The sxxm (speculative execution exploit mitigation) machine type is a
variant of the 2.12 machine type with workarounds for speculative
execution vulnerabilities enabled by default.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Convert cap-ibs (indirect branch speculation) to a custom spapr-cap
type.
All tristate caps have now been converted to custom spapr-caps, so
remove the remaining support for them.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
[dwg: Don't explicitly list "?"/help option, trust convention]
[dwg: Fold tristate removal into here, to not break bisect]
[dwg: Fix minor style problems]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
There are currently 2 implemented types of spapr-caps, boolean and
tristate. However there may be a need for caps which don't fit either of
these options. Add a custom capability type for which a list of custom
valid strings can be specified and implement the get/set functions for
these. Also add a field for help text to describe the available options.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
[dwg: Change "help" option to "?" matching qemu conventions]
[dwg: Add ATTRIBUTE_UNUSED to avoid breaking bisect]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Move the remaining comment into macio.c for reference, then remove the
macio_init() function and instantiate the macio devices for both Old World
and New World machines via qdev_init_nofail() directly.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Also switch macio_newworld_realize() over to use it rather than using the pic_mem
memory region directly.
Now that both Old World and New World macio devices no longer make use of the
pic_mem memory region directly, we can remove it.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is needed before the next patch because the target-dependent kvm stub
uses the existing kvm_openpic_connect_vcpu() declaration, making it impossible
to move the device-specific declarations into the same file without breaking
ppc-linux-user compilation.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Also switch macio_oldworld_realize() over to use it rather than using the pic_mem
memory region directly.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This enables the device to be made available during the setup of the Old World
machine. In order to pass back the previous set of IRQs we temporarily introduce
a new pic_irqs parameter until it can be removed.
An additional benefit of this change is that it is also possible to remove the
pic_mem pointer used for macio by accessing the memory region via sysbus.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Now that the ESCC device is instantiated directly via qdev, move it to within
the macio device and wire up the IRQs and memory regions using the sysbus API.
This enables to remove the now-obsolete escc_mem parameter to the macio_init()
function.
(Note this patch also contains small touch-ups to the formatting in
macio_escc_legacy_setup() and ppc_heathrow_init() in order to keep checkpatch
happy)
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
VSMT must be set in order to compute VCPU ids. This means that the
following functions must not be called before spapr_set_vsmt_mode()
was called:
- spapr_vcpu_id()
- spapr_is_thread0_in_vcore()
- xics_max_server_number()
We had a recent regression where the latter would be called before VSMT
was set, and broke migration of some old machine types. This patch
adds assert() in the above functions to avoid problems in the future.
Also, since VSMT is really a CPU related thing, spapr_set_vsmt_mode() is
now called from spapr_init_cpus(), just before the first VSMT user.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Some older machine types create more ICPs than needed. We hence
need to register up to xics_max_server_number() dummy ICPs to
accomodate the migration of these machine types.
Recent VSMT rework changed xics_max_server_number() to return
DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads)
instead of
DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
The change is okay but it requires spapr->vsmt to be set, which
isn't the case with the current code. This causes the formula to
return zero and we don't create dummy ICPs. This breaks migration
of older guests as reported here:
https://bugzilla.redhat.com/show_bug.cgi?id=1549087
The dummy ICP workaround doesn't really have a dependency on XICS
itself. But it does depend on proper VCPU id numbering and it must
be applied before creating vCPUs (ie, creating real ICPs). So this
patch moves the workaround to spapr_init_cpus(), which already
assumes VSMT to be set.
Fixes: 72194664c8 ("spapr: use spapr->vsmt to compute VCPU ids")
Reported-by: Lukas Doktor <ldoktor@redhat.com>
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add emulation of aCube Sam460ex board based on AMCC 460EX embedded SoC.
This is not a complete implementation yet with a lot of components
still missing but enough for the U-Boot firmware to start and to boot
a Linux kernel or AROS.
