2000-05-29 18:26:00 +04:00
|
|
|
/*
|
2001-09-16 04:13:26 +04:00
|
|
|
** 2001 September 15
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
2001-09-16 04:13:26 +04:00
|
|
|
** The author disclaims copyright to this source code. In place of
|
|
|
|
** a legal notice, here is a blessing:
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
2001-09-16 04:13:26 +04:00
|
|
|
** May you do good and not evil.
|
|
|
|
** May you find forgiveness for yourself and forgive others.
|
|
|
|
** May you share freely, never taking more than you give.
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
|
|
|
*************************************************************************
|
|
|
|
** This module contains C code that generates VDBE code used to process
|
|
|
|
** the WHERE clause of SQL statements. Also found here are subroutines
|
|
|
|
** to generate VDBE code to evaluate expressions.
|
|
|
|
**
|
2002-06-28 05:02:38 +04:00
|
|
|
** $Id: where.c,v 1.57 2002/06/28 01:02:38 drh Exp $
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
|
|
|
#include "sqliteInt.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
** The query generator uses an array of instances of this structure to
|
|
|
|
** help it analyze the subexpressions of the WHERE clause. Each WHERE
|
|
|
|
** clause subexpression is separated from the others by an AND operator.
|
|
|
|
*/
|
|
|
|
typedef struct ExprInfo ExprInfo;
|
|
|
|
struct ExprInfo {
|
|
|
|
Expr *p; /* Pointer to the subexpression */
|
2002-06-19 18:27:05 +04:00
|
|
|
u8 indexable; /* True if this subexprssion is usable by an index */
|
|
|
|
short int idxLeft; /* p->pLeft is a column in this table number. -1 if
|
2000-06-21 17:59:10 +04:00
|
|
|
** p->pLeft is not the column of any table */
|
2002-06-19 18:27:05 +04:00
|
|
|
short int idxRight; /* p->pRight is a column in this table number. -1 if
|
2000-06-21 17:59:10 +04:00
|
|
|
** p->pRight is not the column of any table */
|
2002-06-19 18:27:05 +04:00
|
|
|
unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */
|
|
|
|
unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */
|
|
|
|
unsigned prereqAll; /* Bitmask of tables referenced by p */
|
2000-05-29 18:26:00 +04:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Determine the number of elements in an array.
|
|
|
|
*/
|
|
|
|
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine is used to divide the WHERE expression into subexpressions
|
|
|
|
** separated by the AND operator.
|
|
|
|
**
|
|
|
|
** aSlot[] is an array of subexpressions structures.
|
|
|
|
** There are nSlot spaces left in this array. This routine attempts to
|
|
|
|
** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
|
|
|
|
** The return value is the number of slots filled.
|
|
|
|
*/
|
|
|
|
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
|
|
|
|
int cnt = 0;
|
|
|
|
if( pExpr==0 || nSlot<1 ) return 0;
|
|
|
|
if( nSlot==1 || pExpr->op!=TK_AND ){
|
|
|
|
aSlot[0].p = pExpr;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if( pExpr->pLeft->op!=TK_AND ){
|
|
|
|
aSlot[0].p = pExpr->pLeft;
|
|
|
|
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
|
|
|
|
}else{
|
|
|
|
cnt = exprSplit(nSlot, aSlot, pExpr->pRight);
|
|
|
|
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pLeft);
|
|
|
|
}
|
|
|
|
return cnt;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** This routine walks (recursively) an expression tree and generates
|
|
|
|
** a bitmask indicating which tables are used in that expression
|
2002-06-19 18:27:05 +04:00
|
|
|
** tree. Bit 0 of the mask is set if table base+0 is used. Bit 1
|
|
|
|
** is set if table base+1 is used. And so forth.
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
|
|
|
** In order for this routine to work, the calling function must have
|
|
|
|
** previously invoked sqliteExprResolveIds() on the expression. See
|
|
|
|
** the header comment on that routine for additional information.
|
2000-06-05 22:54:46 +04:00
|
|
|
**
|
|
|
|
** "base" is the cursor number (the value of the iTable field) that
|
2002-06-19 18:27:05 +04:00
|
|
|
** corresponds to the first entry in the list of tables that appear
|
|
|
|
** in the FROM clause of a SELECT. For UPDATE and DELETE statements
|
|
|
|
** there is just a single table with "base" as the cursor number.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
2000-06-05 22:54:46 +04:00
|
|
|
static int exprTableUsage(int base, Expr *p){
|
2000-05-29 18:26:00 +04:00
|
|
|
unsigned int mask = 0;
|
|
|
|
if( p==0 ) return 0;
|
2000-06-21 17:59:10 +04:00
|
|
|
if( p->op==TK_COLUMN ){
|
2000-06-05 22:54:46 +04:00
|
|
|
return 1<< (p->iTable - base);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
if( p->pRight ){
|
2000-06-05 22:54:46 +04:00
|
|
|
mask = exprTableUsage(base, p->pRight);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
if( p->pLeft ){
|
2000-06-05 22:54:46 +04:00
|
|
|
mask |= exprTableUsage(base, p->pLeft);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
2002-04-02 05:58:57 +04:00
|
|
|
if( p->pList ){
|
|
|
|
int i;
|
|
|
|
for(i=0; i<p->pList->nExpr; i++){
|
|
|
|
mask |= exprTableUsage(base, p->pList->a[i].pExpr);
|
|
|
|
}
|
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
return mask;
|
|
|
|
}
|
|
|
|
|
2001-11-08 03:45:21 +03:00
|
|
|
/*
|
|
|
|
** Return TRUE if the given operator is one of the operators that is
|
|
|
|
** allowed for an indexable WHERE clause. The allowed operators are
|
2002-06-15 00:58:45 +04:00
|
|
|
** "=", "<", ">", "<=", ">=", and "IN".
|
2001-11-08 03:45:21 +03:00
|
|
|
*/
|
|
|
|
static int allowedOp(int op){
|
|
|
|
switch( op ){
|
|
|
|
case TK_LT:
|
|
|
|
case TK_LE:
|
|
|
|
case TK_GT:
|
|
|
|
case TK_GE:
|
|
|
|
case TK_EQ:
|
2002-06-09 03:25:08 +04:00
|
|
|
case TK_IN:
