/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. Also found here are subroutines ** to generate VDBE code to evaluate expressions. ** ** $Id: where.c,v 1.25 2001/11/07 16:48:28 drh Exp $ */ #include "sqliteInt.h" /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by an AND operator. */ typedef struct ExprInfo ExprInfo; struct ExprInfo { Expr *p; /* Pointer to the subexpression */ int indexable; /* True if this subexprssion is usable by an index */ int idxLeft; /* p->pLeft is a column in this table number. -1 if ** p->pLeft is not the column of any table */ int idxRight; /* p->pRight is a column in this table number. -1 if ** p->pRight is not the column of any table */ unsigned prereqLeft; /* Tables referenced by p->pLeft */ unsigned prereqRight; /* Tables referenced by p->pRight */ }; /* ** Determine the number of elements in an array. */ #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) /* ** This routine is used to divide the WHERE expression into subexpressions ** separated by the AND operator. ** ** aSlot[] is an array of subexpressions structures. ** There are nSlot spaces left in this array. This routine attempts to ** split pExpr into subexpressions and fills aSlot[] with those subexpressions. ** The return value is the number of slots filled. */ static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){ int cnt = 0; if( pExpr==0 || nSlot<1 ) return 0; if( nSlot==1 || pExpr->op!=TK_AND ){ aSlot[0].p = pExpr; return 1; } if( pExpr->pLeft->op!=TK_AND ){ aSlot[0].p = pExpr->pLeft; cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight); }else{ cnt = exprSplit(nSlot, aSlot, pExpr->pRight); cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pLeft); } return cnt; } /* ** This routine walks (recursively) an expression tree and generates ** a bitmask indicating which tables are used in that expression ** tree. Bit 0 of the mask is set if table 0 is used. But 1 is set ** if table 1 is used. And so forth. ** ** In order for this routine to work, the calling function must have ** previously invoked sqliteExprResolveIds() on the expression. See ** the header comment on that routine for additional information. ** ** "base" is the cursor number (the value of the iTable field) that ** corresponds to the first entry in the table list. This is the ** same as pParse->nTab. */ static int exprTableUsage(int base, Expr *p){ unsigned int mask = 0; if( p==0 ) return 0; if( p->op==TK_COLUMN ){ return 1<< (p->iTable - base); } if( p->pRight ){ mask = exprTableUsage(base, p->pRight); } if( p->pLeft ){ mask |= exprTableUsage(base, p->pLeft); } return mask; } /* ** The input to this routine is an ExprInfo structure with only the ** "p" field filled in. The job of this routine is to analyze the ** subexpression and populate all the other fields of the ExprInfo ** structure. ** ** "base" is the cursor number (the value of the iTable field) that ** corresponds to the first entry in the table list. This is the ** same as pParse->nTab. */ static void exprAnalyze(int base, ExprInfo *pInfo){ Expr *pExpr = pInfo->p; pInfo->prereqLeft = exprTableUsage(base, pExpr->pLeft); pInfo->prereqRight = exprTableUsage(base, pExpr->pRight); pInfo->indexable = 0; pInfo->idxLeft = -1; pInfo->idxRight = -1; if( pExpr->op==TK_EQ && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ if( pExpr->pRight->op==TK_COLUMN ){ pInfo->idxRight = pExpr->pRight->iTable - base; pInfo->indexable = 1; } if( pExpr->pLeft->op==TK_COLUMN ){ pInfo->idxLeft = pExpr->pLeft->iTable - base; pInfo->indexable = 1; } } } /* ** Generating the beginning of the loop used for WHERE clause processing. ** The return value is a pointer to an (opaque) structure that contains ** information needed to terminate the loop. Later, the calling routine ** should invoke sqliteWhereEnd() with the return value of this function ** in order to complete