Signed-off-by: François Revol <revol@free.fr>
Signed-off-by: BALATON Zoltan <balaton@eik.bme.hu>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is the PCIX controller found in newer 440 core SoCs e.g. the
AMMC 460EX. The device tree refers to this as plb-pcix compared to
the plb-pci controller in older 440 SoCs.
Signed-off-by: BALATON Zoltan <balaton@eik.bme.hu>
[dwg: Remove hwaddr from trace-events, that doesn't work with some
trace backends]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Commit 5d0fb1508e "spapr: consolidate the VCPU id numbering logic
in a single place" introduced a helper to detect thread0 of a virtual
core based on its VCPU id. This is used to create CPU core nodes in
the DT, but it is broken in TCG.
$ qemu-system-ppc64 -nographic -accel tcg -machine dumpdtb=dtb.bin \
-smp cores=16,maxcpus=16,threads=1
$ dtc -f -O dts dtb.bin | grep POWER8
PowerPC,POWER8@0 {
PowerPC,POWER8@8 {
instead of the expected 16 cores that we get with KVM:
$ dtc -f -O dts dtb.bin | grep POWER8
PowerPC,POWER8@0 {
PowerPC,POWER8@8 {
PowerPC,POWER8@10 {
PowerPC,POWER8@18 {
PowerPC,POWER8@20 {
PowerPC,POWER8@28 {
PowerPC,POWER8@30 {
PowerPC,POWER8@38 {
PowerPC,POWER8@40 {
PowerPC,POWER8@48 {
PowerPC,POWER8@50 {
PowerPC,POWER8@58 {
PowerPC,POWER8@60 {
PowerPC,POWER8@68 {
PowerPC,POWER8@70 {
PowerPC,POWER8@78 {
This happens because spapr_get_vcpu_id() maps VCPU ids to
cs->cpu_index in TCG mode. This confuses the code in
spapr_is_thread0_in_vcore(), since it assumes thread0 VCPU
ids to have a spapr->vsmt spacing.
spapr_get_vcpu_id(cpu) % spapr->vsmt == 0
Actually, there's no real reason to expose cs->cpu_index instead
of the VCPU id, since we also generate it with TCG. Also we already
set it explicitly in spapr_set_vcpu_id(), so there's no real reason
either to call kvm_arch_vcpu_id() with KVM.
This patch unifies spapr_get_vcpu_id() to always return the computed
VCPU id both in TCG and KVM. This is one step forward towards KVM<->TCG
migration.
Fixes: 5d0fb1508e
Reported-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The previous commit improved compile time by including less of the
generated QAPI headers. This is impossible for stuff defined directly
in qapi-schema.json, because that ends up in headers that that pull in
everything.
Move everything but include directives from qapi-schema.json to new
sub-module qapi/misc.json, then include just the "misc" shard where
possible.
It's possible everywhere, except:
* monitor.c needs qmp-command.h to get qmp_init_marshal()
* monitor.c, ui/vnc.c and the generated qapi-event-FOO.c need
qapi-event.h to get enum QAPIEvent
Perhaps we'll get rid of those some other day.
Adding a type to qapi/migration.json now recompiles some 120 instead
of 2300 out of 5100 objects.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180211093607.27351-25-armbru@redhat.com>
[eblake: rebase to master]
Signed-off-by: Eric Blake <eblake@redhat.com>
In my "build everything" tree, a change to the types in
qapi-schema.json triggers a recompile of about 4800 out of 5100
objects.
The previous commit split up qmp-commands.h, qmp-event.h, qmp-visit.h,
qapi-types.h. Each of these headers still includes all its shards.
Reduce compile time by including just the shards we actually need.
To illustrate the benefits: adding a type to qapi/migration.json now
recompiles some 2300 instead of 4800 objects. The next commit will
improve it further.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180211093607.27351-24-armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
[eblake: rebase to master]
Signed-off-by: Eric Blake <eblake@redhat.com>
These devices are found in newer SoCs based on 440 core e.g. the 460EX
(http://www.embeddeddeveloper.com/assets/processors/amcc/datasheets/
PP460EX_DS2063.pdf)
Signed-off-by: BALATON Zoltan <balaton@eik.bme.hu>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The spapr-cap cap-ibs can only have values broken or fixed as there is
no explicit workaround required. Currently setting the value workaround
for this cap will hit an assert if the guest makes the hcall
h_get_cpu_characteristics.