|
2001-11-08 03:45:21 +03:00
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2000-05-29 18:26:00 +04:00
|
|
|
/*
|
|
|
|
** The input to this routine is an ExprInfo structure with only the
|
|
|
|
** "p" field filled in. The job of this routine is to analyze the
|
|
|
|
** subexpression and populate all the other fields of the ExprInfo
|
|
|
|
** structure.
|
2000-06-05 22:54:46 +04:00
|
|
|
**
|
|
|
|
** "base" is the cursor number (the value of the iTable field) that
|
2002-03-02 20:04:07 +03:00
|
|
|
** corresponds to the first entry in the table list.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
2000-06-05 22:54:46 +04:00
|
|
|
static void exprAnalyze(int base, ExprInfo *pInfo){
|
2000-05-29 18:26:00 +04:00
|
|
|
Expr *pExpr = pInfo->p;
|
2000-06-05 22:54:46 +04:00
|
|
|
pInfo->prereqLeft = exprTableUsage(base, pExpr->pLeft);
|
|
|
|
pInfo->prereqRight = exprTableUsage(base, pExpr->pRight);
|
2002-04-02 17:26:10 +04:00
|
|
|
pInfo->prereqAll = exprTableUsage(base, pExpr);
|
2000-05-29 18:26:00 +04:00
|
|
|
pInfo->indexable = 0;
|
|
|
|
pInfo->idxLeft = -1;
|
|
|
|
pInfo->idxRight = -1;
|
2001-11-08 03:45:21 +03:00
|
|
|
if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
|
2002-06-09 03:25:08 +04:00
|
|
|
if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
|
2000-06-05 22:54:46 +04:00
|
|
|
pInfo->idxRight = pExpr->pRight->iTable - base;
|
2000-05-29 18:26:00 +04:00
|
|
|
pInfo->indexable = 1;
|
|
|
|
}
|
2000-06-21 17:59:10 +04:00
|
|
|
if( pExpr->pLeft->op==TK_COLUMN ){
|
2000-06-05 22:54:46 +04:00
|
|
|
pInfo->idxLeft = pExpr->pLeft->iTable - base;
|
2000-05-29 18:26:00 +04:00
|
|
|
pInfo->indexable = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2002-06-19 18:27:05 +04:00
|
|
|
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
|
|
|
|
** left-most table in the FROM clause of that same SELECT statement and
|
|
|
|
** the table has a cursor number of "base".
|
|
|
|
**
|
|
|
|
** This routine attempts to find an index for pTab that generates the
|
|
|
|
** correct record sequence for the given ORDER BY clause. The return value
|
|
|
|
** is a pointer to an index that does the job. NULL is returned if the
|
|
|
|
** table has no index that will generate the correct sort order.
|
|
|
|
**
|
|
|
|
** If there are two or more indices that generate the correct sort order
|
|
|
|
** and pPreferredIdx is one of those indices, then return pPreferredIdx.
|
|
|
|
*/
|
|
|
|
static Index *findSortingIndex(
|
|
|
|
Table *pTab, /* The table to be sorted */
|
|
|
|
int base, /* Cursor number for pTab */
|
|
|
|
ExprList *pOrderBy, /* The ORDER BY clause */
|
|
|
|
Index *pPreferredIdx /* Use this index, if possible and not NULL */
|
|
|
|
){
|
|
|
|
int i;
|
|
|
|
Index *pMatch;
|
|
|
|
Index *pIdx;
|
|
|
|
|
|
|
|
assert( pOrderBy!=0 );
|
|
|
|
assert( pOrderBy->nExpr>0 );
|
|
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
|
|
Expr *p;
|
|
|
|
if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=SQLITE_SO_ASC ){
|
|
|
|
/* Indices can only be used for ascending sort order */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
p = pOrderBy->a[i].pExpr;
|
|
|
|
if( p->op!=TK_COLUMN || p->iTable!=base ){
|
|
|
|
/* Can not use an index sort on anything that is not a column in the
|
|
|
|
** left-most table of the FROM clause */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If we get this far, it means the ORDER BY clause consists only of
|
|
|
|
** ascending columns in the left-most table of the FROM clause. Now
|
|
|
|
** check for a matching index.
|
|
|
|
*/
|
|
|
|
pMatch = 0;
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
|
|
if( pIdx->nColumn<pOrderBy->nExpr ) continue;
|
|
|
|
for(i=0; i<pOrderBy->nExpr; i++){
|
|
|
|
if( pOrderBy->a[i].pExpr->iColumn!=pIdx->aiColumn[i] ) break;
|
|
|
|
}
|
|
|
|
if( i>=pOrderBy->nExpr ){
|
|
|
|
pMatch = pIdx;
|
|
|
|
if( pIdx==pPreferredIdx ) break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return pMatch;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