the WHERE clause processing. ** ** If an error occurs, this routine returns NULL. */ WhereInfo *sqliteWhereBegin( Parse *pParse, /* The parser context */ IdList *pTabList, /* A list of all tables */ Expr *pWhere, /* The WHERE clause */ int pushKey /* If TRUE, leave the table key on the stack */ ){ int i; /* Loop counter */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ int brk, cont; /* Addresses used during code generation */ int *aOrder; /* Order in which pTabList entries are searched */ int nExpr; /* Number of subexpressions in the WHERE clause */ int loopMask; /* One bit set for each outer loop */ int haveKey; /* True if KEY is on the stack */ int base; /* First available index for OP_Open opcodes */ int nCur; /* Next unused cursor number */ int aDirect[32]; /* If TRUE, then index this table using ROWID */ ExprInfo aExpr[50]; /* The WHERE clause is divided into these expressions */ /* Allocate space for aOrder[] and aiMem[]. */ aOrder = sqliteMalloc( sizeof(int) * pTabList->nId ); /* Allocate and initialize the WhereInfo structure that will become the ** return value. */ pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nId*sizeof(WhereLevel) ); if( sqlite_malloc_failed ){ sqliteFree(aOrder); sqliteFree(pWInfo); return 0; } pWInfo->pParse = pParse; pWInfo->pTabList = pTabList; base = pWInfo->base = pParse->nTab; nCur = base + pTabList->nId; /* Split the WHERE clause into as many as 32 separate subexpressions ** where each subexpression is separated by an AND operator. Any additional ** subexpressions are attached in the aExpr[32] and will not enter ** into the query optimizer computations. 32 is chosen as the cutoff ** since that is the number of bits in an integer that we use for an ** expression-used mask. */ memset(aExpr, 0, sizeof(aExpr)); nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere); /* Analyze all of the subexpressions. */ for(i=0; inTab, &aExpr[i]); } /* Figure out a good nesting order for the tables. aOrder[0] will ** be the index in pTabList of the outermost table. aOrder[1] will ** be the first nested loop and so on. aOrder[pTabList->nId-1] will ** be the innermost loop. ** ** Someday will put in a good algorithm here to reorder the loops ** for an effiecient query. But for now, just use whatever order the ** tables appear in in the pTabList. */ for(i=0; inId; i++){ aOrder[i] = i; } /* Figure out what index to use (if any) for each nested loop. ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested ** loop where i==0 is the outer loop and i==pTabList->nId-1 is the inner ** loop. If the expression uses only the ROWID field, then set ** aDirect[i] to 1. ** ** Actually, if there are more than 32 tables in the join, only the ** first 32 tables are candidates for indices. */ loopMask = 0; for(i=0; inId && ia[idx].pTab; Index *pIdx; Index *pBestIdx = 0; /* Check to see if there is an expression that uses only the ** ROWID field of this table. If so, set aDirect[i] to 1. ** If not, set aDirect[i] to 0. */ aDirect[i] = 0; for(j=0; jpLeft->iColumn<0 && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ aDirect[i] = 1; break; } if( aExpr[j].idxRight==idx && aExpr[j].p->pRight->iColumn<0 && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ aDirect[i] = 1; break; } } if( aDirect[i] ){ loopMask |= 1<a[i].pIdx = 0; continue; } /* Do a search for usable indices. Leave pBestIdx pointing to ** the most specific usable index. ** ** "Most specific" means that pBestIdx is the usable index that ** has the largest value for nColumn. A usable index is one for ** which there are subexpressions to compute every column of the ** index. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int columnMask = 0; if( pIdx->nColumn>32 ) continue; for(j=0; jpLeft->iColumn; int k; for(k=0; knColumn; k++){ if( pIdx->aiColumn[k]==iColumn ){ columnMask |= 1<pRight->iColumn; int k; for(k=0; knColumn; k++){ if( pIdx->aiColumn[k]==iColumn ){ columnMask |= 1<nColumn) ){ if( pBestIdx==0 || pBestIdx->nColumnnColumn ){ pBestIdx = pIdx; } } } pWInfo->a[i].pIdx = pBestIdx; loopMask |= 1<a[i].iCur = nCur++; } } /* Open all tables in the pTabList and all indices used by those tables. */ for(i=0; inId; i++){ int openOp; Table *pTab; pTab = pTabList->a[i].pTab; openOp = pTab->isTemp ? OP_OpenAux : OP_Open; sqliteVdbeAddOp(v, openOp, base+i, pTab->tnum); sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC); if( i==0 && !pParse->schemaVerified && (pParse->db->flags & SQLITE_InTrans)==0 ){ sqliteVdbeAddOp(v, OP_VerifyCookie, pParse->db->schema_cookie, 0); pParse->schemaVerified = 1; } if( pWInfo->a[i].pIdx!=0 ){ sqliteVdbeAddOp(v, openOp, pWInfo->a[i].iCur, pWInfo->a[i].pIdx->tnum); sqliteVdbeChangeP3(v, -1, pWInfo->a[i].pIdx->zName, P3_STATIC); } } /* Generate the code to do the search */ loopMask = 0; pWInfo->iBreak = sqliteVdbeMakeLabel(v); for(i=0; inId; i++){ int j, k; int idx = aOrder[i]; int goDirect; Index *pIdx; WhereLevel *pLevel = &pWInfo->a[i]; if( ipIdx; goDirect = aDirect[i]; }else{ pIdx = 0; goDirect = 0; } if( goDirect ){ /* Case 1: We can directly reference a single row using the ROWID field. */ cont = brk; for(k=0; kpLeft->iColumn<0 ){ sqliteExprCode(pParse, aExpr[k].p->pRight); aExpr[k].p = 0; break; } if( aExpr[k].idxRight==idx && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft && aExpr[k].p->pRight->iColumn<0 ){ sqliteExprCode(pParse, aExpr[k].p->pLeft); aExpr[k].p = 0; break; } } sqliteVdbeAddOp(v, OP_AddImm, 0, 0); brk = pLevel->brk = sqliteVdbeMakeLabel(v); cont = pLevel->cont = brk; if( i==pTabList->nId-1 && pushKey ){ haveKey = 1; }else{ sqliteVdbeAddOp(v, OP_NotFound, base+idx, brk); haveKey = 0; } pLevel->op = OP_Noop; }else if( pIdx==0 ){ /* Case 2: There was no usable index. We must do a complete ** scan of the table. */ int start; brk = pLevel->brk = sqliteVdbeMakeLabel(v); cont = pLevel->cont = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Rewind, base+idx, brk); start = sqliteVdbeCurrentAddr(v); pLevel->op = OP_Next; pLevel->p1 = base+idx; pLevel->p2 = start; haveKey = 0; }else{ /* Case 3: We do have a usable index in pIdx. */ int start; for(j=0; jnColumn; j++){ for(k=0; kpLeft->iColumn==pIdx->aiColumn[j] ){ sqliteExprCode(pParse, aExpr[k].p->pRight); aExpr[k].p = 0; break; } if( aExpr[k].idxRight==idx && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] ){ sqliteExprCode(pParse, aExpr[k].p->pLeft); aExpr[k].p = 0; break; } } } pLevel->iMem = pParse->nMem++; brk = pLevel->brk = sqliteVdbeMakeLabel(v); cont = pLevel->cont = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0); sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); sqliteVdbeAddOp(v, OP_IdxGT, pLevel->iCur, brk); sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); if( i==pTabList->nId-1 && pushKey ){ haveKey = 1; }else{ sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0); haveKey = 0; } pLevel->op = OP_Next; pLevel->p1 = pLevel->iCur; pLevel->p2 = start; } loopMask |= 1<iContinue = cont; if( pushKey && !haveKey ){ sqliteVdbeAddOp(v, OP_Recno, base, 0); } sqliteFree(aOrder); return pWInfo; } /* ** Generate the end of the WHERE loop. */ void sqliteWhereEnd(WhereInfo *pWInfo){ Vdbe *v = pWInfo->pParse->pVdbe; int i; int base = pWInfo->base; WhereLevel *pLevel; for(i=pWInfo->pTabList->nId-1; i>=0; i--){ pLevel = &pWInfo->a[i]; sqliteVdbeResolveLabel(v, pLevel->cont); if( pLevel->op!=OP_Noop ){ sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); } sqliteVdbeResolveLabel(v, pLevel->brk); } sqliteVdbeResolveLabel(v, pWInfo->iBreak); for(i=0; ipTabList->nId; i++){ pLevel = &pWInfo->a[i]; sqliteVdbeAddOp(v, OP_Close, base+i, 0); if( pLevel->pIdx!=0 ){ sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0); } } sqliteFree(pWInfo); return; }