Report an error when attempting to apply the setting with a more helpful
error message.
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Several places in the code need to calculate a VCPU id:
(cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads
(core_id / smp_threads) * spapr->vsmt (1 user)
index * spapr->vsmt (2 users)
or guess that the VCPU id of a given VCPU is the first thread of a virtual
core:
index % spapr->vsmt != 0
Even if the numbering logic isn't that complex, it is rather fragile to
have these assumptions open-coded in several places. FWIW this was
proved with recent issues related to VSMT.
This patch moves the VCPU id formula to a single function to be called
everywhere the code needs to compute one. It also adds an helper to
guess if a VCPU is the first thread of a VCORE.
Signed-off-by: Greg Kurz <groug@kaod.org>
[dwg: Rename spapr_is_vcore() to spapr_is_thread0_in_vcore() for clarity]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The spapr_vcpu_id() function is an accessor actually. Let's rename it
for symmetry with the recently added spapr_set_vcpu_id() helper.
The motivation behind this is that a later patch will consolidate
the VCPU id formula in a function and spapr_vcpu_id looks like an
appropriate name.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The VCPU ids are currently computed and assigned to each individual
CPU threads in spapr_cpu_core_realize(). But the numbering logic
of VCPU ids is actually a machine-level concept, and many places
in hw/ppc/spapr.c also have to compute VCPU ids out of CPU indexes.
The current formula used in spapr_cpu_core_realize() is:
vcpu_id = (cc->core_id * spapr->vsmt / smp_threads) + i
where:
cc->core_id is a multiple of smp_threads
cpu_index = cc->core_id + i
0 <= i < smp_threads
So we have:
cpu_index % smp_threads == i
cc->core_id / smp_threads == cpu_index / smp_threads
hence:
vcpu_id =
(cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
This formula was used before VSMT at the time VCPU ids where computed
at the target emulation level. It has the advantage of being useable
to derive a VPCU id out of a CPU index only. It is fitted for all the
places where the machine code has to compute a VCPU id.
This patch introduces an accessor to set the VCPU id in a PowerPCCPU object
using the above formula. It is a first step to consolidate all the VCPU id
logic in a single place.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Since the introduction of VSMT in 2.11, the spacing of VCPU ids
between cores is controllable through a machine property instead
of being only dictated by the SMT mode of the host:
cpu->vcpu_id = (cc->core_id * spapr->vsmt / smp_threads) + i
Until recently, the machine code would try to change the SMT mode
of the host to be equal to VSMT or exit. This allowed the rest of
the code to assume that kvmppc_smt_threads() == spapr->vsmt is
always true.
Recent commit "8904e5a75005 spapr: Adjust default VSMT value for
better migration compatibility" relaxed the rule. If the VSMT
mode cannot be set in KVM for some reasons, but the requested
CPU topology is compatible with the current SMT mode, then we
let the guest run with kvmppc_smt_threads() != spapr->vsmt.
This breaks quite a few places in the code, in particular when
calculating DRC indexes.
This is what happens on a POWER host with subcores-per-core=2 (ie,
supports up to SMT4) when passing the following topology:
-smp threads=4,maxcpus=16 \
-device host-spapr-cpu-core,core-id=4,id=core1 \
-device host-spapr-cpu-core,core-id=8,id=core2
qemu-system-ppc64: warning: Failed to set KVM's VSMT mode to 8 (errno -22)
This is expected since KVM is limited to SMT4, but the guest is started
anyway because this topology can run on SMT4 even with a VSMT8 spacing.
But when we look at the DT, things get nastier:
cpus {
...
ibm,drc-indexes = <0x4 0x10000000 0x10000004 0x10000008 0x1000000c>;
This means that we have the following association:
CPU core device | DRC | VCPU id
-----------------+------------+---------
boot core | 0x10000000 | 0
core1 | 0x10000004 | 4
core2 | 0x10000008 | 8
core3 | 0x1000000c | 12
But since the spacing of VCPU ids is 8, the DRC for core1 points to a
VCPU that doesn't exist, the DRC for core2 points to the first VCPU of
core1 and and so on...