** Generate the beginning of the loop used for WHERE clause processing.
|
2000-05-29 18:26:00 +04:00
|
|
|
** The return value is a pointer to an (opaque) structure that contains
|
|
|
|
** information needed to terminate the loop. Later, the calling routine
|
|
|
|
** should invoke sqliteWhereEnd() with the return value of this function
|
|
|
|
** in order to complete the WHERE clause processing.
|
|
|
|
**
|
|
|
|
** If an error occurs, this routine returns NULL.
|
2002-06-15 00:58:45 +04:00
|
|
|
**
|
|
|
|
** The basic idea is to do a nested loop, one loop for each table in
|
|
|
|
** the FROM clause of a select. (INSERT and UPDATE statements are the
|
|
|
|
** same as a SELECT with only a single table in the FROM clause.) For
|
|
|
|
** example, if the SQL is this:
|
|
|
|
**
|
|
|
|
** SELECT * FROM t1, t2, t3 WHERE ...;
|
|
|
|
**
|
|
|
|
** Then the code generated is conceptually like the following:
|
|
|
|
**
|
|
|
|
** foreach row1 in t1 do \ Code generated
|
|
|
|
** foreach row2 in t2 do |-- by sqliteWhereBegin()
|
|
|
|
** foreach row3 in t3 do /
|
|
|
|
** ...
|
|
|
|
** end \ Code generated
|
|
|
|
** end |-- by sqliteWhereEnd()
|
|
|
|
** end /
|
|
|
|
**
|
|
|
|
** There are Btree cursors associated with each table. t1 uses cursor
|
|
|
|
** "base". t2 uses cursor "base+1". And so forth. This routine generates
|
|
|
|
** the code to open those cursors. sqliteWhereEnd() generates the code
|
|
|
|
** to close them.
|
|
|
|
**
|
|
|
|
** If the WHERE clause is empty, the foreach loops must each scan their
|
|
|
|
** entire tables. Thus a three-way join is an O(N^3) operation. But if
|
|
|
|
** the tables have indices and there are terms in the WHERE clause that
|
|
|
|
** refer to those indices, a complete table scan can be avoided and the
|
|
|
|
** code will run much faster. Most of the work of this routine is checking
|
|
|
|
** to see if there are indices that can be used to speed up the loop.
|
|
|
|
**
|
|
|
|
** Terms of the WHERE clause are also used to limit which rows actually
|
|
|
|
** make it to the "..." in the middle of the loop. After each "foreach",
|
|
|
|
** terms of the WHERE clause that use only terms in that loop and outer
|
|
|
|
** loops are evaluated and if false a jump is made around all subsequent
|
|
|
|
** inner loops (or around the "..." if the test occurs within the inner-
|
|
|
|
** most loop)
|
|
|
|
**
|
|
|
|
** OUTER JOINS
|
|
|
|
**
|
|
|
|
** An outer join of tables t1 and t2 is conceptally coded as follows:
|
|
|
|
**
|
|
|
|
** foreach row1 in t1 do
|
|
|
|
** flag = 0
|
|
|
|
** foreach row2 in t2 do
|
|
|
|
** start:
|
|
|
|
** ...
|
|
|
|
** flag = 1
|
|
|
|
** end
|
2002-06-19 18:27:05 +04:00
|
|
|
** if flag==0 then
|
|
|
|
** move the row2 cursor to a null row
|
|
|
|
** goto start
|
|
|
|
** fi
|
2002-06-15 00:58:45 +04:00
|
|
|
** end
|
|
|
|
**
|
2002-06-19 18:27:05 +04:00
|
|
|
** ORDER BY CLAUSE PROCESSING
|
|
|
|
**
|
|
|
|
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
|
|
|
|
** if there is one. If there is no ORDER BY clause or if this routine
|
|
|
|
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
|
|
|
|
**
|
|
|
|
** If an index can be used so that the natural output order of the table
|
|
|
|
** scan is correct for the ORDER BY clause, then that index is used and
|
|
|
|
** *ppOrderBy is set to NULL. This is an optimization that prevents an
|
|
|
|
** unnecessary sort of the result set if an index appropriate for the
|
|
|
|
** ORDER BY clause already exists.
|
|
|
|
**
|
|
|
|
** If the where clause loops cannot be arranged to provide the correct
|
|
|
|
** output order, then the *ppOrderBy is unchanged.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
|
|
|
WhereInfo *sqliteWhereBegin(
|
|
|
|
Parse *pParse, /* The parser context */
|
2002-03-02 20:04:07 +03:00
|
|
|
int base, /* VDBE cursor index for left-most table in pTabList */
|
2002-05-24 06:04:32 +04:00
|
|
|
SrcList *pTabList, /* A list of all tables to be scanned */
|
2000-05-29 18:26:00 +04:00
|
|
|
Expr *pWhere, /* The WHERE clause */
|
2002-06-19 18:27:05 +04:00
|
|
|
int pushKey, /* If TRUE, leave the table key on the stack */
|
|
|
|
ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
|
2000-05-29 18:26:00 +04:00
|
|
|
){
|
|
|
|
int i; /* Loop counter */
|
|
|
|
WhereInfo *pWInfo; /* Will become the return value of this function */
|
|
|
|
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
|
|
|
|
int brk, cont; /* Addresses used during code generation */
|
|
|
|
int *aOrder; /* Order in which pTabList entries are searched */
|
|
|
|
int nExpr; /* Number of subexpressions in the WHERE clause */
|
|
|
|
int loopMask; /* One bit set for each outer loop */
|
|
|
|
int haveKey; /* True if KEY is on the stack */
|
2001-04-04 15:48:57 +04:00
|
|
|
int aDirect[32]; /* If TRUE, then index this table using ROWID */
|
2001-12-22 17:49:24 +03:00
|
|
|
int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
|
|
|
|
int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
|
|
|
|
int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
|
2002-06-28 05:02:38 +04:00
|
|
|
ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
|
2000-05-29 18:26:00 +04:00
|
|
|
|
2002-06-15 00:58:45 +04:00
|
|
|
/* pushKey is only allowed if there is a single table (as in an INSERT or
|
|
|
|
** UPDATE statement)
|
|
|
|
*/
|
|
|
|
assert( pushKey==0 || pTabList->nSrc==1 );
|
2002-06-28 05:02:38 +04:00
|
|
|
|
|
|
|
/* Split the WHERE clause into separate subexpressions where each
|
|
|
|
** subexpression is separated by an AND operator. If the aExpr[]
|
|
|
|
** array fills up, the last entry might point to an expression which
|
|
|
|
** contains additional unfactored AND operators.
|
|
|
|
*/
|
|
|
|
memset(aExpr, 0, sizeof(aExpr));
|
|
|
|
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
|
|
|
|
if( nExpr==ARRAYSIZE(aExpr) ){
|
|
|
|
char zBuf[50];
|
|
|
|
sprintf(zBuf, "%d", ARRAYSIZE(aExpr)-1);
|
|
|
|
sqliteSetString(&pParse->zErrMsg, "WHERE clause too complex - no more "
|
|
|
|
"than ", zBuf, " terms allowed", 0);
|
|
|
|
pParse->nErr++;
|
|
|
|
return 0;
|
|
|
|
}
|
2002-06-15 00:58:45 +04:00
|
|
|
|
2002-06-19 18:27:05 +04:00
|
|
|
/* Allocate space for aOrder[] */
|
2002-05-24 06:04:32 +04:00
|
|
|
aOrder = sqliteMalloc( sizeof(int) * pTabList->nSrc );
|
2000-05-29 18:26:00 +04:00
|
|
|
|
|
|
|
/* Allocate and initialize the WhereInfo structure that will become the
|
|
|
|
** return value.
|
|
|
|
*/
|
2002-05-24 06:04:32 +04:00
|
|
|
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
|
2001-04-11 18:28:42 +04:00
|
|
|
if( sqlite_malloc_failed ){
|
2000-05-29 18:26:00 +04:00
|
|
|
sqliteFree(aOrder);
|
2001-04-11 18:28:42 +04:00
|
|
|
sqliteFree(pWInfo);
|
2000-05-29 18:26:00 +04:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
pWInfo->pParse = pParse;
|
|
|
|
pWInfo->pTabList = pTabList;
|
2002-03-02 20:04:07 +03:00
|
|
|
pWInfo->base = base;
|
|
|
|
pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
|
2002-04-30 23:20:28 +04:00
|
|
|
pWInfo->iBreak = sqliteVdbeMakeLabel(v);
|
|
|
|
|
|
|
|
/* Special case: a WHERE clause that is constant. Evaluate the
|
|
|
|
** expression and either jump over all of the code or fall thru.
|
|
|
|
*/
|
|
|
|
if( pWhere && sqliteExprIsConstant(pWhere) ){
|
2002-05-27 00:54:33 +04:00
|
|
|
sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
|
2002-06-15 02:38:41 +04:00
|
|
|
pWhere = 0;
|
2002-04-30 23:20:28 +04:00
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
|
|
|
|
/* Analyze all of the subexpressions.
|
|
|
|
*/
|
|
|
|
for(i=0; i<nExpr; i++){
|
2002-02-18 04:17:00 +03:00
|
|
|
exprAnalyze(base, &aExpr[i]);
|
2002-05-21 17:18:25 +04:00
|
|
|
|
|
|
|
/* If we are executing a trigger body, remove all references to
|
|
|
|
** new.* and old.* tables from the prerequisite masks.
|
|
|
|
*/
|
|
|
|
if( pParse->trigStack ){
|
|
|
|
int x;
|
|
|
|
if( (x = pParse->trigStack->newIdx) >= 0 ){
|
|
|
|
int mask = ~(1 << (x - base));
|
|
|
|
aExpr[i].prereqRight &= mask;
|
|
|
|
aExpr[i].prereqLeft &= mask;
|
|
|
|
aExpr[i].prereqAll &= mask;
|
|
|
|
}
|
|
|
|
if( (x = pParse->trigStack->oldIdx) >= 0 ){
|
|
|
|
int mask = ~(1 << (x - base));
|
|
|
|
aExpr[i].prereqRight &= mask;
|
|
|
|
aExpr[i].prereqLeft &= mask;
|
|
|
|
aExpr[i].prereqAll &= mask;
|
|
|
|
}
|
2002-05-15 12:30:12 +04:00
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Figure out a good nesting order for the tables. aOrder[0] will
|
|
|
|
** be the index in pTabList of the outermost table. aOrder[1] will
|
2002-05-24 06:04:32 +04:00
|
|
|
** be the first nested loop and so on. aOrder[pTabList->nSrc-1] will
|
2000-05-29 18:26:00 +04:00
|
|
|
** be the innermost loop.
|
|
|
|
**
|
2002-05-21 17:18:25 +04:00
|
|
|
** Someday we will put in a good algorithm here to reorder the loops
|
2000-05-29 18:26:00 +04:00
|
|
|
** for an effiecient query. But for now, just use whatever order the
|
|
|
|
** tables appear in in the pTabList.
|
|
|
|
*/
|
2002-05-24 06:04:32 +04:00
|
|
|
for(i=0; i<pTabList->nSrc; i++){
|
2000-05-29 18:26:00 +04:00
|
|
|
aOrder[i] = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Figure out what index to use (if any) for each nested loop.
