Commit Graph

9 Commits

Author SHA1 Message Date
Cédric Le Goater
c5e760e0f2 ppc/xive: Improve 'info pic' support
Provide a better output of the XIVE END structures including the
escalation information and extend the PowerNV machine 'info pic'
command with a dump of the END EAS table used for escalations.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190718115420.19919-9-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-08-21 17:17:39 +10:00
Cédric Le Goater
ad31e2d242 ppc/xive: Provide silent escalation support
When the 's' bit is set the escalation is said to be 'silent' or
'silent/gather'. In such configuration, the notification sequence is
skipped and only the escalation sequence is performed. This is used to
configure all the EQs of a vCPU to escalate on a single EQ which will
then target the hypervisor.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190718115420.19919-8-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-08-21 17:17:39 +10:00
Cédric Le Goater
53e934921d ppc/xive: Provide unconditional escalation support
When the 'u' bit is set the escalation is said to be 'unconditional'
which means that the ESe PQ bits are not used. Introduce a
xive_router_end_es_notify() routine to share code with the ESn
notification.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190718115420.19919-7-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-08-21 17:17:39 +10:00
Markus Armbruster
ec150c7e09 include: Make headers more self-contained
Back in 2016, we discussed[1] rules for headers, and these were
generally liked:

1. Have a carefully curated header that's included everywhere first.  We
   got that already thanks to Peter: osdep.h.

2. Headers should normally include everything they need beyond osdep.h.
   If exceptions are needed for some reason, they must be documented in
   the header.  If all that's needed from a header is typedefs, put
   those into qemu/typedefs.h instead of including the header.

3. Cyclic inclusion is forbidden.

This patch gets include/ closer to obeying 2.

It's actually extracted from my "[RFC] Baby steps towards saner
headers" series[2], which demonstrates a possible path towards
checking 2 automatically.  It passes the RFC test there.

[1] Message-ID: <87h9g8j57d.fsf@blackfin.pond.sub.org>
    https://lists.nongnu.org/archive/html/qemu-devel/2016-03/msg03345.html
[2] Message-Id: <20190711122827.18970-1-armbru@redhat.com>
    https://lists.nongnu.org/archive/html/qemu-devel/2019-07/msg02715.html

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-2-armbru@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2019-08-16 13:31:51 +02:00
Cédric Le Goater
13df93244e spapr/xive: fix EQ page addresses above 64GB
The high order bits of the address of the OS event queue is stored in
bits [4-31] of word2 of the XIVE END internal structures and the low
order bits in word3. This structure is using Big Endian ordering and
computing the value requires some simple arithmetic which happens to
be wrong. The mask removing bits [0-3] of word2 is applied to the
wrong value and the resulting address is bogus when above 64GB.

Guests with more than 64GB of RAM will allocate pages for the OS event
queues which will reside above the 64GB limit. In this case, the XIVE
device model will wake up the CPUs in case of a notification, such as
IPIs, but the update of the event queue will be written at the wrong
place in memory. The result is uncertain as the guest memory is
trashed and IPI are not delivered.

Introduce a helper xive_end_qaddr() to compute this value correctly in
all places where it is used.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190508171946.657-3-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-05-29 11:39:44 +10:00
Cédric Le Goater
af53dbf622 ppc/xive: introduce a simplified XIVE presenter
The last sub-engine of the XIVE architecture is the Interrupt
Virtualization Presentation Engine (IVPE). On HW, the IVRE and the
IVPE share elements, the Power Bus interface (CQ), the routing table
descriptors, and they can be combined in the same HW logic. We do the
same in QEMU and combine both engines in the XiveRouter for
simplicity.

When the IVRE has completed its job of matching an event source with a
Notification Virtual Target (NVT) to notify, it forwards the event
notification to the IVPE sub-engine. The IVPE scans the thread
interrupt contexts of the Notification Virtual Targets (NVT)
dispatched on the HW processor threads and if a match is found, it
signals the thread. If not, the IVPE escalates the notification to
some other targets and records the notification in a backlog queue.

The IVPE maintains the thread interrupt context state for each of its
NVTs not dispatched on HW processor threads in the Notification
Virtual Target table (NVTT).

The model currently only supports single NVT notifications.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Folded in fix for field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:37:04 +11:00
Cédric Le Goater
207d9fe985 ppc/xive: introduce the XIVE interrupt thread context
Each POWER9 processor chip has a XIVE presenter that can generate four
different exceptions to its threads:

  - hypervisor exception,
  - O/S exception
  - Event-Based Branch (EBB)
  - msgsnd (doorbell).

Each exception has a state independent from the others called a Thread
Interrupt Management context. This context is a set of registers which
lets the thread handle priority management and interrupt acknowledgment
among other things. The most important ones being :

  - Interrupt Priority Register  (PIPR)
  - Interrupt Pending Buffer     (IPB)
  - Current Processor Priority   (CPPR)
  - Notification Source Register (NSR)

These registers are accessible through a specific MMIO region, called
the Thread Interrupt Management Area (TIMA), four aligned pages, each
exposing a different view of the registers. First page (page address
ending in 0b00) gives access to the entire context and is reserved for
the ring 0 view for the physical thread context. The second (page
address ending in 0b01) is for the hypervisor, ring 1 view. The third
(page address ending in 0b10) is for the operating system, ring 2
view. The fourth (page address ending in 0b11) is for user level, ring
3 view.

The thread interrupt context is modeled with a XiveTCTX object
containing the values of the different exception registers. The TIMA
region is mapped at the same address for each CPU.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:29:12 +11:00
Cédric Le Goater
e4ddaac67f ppc/xive: introduce the XIVE Event Notification Descriptors
To complete the event routing, the IVRE sub-engine uses a second table
containing Event Notification Descriptor (END) structures.

An END specifies on which Event Queue (EQ) the event notification
data, defined in the associated EAS, should be posted when an
exception occurs. It also defines which Notification Virtual Target
(NVT) should be notified.

The Event Queue is a memory page provided by the O/S defining a
circular buffer, one per server and priority couple, containing Event
Queue entries. These are 4 bytes long, the first bit being a
'generation' bit and the 31 following bits the END Data field. They
are pulled by the O/S when the exception occurs.

The END Data field is a way to set an invariant logical event source
number for an IRQ. On sPAPR machines, it is set with the
H_INT_SET_SOURCE_CONFIG hcall when the EISN flag is used.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Fold in a later fix from Cédric fixing field accessors]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:26:42 +11:00
Cédric Le Goater
7ff7ea9280 ppc/xive: introduce the XiveRouter model
The XiveRouter models the second sub-engine of the XIVE architecture :
the Interrupt Virtualization Routing Engine (IVRE).

The IVRE handles event notifications of the IVSE and performs the
interrupt routing process. For this purpose, it uses a set of tables
stored in system memory, the first of which being the Event Assignment
Structure (EAS) table.

The EAT associates an interrupt source number with an Event Notification
Descriptor (END) which will be used in a second phase of the routing
process to identify a Notification Virtual Target.

The XiveRouter is an abstract class which needs to be inherited from
to define a storage for the EAT, and other upcoming tables.

Signed-off-by: Cédric Le Goater <clg@kaod.org>
[dwg: Folded in parts of a later fix by Cédric fixing field access]
[dwg: Fix style nits]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-21 09:26:31 +11:00