...
PowerPC,POWER8@0 {
...
ibm,my-drc-index = <0x10000000>;
...
};
PowerPC,POWER8@8 {
...
ibm,my-drc-index = <0x10000008>;
...
};
PowerPC,POWER8@10 {
...
No ibm,my-drc-index property for this core since 0x10000010 doesn't
exist in ibm,drc-indexes above.
...
};
};
...
interrupt-controller {
...
ibm,interrupt-server-ranges = <0x0 0x10>;
With a spacing of 8, the highest VCPU id for the given topology should be:
16 * 8 / 4 = 32 and not 16
...
linux,phandle = <0x7e7323b8>;
interrupt-controller;
};
And CPU hot-plug/unplug is broken:
(qemu) device_del core1
pseries-hotplug-cpu: Cannot find CPU (drc index 10000004) to remove
(qemu) device_del core2
cpu 4 (hwid 8) Ready to die...
cpu 5 (hwid 9) Ready to die...
cpu 6 (hwid 10) Ready to die...
cpu 7 (hwid 11) Ready to die...
These are the VCPU ids of core1 actually
(qemu) device_add host-spapr-cpu-core,core-id=12,id=core3
(qemu) device_del core3
pseries-hotplug-cpu: Cannot find CPU (drc index 1000000c) to remove
This patches all the code in hw/ppc/spapr.c to assume the VSMT
spacing when manipulating VCPU ids.
Fixes: 8904e5a750
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Change the macro that generates the vmstate migration field and the needed
function for the spapr-caps to take the full spapr-cap name. This has
the benefit of meaning this instance will be picked up when greping
for the spapr-caps and making it more obvious what this macro is doing.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Move necessary stuff in escc.h and update type names.
Remove slavio_serial_ms_kbd_init().
Fix code style problems reported by checkpatch.pl
Update mac_newworld, mac_oldworld and sun4m to use directly the
QDEV interface.
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Newer kernels have a htab resize capability when adding or remove
memory. At these situations, the guest kernel might reallocate its
htab to a more suitable size based on the resulting memory.
However, we're not setting the new value back into the machine state
when a KVM guest resizes its htab. At first this doesn't seem harmful,
but when migrating or saving the guest state (via virsh managedsave,
for instance) this mismatch between the htab size of QEMU and the
kernel makes the guest hangs when trying to load its state.
Inside h_resize_hpt_commit, the hypercall that commits the hash page
resize changes, let's set spapr->htab_shift to the new value if we're
sure that kvmppc_resize_hpt_commit were successful.
While we're here, add a "not RADIX" sanity check as it is already done
in the related hypercall h_resize_hpt_prepare.
Fixes: https://github.com/open-power-host-os/qemu/issues/28
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Daniel Henrique Barboza <danielhb@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add the relevant hooks as required for the MacOS timer calibration and delayed
SR interrupt.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This allows us to more easily differentiate between the timebase frequency used
to calibrate the MacOS timers and the actual frequency of the hardware clock as
indicated by CUDA_TIMER_FREQ.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
[dwg: Revert some extraneous changes which break compile]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We ignore silently the value of smp_threads when we set
the default VSMT value, and if smp_threads is greater than VSMT
kernel is going into trouble later.
Fixes: 8904e5a750
("spapr: Adjust default VSMT value for better migration compatibility")
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Commit bcb5ce08cf ("spapr: Rename machine init functions for clarity")
renamed ppc_spapr_reset to spapr_machine_reset and ppc_spapr_init
to spapr_machine_init. Let's also rename the references in
comments.
Signed-off-by: Daniel Henrique Barboza <danielhb@linux.vnet.ibm.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Detected by Coverity (CID 1385702). This fixes the recently added hypercall
to let guests properly apply Spectre and Meltdown workarounds.