|
2001-11-07 19:48:26 +03:00
|
|
|
** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
|
2002-05-24 06:04:32 +04:00
|
|
|
** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
|
2001-12-22 17:49:24 +03:00
|
|
|
** loop.
|
|
|
|
**
|
|
|
|
** If terms exist that use the ROWID of any table, then set the
|
|
|
|
** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
|
|
|
|
** to the index of the term containing the ROWID. We always prefer
|
|
|
|
** to use a ROWID which can directly access a table rather than an
|
2002-02-19 01:49:59 +03:00
|
|
|
** index which requires reading an index first to get the rowid then
|
|
|
|
** doing a second read of the actual database table.
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
|
|
|
** Actually, if there are more than 32 tables in the join, only the
|
2002-02-19 01:49:59 +03:00
|
|
|
** first 32 tables are candidates for indices. This is (again) due
|
|
|
|
** to the limit of 32 bits in an integer bitmask.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
|
|
|
loopMask = 0;
|
2002-05-24 06:04:32 +04:00
|
|
|
for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(aDirect); i++){
|
2001-04-04 15:48:57 +04:00
|
|
|
int j;
|
2000-05-29 18:26:00 +04:00
|
|
|
int idx = aOrder[i];
|
|
|
|
Table *pTab = pTabList->a[idx].pTab;
|
|
|
|
Index *pIdx;
|
|
|
|
Index *pBestIdx = 0;
|
2001-11-08 03:45:21 +03:00
|
|
|
int bestScore = 0;
|
2000-05-29 18:26:00 +04:00
|
|
|
|
2001-04-04 15:48:57 +04:00
|
|
|
/* Check to see if there is an expression that uses only the
|
2001-12-22 17:49:24 +03:00
|
|
|
** ROWID field of this table. For terms of the form ROWID==expr
|
|
|
|
** set iDirectEq[i] to the index of the term. For terms of the
|
|
|
|
** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
|
|
|
|
** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
|
2001-04-04 15:48:57 +04:00
|
|
|
*/
|
2001-12-22 17:49:24 +03:00
|
|
|
iDirectEq[i] = -1;
|
|
|
|
iDirectLt[i] = -1;
|
|
|
|
iDirectGt[i] = -1;
|
2001-04-04 15:48:57 +04:00
|
|
|
for(j=0; j<nExpr; j++){
|
|
|
|
if( aExpr[j].idxLeft==idx && aExpr[j].p->pLeft->iColumn<0
|
|
|
|
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
2001-12-22 17:49:24 +03:00
|
|
|
switch( aExpr[j].p->op ){
|
2002-06-09 03:25:08 +04:00
|
|
|
case TK_IN:
|
2001-12-22 17:49:24 +03:00
|
|
|
case TK_EQ: iDirectEq[i] = j; break;
|
|
|
|
case TK_LE:
|
|
|
|
case TK_LT: iDirectLt[i] = j; break;
|
|
|
|
case TK_GE:
|
|
|
|
case TK_GT: iDirectGt[i] = j; break;
|
|
|
|
}
|
2001-04-04 15:48:57 +04:00
|
|
|
}
|
|
|
|
if( aExpr[j].idxRight==idx && aExpr[j].p->pRight->iColumn<0
|
|
|
|
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
2001-12-22 17:49:24 +03:00
|
|
|
switch( aExpr[j].p->op ){
|
|
|
|
case TK_EQ: iDirectEq[i] = j; break;
|
|
|
|
case TK_LE:
|
|
|
|
case TK_LT: iDirectGt[i] = j; break;
|
|
|
|
case TK_GE:
|
|
|
|
case TK_GT: iDirectLt[i] = j; break;
|
|
|
|
}
|
2001-04-04 15:48:57 +04:00
|
|
|
}
|
|
|
|
}
|
2001-12-22 17:49:24 +03:00
|
|
|
if( iDirectEq[i]>=0 ){
|
2001-04-04 15:48:57 +04:00
|
|
|
loopMask |= 1<<idx;
|
2001-11-07 19:48:26 +03:00
|
|
|
pWInfo->a[i].pIdx = 0;
|
2001-04-04 15:48:57 +04:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2000-05-29 18:26:00 +04:00
