;
}
}
}
pWInfo->a[i].pIdx = pBestIdx;
loopMask |= 1<<idx;
if( pBestIdx ){
pWInfo->a[i].iCur = nCur++;
}
}
/* Open all tables in the pTabList and all indices used by those tables.
*/
for(i=0; i<pTabList->nId; i++){
int openOp;
Table *pTab;
pTab = pTabList->a[i].pTab;
openOp = pTab->isTemp ? OP_OpenAux : OP_Open;
sqliteVdbeAddOp(v, openOp, base+i, pTab->tnum);
sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
if( i==0 && !pParse->schemaVerified &&
(pParse->db->flags & SQLITE_InTrans)==0 ){
sqliteVdbeAddOp(v, OP_VerifyCookie, pParse->db->schema_cookie, 0);
pParse->schemaVerified = 1;
}
if( pWInfo->a[i].pIdx!=0 ){
sqliteVdbeAddOp(v, openOp, pWInfo->a[i].iCur, pWInfo->a[i].pIdx->tnum);
sqliteVdbeChangeP3(v, -1, pWInfo->a[i].pIdx->zName, P3_STATIC);
}
}
/* Generate the code to do the search
*/
loopMask = 0;
pWInfo->iBreak = sqliteVdbeMakeLabel(v);
for(i=0; i<pTabList->nId; i++){
int j, k;
int idx = aOrder[i];
int goDirect;
Index *pIdx;
WhereLevel *pLevel = &pWInfo->a[i];
if( i<ARRAYSIZE(aDirect) ){
pIdx = pLevel->pIdx;
goDirect = aDirect[i];
}else{
pIdx = 0;
goDirect = 0;
}
if( goDirect ){
/* Case 1: We can directly reference a single row using the ROWID field.
*/
cont = brk;
for(k=0; k<nExpr; k++){
if( aExpr[k].p==0 ) continue;
if( aExpr[k].idxLeft==idx
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
&& aExpr[k].p->pLeft->iColumn<0
){
sqliteExprCode(pParse, aExpr[k].p->pRight);
aExpr[k].p = 0;
break;
}
if( aExpr[k].idxRight==idx
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
&& aExpr[k].p->pRight->iColumn<0
){
sqliteExprCode(pParse, aExpr[k].p->pLeft);
aExpr[k].p = 0;
break;
}
}
sqliteVdbeAddOp(v, OP_AddImm, 0, 0);
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
cont = pLevel->cont = brk;
if( i==pTabList->nId-1 && pushKey ){
haveKey = 1;
}else{
sqliteVdbeAddOp(v, OP_NotFound, base+idx, brk);
haveKey = 0;
}
pLevel->op = OP_Noop;
}else if( pIdx==0 ){
/* Case 2: There was no usable index. We must do a complete
** scan of the table.
*/
int start;
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_Rewind, base+idx, brk);
start = sqliteVdbeCurrentAddr(v);
pLevel->op = OP_Next;
pLevel->p1 = base+idx;
pLevel->p2 = start;
haveKey = 0;
}else{
/* Case 3: We do have a usable index in pIdx.
*/
int start;
for(j=0; j<pIdx->nColumn; j++){
for(k=0; k<nExpr; k++){
if( aExpr[k].p==0 ) continue;
if( aExpr[k].idxLeft==idx
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
&& aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, aExpr[k].p->pRight);
aExpr[k].p = 0;
break;
}
if( aExpr[k].idxRight==idx
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, aExpr[k].p->pLeft);
aExpr[k].p = 0;
break;
}
}
}
pLevel->iMem = pParse->nMem++;
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0);
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqliteVdbeAddOp(v, OP_IdxGT, pLevel->iCur, brk);
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
if( i==pTabList->nId-1 && pushKey ){
haveKey = 1;
}else{
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
haveKey = 0;
}
pLevel->op = OP_Next;
pLevel->p1 = pLevel->iCur;
pLevel->p2 = start;
}
loopMask |= 1<<idx;
/* Insert code to test every subexpression that can be completely
** computed using the current set of tables.
*/
for(j=0; j<nExpr; j++){
if( aExpr[j].p==0 ) continue;
if( (aExpr[j].prereqRight & loopMask)!=aExpr[j].prereqRight ) continue;
if( (aExpr[j].prereqLeft & loopMask)!=aExpr[j].prereqLeft ) continue;
if( haveKey ){
haveKey = 0;
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
}
sqliteExprIfFalse(pParse, aExpr[j].p, cont);
aExpr[j].p = 0;
}
brk = cont;
}
pWInfo->iContinue = cont;
if( pushKey && !haveKey ){
sqliteVdbeAddOp(v, OP_Recno, base, 0);
}
sqliteFree(aOrder);
return pWInfo;
}
/*
** Generate the end of the WHERE loop.
*/
void sqliteWhereEnd(WhereInfo *pWInfo){
Vdbe *v = pWInfo->pParse->pVdbe;
int i;
int base = pWInfo->base;
WhereLevel *pLevel;
for(i=pWInfo->pTabList->nId-1; i>=0; i--){
pLevel = &pWInfo->a[i];
sqliteVdbeResolveLabel(v, pLevel->cont);
if( pLevel->op!=OP_Noop ){
sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
}
sqliteVdbeResolveLabel(v, pLevel->brk);
}
sqliteVdbeResolveLabel(v, pWInfo->iBreak);
for(i=0; i<pWInfo->pTabList->nId; i++){
pLevel = &pWInfo->a[i];
sqliteVdbeAddOp(v, OP_Close, base+i, 0);
if( pLevel->pIdx!=0 ){
sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
}
}
sqliteFree(pWInfo);
return;
}