Fixes: c59704b254 "target/ppc/spapr: Add H-Call H_GET_CPU_CHARACTERISTICS"
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
qemu-common.h includes qemu/option.h, but most places that include the
former don't actually need the latter. Drop the include, and add it
to the places that actually need it.
While there, drop superfluous includes of both headers, and
separate #include from file comment with a blank line.
This cleanup makes the number of objects depending on qemu/option.h
drop from 4545 (out of 4743) to 284 in my "build everything" tree.
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180201111846.21846-20-armbru@redhat.com>
[Semantic conflict with commit bdd6a90a9e in block/nvme.c resolved]
The macro expansions of qdict_put_TYPE() and qlist_append_TYPE() need
qbool.h, qnull.h, qnum.h and qstring.h to compile. We include qnull.h
and qnum.h in the headers, but not qbool.h and qstring.h. Works,
because we include those wherever the macros get used.
Open-coding these helpers is of dubious value. Turn them into
functions and drop the includes from the headers.
This cleanup makes the number of objects depending on qapi/qmp/qnum.h
from 4551 (out of 4743) to 46 in my "build everything" tree. For
qapi/qmp/qnull.h, the number drops from 4552 to 21.
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180201111846.21846-10-armbru@redhat.com>
This cleanup makes the number of objects depending on qapi/error.h
drop from 1910 (out of 4743) to 1612 in my "build everything" tree.
While there, separate #include from file comment with a blank line,
and drop a useless comment on why qemu/osdep.h is included first.
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20180201111846.21846-5-armbru@redhat.com>
[Semantic conflict with commit 34e304e975 resolved, OSX breakage fixed]
In order to enable TCE operations support in KVM, we have to inform
the KVM about VFIO groups being attached to specific LIOBNs;
the necessary bits are implemented already by IOMMU MR and VFIO.
This defines get_attr() for the SPAPR TCE IOMMU MR which makes VFIO
call the KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE ioctl and establish
LIOBN-to-IOMMU link.
This changes spapr_tce_set_need_vfio() to avoid TCE table reallocation
if the kernel supports the TCE acceleration.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
[aw - remove unnecessary sys/ioctl.h include]
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Replace a large number of the fprintf(stderr, "*\n" calls with
error_report(). The functions were renamed with these commands and then
compiler issues where manually fixed.
find ./* -type f -exec sed -i \
'N;N;N;N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
find ./* -type f -exec sed -i \
'N;N;N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
find ./* -type f -exec sed -i \
'N;N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
find ./* -type f -exec sed -i \
'N;N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
find ./* -type f -exec sed -i \
'N;N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
find ./* -type f -exec sed -i \
'N;N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
find ./* -type f -exec sed -i \
'N;N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
find ./* -type f -exec sed -i \
'N;N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
find ./* -type f -exec sed -i \
'N;N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
find ./* -type f -exec sed -i \
'N;N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
find ./* -type f -exec sed -i \
'N; {s|fprintf(stderr, "\(.*\)\\n"\(.*\));|error_report("\1"\2);|Ig}' \
{} +
Some lines were then manually tweaked to pass checkpatch and some curly
braces were added to match QEMU style.
Signed-off-by: Alistair Francis <alistair.francis@xilinx.com>
Cc: qemu-ppc@nongnu.org
Conversions that aren't followed by exit() dropped, because they might
be inappropriate.
Also trim trailing punctuation from error messages.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20180203084315.20497-10-armbru@redhat.com>
The new H-Call H_GET_CPU_CHARACTERISTICS is used by the guest to query
behaviours and available characteristics of the cpu.
Implement the handler for this new H-Call which formulates its response
based on the setting of the spapr_caps cap-cfpc, cap-sbbc and cap-ibs.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add new tristate cap cap-ibs to represent the indirect branch
serialisation capability.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add new tristate cap cap-sbbc to represent the speculation barrier
bounds checking capability.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add new tristate cap cap-cfpc to represent the cache flush on privilege
change capability.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
spapr_caps are used to represent the level of support for various
capabilities related to the spapr machine type. Currently there is
only support for boolean capabilities.