|
|
|
/* Do a search for usable indices. Leave pBestIdx pointing to
|
2001-11-08 03:45:21 +03:00
|
|
|
** the "best" index. pBestIdx is left set to NULL if no indices
|
|
|
|
** are usable.
|
|
|
|
**
|
|
|
|
** The best index is determined as follows. For each of the
|
|
|
|
** left-most terms that is fixed by an equality operator, add
|
|
|
|
** 4 to the score. The right-most term of the index may be
|
|
|
|
** constrained by an inequality. Add 1 if for an "x<..." constraint
|
|
|
|
** and add 2 for an "x>..." constraint. Chose the index that
|
|
|
|
** gives the best score.
|
2000-05-29 18:26:00 +04:00
|
|
|
**
|
2001-11-08 03:45:21 +03:00
|
|
|
** This scoring system is designed so that the score can later be
|
|
|
|
** used to determine how the index is used. If the score&3 is 0
|
|
|
|
** then all constraints are equalities. If score&1 is not 0 then
|
|
|
|
** there is an inequality used as a termination key. (ex: "x<...")
|
|
|
|
** If score&2 is not 0 then there is an inequality used as the
|
|
|
|
** start key. (ex: "x>...");
|
2002-06-09 03:25:08 +04:00
|
|
|
**
|
2002-06-15 00:58:45 +04:00
|
|
|
** The IN operator (as in "<expr> IN (...)") is treated the same as
|
|
|
|
** an equality comparison except that it can only be used on the
|
|
|
|
** left-most column of an index and other terms of the WHERE clause
|
|
|
|
** cannot be used in conjunction with the IN operator to help satisfy
|
|
|
|
** other columns of the index.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
2002-06-15 00:58:45 +04:00
|
|
|
int eqMask = 0; /* Index columns covered by an x=... term */
|
|
|
|
int ltMask = 0; /* Index columns covered by an x<... term */
|
|
|
|
int gtMask = 0; /* Index columns covered by an x>... term */
|
|
|
|
int inMask = 0; /* Index columns covered by an x IN .. term */
|
2001-11-08 03:45:21 +03:00
|
|
|
int nEq, m, score;
|
2000-05-29 18:26:00 +04:00
|
|
|
|
2001-11-08 03:45:21 +03:00
|
|
|
if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
|
2000-05-29 18:26:00 +04:00
|
|
|
for(j=0; j<nExpr; j++){
|
|
|
|
if( aExpr[j].idxLeft==idx
|
|
|
|
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
|
2000-06-21 17:59:10 +04:00
|
|
|
int iColumn = aExpr[j].p->pLeft->iColumn;
|
2000-05-29 18:26:00 +04:00
|
|
|
int k;
|
2000-06-21 17:59:10 +04:00
|
|
|
for(k=0; k<pIdx->nColumn; k++){
|
|
|
|
if( pIdx->aiColumn[k]==iColumn ){
|
2001-11-08 03:45:21 +03:00
|
|
|
switch( aExpr[j].p->op ){
|
2002-06-09 05:55:20 +04:00
|
|
|
case TK_IN: {
|
|
|
|
if( k==0 ) inMask |= 1;
|
|
|
|
break;
|
|
|
|
}
|
2001-11-08 03:45:21 +03:00
|
|
|
case TK_EQ: {
|
|
|
|
eqMask |= 1<<k;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TK_LE:
|
|
|
|
case TK_LT: {
|
|
|
|
ltMask |= 1<<k;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TK_GE:
|
|
|
|
case TK_GT: {
|
|
|
|
gtMask |= 1<<k;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
/* CANT_HAPPEN */
|
|
|
|
assert( 0 );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( aExpr[j].idxRight==idx
|
|
|
|
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
|
2000-06-21 17:59:10 +04:00
|
|
|
int iColumn = aExpr[j].p->pRight->iColumn;
|
2000-05-29 18:26:00 +04:00
|
|
|
int k;
|
2000-06-21 17:59:10 +04:00
|
|
|
for(k=0; k<pIdx->nColumn; k++){
|
|
|
|
if( pIdx->aiColumn[k]==iColumn ){
|
2001-11-08 03:45:21 +03:00
|
|
|
switch( aExpr[j].p->op ){
|
|
|
|
case TK_EQ: {
|
|
|
|
eqMask |= 1<<k;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TK_LE:
|
|
|
|
case TK_LT: {
|
|
|
|
gtMask |= 1<<k;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TK_GE:
|
|
|
|
case TK_GT: {
|
|
|
|
ltMask |= 1<<k;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
/* CANT_HAPPEN */
|
|
|
|
assert( 0 );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2001-11-08 03:45:21 +03:00
|
|
|
for(nEq=0; nEq<pIdx->nColumn; nEq++){
|
|
|
|
m = (1<<(nEq+1))-1;
|
|
|
|
if( (m & eqMask)!=m ) break;
|
|
|
|
}
|
|
|
|
score = nEq*4;
|
|
|
|
m = 1<<nEq;
|
|
|
|
if( m & ltMask ) score++;
|
|
|
|
if( m & gtMask ) score+=2;
|
2002-06-09 05:55:20 +04:00
|
|
|
if( score==0 && inMask ) score = 4;
|
2001-11-08 03:45:21 +03:00
|
|
|
if( score>bestScore ){
|
|
|
|
pBestIdx = pIdx;
|
|
|
|
bestScore = score;
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
}
|
2001-11-07 19:48:26 +03:00
|
|
|
pWInfo->a[i].pIdx = pBestIdx;
|
2001-11-08 03:45:21 +03:00
|
|
|
pWInfo->a[i].score = bestScore;
|
2000-05-31 00:17:49 +04:00
|
|
|
loopMask |= 1<<idx;
|
2001-11-07 19:48:26 +03:00
|
|
|
if( pBestIdx ){
|
2002-03-02 20:04:07 +03:00
|
|
|
pWInfo->a[i].iCur = pParse->nTab++;
|
|
|
|
pWInfo->peakNTab = pParse->nTab;
|
2001-11-07 19:48:26 +03:00
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
|
2002-06-19 18:27:05 +04:00
|
|
|
/* Check to see if the ORDER BY clause is or can be satisfied by the
|
|
|
|
** use of an index on the first table.
|
|
|
|
*/
|
|
|
|
if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
|
|
|
|
Index *pSortIdx;
|
|
|
|
Index *pIdx;
|
|
|
|
Table *pTab;
|
|
|
|
|
|
|
|
pTab = pTabList->a[0].pTab;
|
|
|
|
pIdx = pWInfo->a[0].pIdx;
|
|
|
|
if( pIdx && pWInfo->a[0].score==4 ){
|
|
|
|
/* If there is already an index on the left-most column and it is
|
|
|
|
** an equality index, then either sorting is not helpful, or the
|
|
|
|
** index is an IN operator, in which case the index does not give
|
|
|
|
** the correct sort order. Either way, pretend that no suitable
|
|
|
|
** index is found.
|
|
|
|
*/
|
|
|
|
pSortIdx = 0;
|
|
|
|
}else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
|
|
|
|
/* If the left-most column is accessed using its ROWID, then do
|
|
|
|
** not try to sort by index.
|
|
|
|
*/
|
|
|
|
pSortIdx = 0;
|
|
|
|
}else{
|
|
|
|
pSortIdx = findSortingIndex(pTab, base, *ppOrderBy, pIdx);
|
|
|
|
}
|
|
|
|
if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
|
|
|
|
if( pIdx==0 ){
|
|
|
|
pWInfo->a[0].pIdx = pSortIdx;
|
|
|
|
pWInfo->a[0].iCur = pParse->nTab++;
|
|
|
|
pWInfo->peakNTab = pParse->nTab;
|
|
|
|
}
|
|
|
|
*ppOrderBy = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2001-11-07 19:48:26 +03:00
|
|
|
/* Open all tables in the pTabList and all indices used by those tables.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
2002-05-24 06:04:32 +04:00
|
|
|
for(i=0; i<pTabList->nSrc; i++){
|
2001-10-08 17:22:32 +04:00
|
|
|
int openOp;
|
|
|
|
Table *pTab;
|
|
|
|
|
|
|
|
pTab = pTabList->a[i].pTab;
|
2002-02-23 05:32:10 +03:00
|
|
|
if( pTab->isTransient || pTab->pSelect ) continue;
|
2001-10-08 17:22:32 +04:00
|
|
|
openOp = pTab->isTemp ? OP_OpenAux : OP_Open;
|
2001-10-13 05:06:47 +04:00
|
|
|
sqliteVdbeAddOp(v, openOp, base+i, pTab->tnum);
|
|
|
|
sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
|
2001-09-15 04:57:28 +04:00
|
|
|
if( i==0 && !pParse->schemaVerified &&
|
|
|
|
(pParse->db->flags & SQLITE_InTrans)==0 ){
|
2001-10-13 05:06:47 +04:00
|
|
|
sqliteVdbeAddOp(v, OP_VerifyCookie, pParse->db->schema_cookie, 0);
|
2001-09-15 04:57:28 +04:00
|
|
|
pParse->schemaVerified = 1;
|
|
|
|
}
|
2001-11-07 19:48:26 +03:00
|
|
|
if( pWInfo->a[i].pIdx!=0 ){
|
|
|
|
sqliteVdbeAddOp(v, openOp, pWInfo->a[i].iCur, pWInfo->a[i].pIdx->tnum);
|
|
|
|
sqliteVdbeChangeP3(v, -1, pWInfo->a[i].pIdx->zName, P3_STATIC);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate the code to do the search
|
|
|
|
*/
|
|
|
|
loopMask = 0;
|
2002-05-24 06:04:32 +04:00
|
|
|
for(i=0; i<pTabList->nSrc; i++){
|
2000-05-29 18:26:00 +04:00
|
|
|
int j, k;
|
|
|
|
int idx = aOrder[i];
|
2001-04-04 15:48:57 +04:00
|
|
|
Index *pIdx;
|
2001-11-07 19:48:26 +03:00
|
|
|
WhereLevel *pLevel = &pWInfo->a[i];
|
2000-05-29 18:26:00 +04:00
|
|
|
|
2002-05-25 00:31:36 +04:00
|
|
|
/* If this is the right table of a LEFT OUTER JOIN, allocate and
|
|
|
|
** initialize a memory cell that record if this table matches any
|
2002-06-15 00:58:45 +04:00
|
|
|
** row of the left table of the join.
|
2002-05-25 00:31:36 +04:00
|
|
|
*/
|
|
|
|
if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
|
|
|
|
if( !pParse->nMem ) pParse->nMem++;
|
|
|
|
pLevel->iLeftJoin = pParse->nMem++;
|
|
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
|
|
|
}
|
|
|
|
|
2001-12-22 17:49:24 +03:00
|
|
|
pIdx = pLevel->pIdx;
|
2002-06-09 03:25:08 +04:00
|
|
|
pLevel->inOp = OP_Noop;
|
2001-12-22 17:49:24 +03:00
|
|
|
if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
|
|
|
|
/* Case 1: We can directly reference a single row using an
|
2002-06-15 00:58:45 +04:00
|
|
|
** equality comparison against the ROWID field. Or
|
|
|
|
** we reference multiple rows using a "rowid IN (...)"
|
|
|
|
** construct.
|
2001-04-04 15:48:57 +04:00
|
|
|
*/
|
2001-12-22 17:49:24 +03:00
|
|
|
k = iDirectEq[i];
|
|
|
|
assert( k<nExpr );
|
|
|
|
assert( aExpr[k].p!=0 );
|
|
|
|
assert( aExpr[k].idxLeft==idx || aExpr[k].idxRight==idx );
|
2002-06-09 03:25:08 +04:00
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
2001-12-22 17:49:24 +03:00
|
|
|
if( aExpr[k].idxLeft==idx ){
|
2002-06-09 03:25:08 +04:00
|
|
|
Expr *pX = aExpr[k].p;
|
|
|
|
if( pX->op!=TK_IN ){
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
|
|
}else if( pX->pList ){
|
|
|
|
sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
|
|
|
|
pLevel->inOp = OP_SetNext;
|
|
|
|
pLevel->inP1 = pX->iTable;
|
|
|
|
pLevel->inP2 = sqliteVdbeCurrentAddr(v);
|
|
|
|
}else{
|
|
|
|
assert( pX->pSelect );
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
|
|
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
|
|
|
|
pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
|
|
|
|
pLevel->inOp = OP_Next;
|
|
|
|
pLevel->inP1 = pX->iTable;
|
|
|
|
}
|
2001-12-22 17:49:24 +03:00
|
|
|
}else{
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
2001-04-04 15:48:57 +04:00
|
|
|
}
|
2001-12-22 17:49:24 +03:00
|
|
|
aExpr[k].p = 0;
|
2002-06-09 03:25:08 +04:00
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
2001-12-22 17:49:24 +03:00
|
|
|
sqliteVdbeAddOp(v, OP_MustBeInt, 0, brk);
|
2002-06-09 03:25:08 +04:00
|
|
|
haveKey = 0;
|
2002-01-28 18:53:03 +03:00
|
|
|
sqliteVdbeAddOp(v, OP_NotExists, base+idx, brk);
|
2001-11-07 19:48:26 +03:00
|
|
|
pLevel->op = OP_Noop;
|
2002-06-19 18:27:05 +04:00
|
|
|
}else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
|
2002-06-15 00:58:45 +04:00
|
|
|
/* Case 2: There is an index and all terms of the WHERE clause that
|
|
|
|
** refer to the index use the "==" or "IN" operators.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
2001-11-07 19:48:26 +03:00
|
|
|
int start;
|
2001-11-08 03:45:21 +03:00
|
|
|
int testOp;
|
|
|
|
int nColumn = pLevel->score/4;
|
2002-06-09 03:25:08 +04:00
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
2001-11-08 03:45:21 +03:00
|
|
|
for(j=0; j<nColumn; j++){
|
2000-05-29 18:26:00 +04:00
|
|
|
for(k=0; k<nExpr; k++){
|
2002-06-09 03:25:08 +04:00
|
|
|
Expr *pX = aExpr[k].p;
|
|
|
|
if( pX==0 ) continue;
|
2000-05-29 18:26:00 +04:00
|
|
|
if( aExpr[k].idxLeft==idx
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
2002-06-09 03:25:08 +04:00
|
|
|
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
|
2000-05-29 18:26:00 +04:00
|
|
|
){
|
2002-06-09 03:25:08 +04:00
|
|
|
if( pX->op==TK_EQ ){
|
|
|
|
sqliteExprCode(pParse, pX->pRight);
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( pX->op==TK_IN && nColumn==1 ){
|
|
|
|
if( pX->pList ){
|
|
|
|
sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
|
|
|
|
pLevel->inOp = OP_SetNext;
|
|
|
|
pLevel->inP1 = pX->iTable;
|
|
|
|
pLevel->inP2 = sqliteVdbeCurrentAddr(v);
|
|
|
|
}else{
|
|
|
|
assert( pX->pSelect );
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
|
|
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
|
|
|
|
pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
|
|
|
|
pLevel->inOp = OP_Next;
|
|
|
|
pLevel->inP1 = pX->iTable;
|
|
|
|
}
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
break;
|
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
if( aExpr[k].idxRight==idx
|
2001-11-08 03:45:21 +03:00
|
|
|
&& aExpr[k].p->op==TK_EQ
|
2000-05-29 18:26:00 +04:00
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
2000-06-21 17:59:10 +04:00
|
|
|
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
2000-05-29 18:26:00 +04:00
|
|
|
){
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2001-11-07 19:48:26 +03:00
|
|
|
pLevel->iMem = pParse->nMem++;
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
2001-11-08 03:45:21 +03:00
|
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
|
|
|
|
if( nColumn==pIdx->nColumn ){
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
|
|
|
|
testOp = OP_IdxGT;
|
|
|
|
}else{
|
|
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
|
|
testOp = OP_IdxGE;
|
|
|
|
}
|
2001-11-07 19:48:26 +03:00
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
|
|
|
|
start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
2001-11-08 03:45:21 +03:00
|
|
|
sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
|
2001-11-07 19:48:26 +03:00
|
|
|
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
2002-05-24 06:04:32 +04:00
|
|
|
if( i==pTabList->nSrc-1 && pushKey ){
|
2000-05-29 18:26:00 +04:00
|
|
|
haveKey = 1;
|
|
|
|
}else{
|
2001-10-13 05:06:47 +04:00
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
|
2000-05-29 18:26:00 +04:00
|
|
|
haveKey = 0;
|
|
|
|
}
|
2001-11-07 19:48:26 +03:00
|
|
|
pLevel->op = OP_Next;
|
|
|
|
pLevel->p1 = pLevel->iCur;
|
|
|
|
pLevel->p2 = start;
|
2001-12-22 17:49:24 +03:00
|
|
|
}else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
|
|
|
|
/* Case 3: We have an inequality comparison against the ROWID field.
|
|
|
|
*/
|
|
|
|
int testOp = OP_Noop;
|
|
|
|
int start;
|
|
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
|
|
if( iDirectGt[i]>=0 ){
|
|
|
|
k = iDirectGt[i];
|
|
|
|
assert( k<nExpr );
|
|
|
|
assert( aExpr[k].p!=0 );
|
|
|
|
assert( aExpr[k].idxLeft==idx || aExpr[k].idxRight==idx );
|
|
|
|
if( aExpr[k].idxLeft==idx ){
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
|
|
}else{
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_MustBeInt, 0, brk);
|
|
|
|
if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
|
|
|
|
sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, brk);
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
}else{
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, base+idx, brk);
|
|
|
|
}
|
|
|
|
if( iDirectLt[i]>=0 ){
|
|
|
|
k = iDirectLt[i];
|
|
|
|
assert( k<nExpr );
|
|
|
|
assert( aExpr[k].p!=0 );
|
|
|
|
assert( aExpr[k].idxLeft==idx || aExpr[k].idxRight==idx );
|
|
|
|
if( aExpr[k].idxLeft==idx ){
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
|
|
}else{
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1);
|
|
|
|
pLevel->iMem = pParse->nMem++;
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
|
|
|
|
if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
|
|
|
|
testOp = OP_Ge;
|
|
|
|
}else{
|
|
|
|
testOp = OP_Gt;
|
|
|
|
}
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
}
|
|
|
|
start = sqliteVdbeCurrentAddr(v);
|
|
|
|
pLevel->op = OP_Next;
|
|
|
|
pLevel->p1 = base+idx;
|
|
|
|
pLevel->p2 = start;
|
|
|
|
if( testOp!=OP_Noop ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Recno, base+idx, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
|
|
sqliteVdbeAddOp(v, testOp, 0, brk);
|
|
|
|
}
|
|
|
|
haveKey = 0;
|
|
|
|
}else if( pIdx==0 ){
|
2002-06-15 00:58:45 +04:00
|
|
|
/* Case 4: There is no usable index. We must do a complete
|
2001-12-22 17:49:24 +03:00
|
|
|
** scan of the entire database table.
|
|
|
|
*/
|
|
|
|
int start;
|
|
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, base+idx, brk);
|
|
|
|
start = sqliteVdbeCurrentAddr(v);
|
|
|
|
pLevel->op = OP_Next;
|
|
|
|
pLevel->p1 = base+idx;
|
|
|
|
pLevel->p2 = start;
|
|
|
|
haveKey = 0;
|
2001-11-08 03:45:21 +03:00
|
|
|
}else{
|
2002-06-15 00:58:45 +04:00
|
|
|
/* Case 5: The WHERE clause term that refers to the right-most
|
|
|
|
** column of the index is an inequality. For example, if
|
|
|
|
** the index is on (x,y,z) and the WHERE clause is of the
|
|
|
|
** form "x=5 AND y<10" then this case is used. Only the
|
|
|
|
** right-most column can be an inequality - the rest must
|
|
|
|
** use the "==" operator.
|
2002-06-19 18:27:05 +04:00
|
|
|
**
|
|
|
|
** This case is also used when there are no WHERE clause
|
|
|
|
** constraints but an index is selected anyway, in order
|
|
|
|
** to force the output order to conform to an ORDER BY.
|
2001-11-08 03:45:21 +03:00
|
|
|
*/
|
|
|
|
int score = pLevel->score;
|
|
|
|
int nEqColumn = score/4;
|
|
|
|
int start;
|
|
|
|
int leFlag, geFlag;
|
|
|
|
int testOp;
|
|
|
|
|
|
|
|
/* Evaluate the equality constraints
|
|
|
|
*/
|
|
|
|
for(j=0; j<nEqColumn; j++){
|
|
|
|
for(k=0; k<nExpr; k++){
|
|
|
|
if( aExpr[k].p==0 ) continue;
|
|
|
|
if( aExpr[k].idxLeft==idx
|
|
|
|
&& aExpr[k].p->op==TK_EQ
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
|
|
&& aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
|
|
|
|
){
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight);
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( aExpr[k].idxRight==idx
|
|
|
|
&& aExpr[k].p->op==TK_EQ
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
|
|
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
|
|
|
|
){
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft);
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2002-06-15 00:58:45 +04:00
|
|
|
/* Duplicate the equality term values because they will all be
|
2001-11-08 03:45:21 +03:00
|
|
|
** used twice: once to make the termination key and once to make the
|
|
|
|
** start key.
|
|
|
|
*/
|
|
|
|
for(j=0; j<nEqColumn; j++){
|
|
|
|
sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate the termination key. This is the key value that
|
|
|
|
** will end the search. There is no termination key if there
|
2002-06-15 00:58:45 +04:00
|
|
|
** are no equality terms and no "X<..." term.
|
2001-11-08 03:45:21 +03:00
|
|
|
*/
|
|
|
|
if( (score & 1)!=0 ){
|
|
|
|
for(k=0; k<nExpr; k++){
|
|
|
|
Expr *pExpr = aExpr[k].p;
|
|
|
|
if( pExpr==0 ) continue;
|
|
|
|
if( aExpr[k].idxLeft==idx
|
|
|
|
&& (pExpr->op==TK_LT || pExpr->op==TK_LE)
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
|
|
&& pExpr->pLeft->iColumn==pIdx->aiColumn[j]
|
|
|
|
){
|
|
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
|
|
leFlag = pExpr->op==TK_LE;
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( aExpr[k].idxRight==idx
|
|
|
|
&& (pExpr->op==TK_GT || pExpr->op==TK_GE)
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
|
|
&& pExpr->pRight->iColumn==pIdx->aiColumn[j]
|
|
|
|
){
|
|
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
|
|
leFlag = pExpr->op==TK_GE;
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
testOp = OP_IdxGE;
|
|
|
|
}else{
|
|
|
|
testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
|
|
|
|
leFlag = 1;
|
|
|
|
}
|
|
|
|
if( testOp!=OP_Noop ){
|
|
|
|
pLevel->iMem = pParse->nMem++;
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nEqColumn + (score & 1), 0);
|
|
|
|
if( leFlag ){
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate the start key. This is the key that defines the lower
|
2002-06-15 00:58:45 +04:00
|
|
|
** bound on the search. There is no start key if there are no
|
|
|
|
** equality terms and if there is no "X>..." term. In
|
2001-11-08 03:45:21 +03:00
|
|
|
** that case, generate a "Rewind" instruction in place of the
|
|
|
|
** start key search.
|
|
|
|
*/
|
|
|
|
if( (score & 2)!=0 ){
|
|
|
|
for(k=0; k<nExpr; k++){
|
|
|
|
Expr *pExpr = aExpr[k].p;
|
|
|
|
if( pExpr==0 ) continue;
|
|
|
|
if( aExpr[k].idxLeft==idx
|
|
|
|
&& (pExpr->op==TK_GT || pExpr->op==TK_GE)
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
|
|
|
|
&& pExpr->pLeft->iColumn==pIdx->aiColumn[j]
|
|
|
|
){
|
|
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
|
|
geFlag = pExpr->op==TK_GE;
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if( aExpr[k].idxRight==idx
|
|
|
|
&& (pExpr->op==TK_LT || pExpr->op==TK_LE)
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
|
|
|
|
&& pExpr->pRight->iColumn==pIdx->aiColumn[j]
|
|
|
|
){
|
|
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
|
|
geFlag = pExpr->op==TK_LE;
|
|
|
|
aExpr[k].p = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2001-11-12 16:51:43 +03:00
|
|
|
}else{
|
|
|
|
geFlag = 1;
|
2001-11-08 03:45:21 +03:00
|
|
|
}
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
|
|
|
|
if( nEqColumn>0 || (score&2)!=0 ){
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nEqColumn + ((score&2)!=0), 0);
|
|
|
|
if( !geFlag ){
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
|
|
|
|
}else{
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate the the top of the loop. If there is a termination
|
|
|
|
** key we have to test for that key and abort at the top of the
|
|
|
|
** loop.
|
|
|
|
*/
|
|
|
|
start = sqliteVdbeCurrentAddr(v);
|
|
|
|
if( testOp!=OP_Noop ){
|
|
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
|
|
|
|
sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
|
|
|
|
}
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
|
2002-05-24 06:04:32 +04:00
|
|
|
if( i==pTabList->nSrc-1 && pushKey ){
|
2001-11-08 03:45:21 +03:00
|
|
|
haveKey = 1;
|
|
|
|
}else{
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
|
|
|
|
haveKey = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Record the instruction used to terminate the loop.
|
|
|
|
*/
|
|
|
|
pLevel->op = OP_Next;
|
|
|
|
pLevel->p1 = pLevel->iCur;
|
|
|
|
pLevel->p2 = start;
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
loopMask |= 1<<idx;
|
|
|
|
|
|
|
|
/* Insert code to test every subexpression that can be completely
|
|
|
|
** computed using the current set of tables.
|
|
|
|
*/
|
|
|
|
for(j=0; j<nExpr; j++){
|
|
|
|
if( aExpr[j].p==0 ) continue;
|
2002-04-02 17:26:10 +04:00
|
|
|
if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
|
2002-06-25 02:01:57 +04:00
|
|
|
if( pLevel->iLeftJoin && aExpr[j].p->isJoinExpr==0 ) continue;
|
2000-05-29 18:26:00 +04:00
|
|
|
if( haveKey ){
|
2001-02-20 02:23:38 +03:00
|
|
|
haveKey = 0;
|
2001-10-13 05:06:47 +04:00
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
2002-05-27 00:54:33 +04:00
|
|
|
sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
|
2000-05-29 18:26:00 +04:00
|
|
|
aExpr[j].p = 0;
|
|
|
|
}
|
|
|
|
brk = cont;
|
2002-05-25 00:31:36 +04:00
|
|
|
|
|
|
|
/* For a LEFT OUTER JOIN, generate code that will record the fact that
|
|
|
|
** at least one row of the right table has matched the left table.
|
|
|
|
*/
|
|
|
|
if( pLevel->iLeftJoin ){
|
|
|
|
pLevel->top = sqliteVdbeCurrentAddr(v);
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
|
2002-06-25 02:01:57 +04:00
|
|
|
for(j=0; j<nExpr; j++){
|
|
|
|
if( aExpr[j].p==0 ) continue;
|
|
|
|
if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
|
|
|
|
if( haveKey ){
|
|
|
|
haveKey = 0;
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, base+idx, 0);
|
|
|
|
}
|
|
|
|
sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
|
|
|
|
aExpr[j].p = 0;
|
|
|
|
}
|
2002-05-25 00:31:36 +04:00
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
pWInfo->iContinue = cont;
|
|
|
|
if( pushKey && !haveKey ){
|
2001-10-13 05:06:47 +04:00
|
|
|
sqliteVdbeAddOp(v, OP_Recno, base, 0);
|
2000-05-29 18:26:00 +04:00
|
|
|
}
|
|
|
|
sqliteFree(aOrder);
|
|
|
|
return pWInfo;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2002-06-15 00:58:45 +04:00
|
|
|
** Generate the end of the WHERE loop. See comments on
|
|
|
|
** sqliteWhereBegin() for additional information.
|
2000-05-29 18:26:00 +04:00
|
|
|
*/
|
|
|
|
void sqliteWhereEnd(WhereInfo *pWInfo){
|
|
|
|
Vdbe *v = pWInfo->pParse->pVdbe;
|
2000-06-05 22:54:46 +04:00
|
|
|
int i;
|
|
|
|
int base = pWInfo->base;
|
2001-11-07 19:48:26 +03:00
|
|
|
WhereLevel *pLevel;
|
2002-05-24 06:04:32 +04:00
|
|
|
SrcList *pTabList = pWInfo->pTabList;
|
2000-06-05 22:54:46 +04:00
|
|
|
|
2002-05-24 06:04:32 +04:00
|
|
|
for(i=pTabList->nSrc-1; i>=0; i--){
|
2001-11-07 19:48:26 +03:00
|
|
|
pLevel = &pWInfo->a[i];
|
|
|
|
sqliteVdbeResolveLabel(v, pLevel->cont);
|
|
|
|
if( pLevel->op!=OP_Noop ){
|
|
|
|
sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
|
|
|
|
}
|
|
|
|
sqliteVdbeResolveLabel(v, pLevel->brk);
|
2002-06-09 03:25:08 +04:00
|
|
|
if( pLevel->inOp!=OP_Noop ){
|
|
|
|
sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
|
|
|
|
}
|
2002-05-25 00:31:36 +04:00
|
|
|
if( pLevel->iLeftJoin ){
|
|
|
|
int addr;
|
|
|
|
addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
|
2002-06-24 16:20:23 +04:00
|
|
|
sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4);
|
2002-05-25 00:31:36 +04:00
|
|
|
sqliteVdbeAddOp(v, OP_NullRow, base+i, 0);
|
|
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
|
|
|
|
}
|
2001-11-07 19:48:26 +03:00
|
|
|
}
|
|
|
|
sqliteVdbeResolveLabel(v, pWInfo->iBreak);
|
2002-05-24 06:04:32 +04:00
|
|
|
for(i=0; i<pTabList->nSrc; i++){
|
2002-02-18 04:17:00 +03:00
|
|
|
if( pTabList->a[i].pTab->isTransient ) continue;
|
2001-11-07 19:48:26 +03:00
|
|
|
pLevel = &pWInfo->a[i];
|
2001-10-13 05:06:47 +04:00
|
|
|
sqliteVdbeAddOp(v, OP_Close, base+i, 0);
|
2001-11-07 19:48:26 +03:00
|
|
|
if( pLevel->pIdx!=0 ){
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
|
2000-06-05 22:54:46 +04:00
|
|
|
}
|
|
|
|
}
|
2002-03-02 20:04:07 +03:00
|
|
|
if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
|
|
|
|
pWInfo->pParse->nTab = pWInfo->savedNTab;
|
|
|
|
}
|
2000-05-29 18:26:00 +04:00
|
|
|
sqliteFree(pWInfo);
|
|
|
|
return;
|
|
|
|
}
|