Add support for tristate capabilities by implementing their get/set
functions. These capabilities can have the values 0, 1 or 2
corresponding to broken, workaround and fixed.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
In various place we don't correctly check if the device supports MSI or
MSI-X. This can cause devices to be advertised with MSI support, even
if they only support MSI-X (like virtio-pci-* devices for example):
ethernet@0 {
ibm,req#msi = <0x1>; <--- wrong!
.
ibm,loc-code = "qemu_virtio-net-pci:0000:00:00.0";
.
ibm,req#msi-x = <0x3>;
};
Worse, this can also cause the "ibm,change-msi" RTAS call to corrupt the
PCI status and cause migration to fail:
qemu-system-ppc64: get_pci_config_device: Bad config data: i=0x6
read: 0 device: 10 cmask: 10 wmask: 0 w1cmask:0
^^
PCI_STATUS_CAP_LIST bit which is assumed to be constant
This patch changes spapr_populate_pci_child_dt() to properly check for
MSI support using msi_present(): this ensures that PCIDevice::msi_cap
was set by msi_init() and that msi_nr_vectors_allocated() will look at
the right place in the config space.
Checking PCIDevice::msix_entries_nr is enough for MSI-X but let's add
a call to msix_present() there as well for consistency.
It also changes rtas_ibm_change_msi() to select the appropriate MSI
type in Function 1 instead of always selecting plain MSI. This new
behaviour is compliant with LoPAPR 1.1, as described in "Table 71.
ibm,change-msi Argument Call Buffer":
Function 1: If Number Outputs is equal to 3, request to set to a new
number of MSIs (including set to 0).
If the “ibm,change-msix-capable” property exists and Number
Outputs is equal to 4, request is to set to a new number of
MSI or MSI-X (platform choice) interrupts (including set to
0).
Since MSI is the the platform default (LoPAPR 6.2.3 MSI Option), let's
check for MSI support first.
And finally, it checks the input parameters are valid, as described in
LoPAPR 1.1 "R1–7.3.10.5.1–3":
For the MSI option: The platform must return a Status of -3 (Parameter
error) from ibm,change-msi, with no change in interrupt assignments if
the PCI configuration address does not support MSI and Function 3 was
requested (that is, the “ibm,req#msi” property must exist for the PCI
configuration address in order to use Function 3), or does not support
MSI-X and Function 4 is requested (that is, the “ibm,req#msi-x” property
must exist for the PCI configuration address in order to use Function 4),
or if neither MSIs nor MSI-Xs are supported and Function 1 is requested.
This ensures that the ret_intr_type variable contains a valid MSI type
for this device, and that spapr_msi_setmsg() won't corrupt the PCI status.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
qemu-system-ppcemb has been once split of qemu-system-ppc to support
CPU page sizes < 4096 for some of the embedded 4xx PowerPC CPUs.
However, there was hardly any OS available in the wild that really
used such small page sizes (Linux uses 4096 on PPC), so there is
no known recent use case for this separate build anymore. It's
rather cumbersome to maintain a separate set of config switches for
this, and it's wasting compile and test time of all the developers
who have to build all QEMU targets to verify that their changes did
not break anything.
Except for the small CPU page sizes, qemu-system-ppc can be used as
a full replacement for qemu-system-ppcemb since it contains all the
embedded 4xx PPC boards and CPUs, too. Thus let's start the deprecation
process for qemu-system-ppcemb to see whether somebody still needs
the small page sizes or whether we could finally remove this unloved
separate build.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The vmstate description and the contained needed function for migration
of spapr_caps is the same for each cap, with the name of the cap
substituted. As such introduce a macro to allow for easier generation of
these.
Convert the three existing spapr_caps (htm, vsx, and dfp) to use this
macro.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Commit 51f84465dd changed the compatility mode setting logic:
- machine reset only sets compatibility mode for the boot CPU
- compatibility mode is set for other CPUs when they are put online
by the guest with the "start-cpu" RTAS call
This causes a regression for machines started with max-compat-cpu:
the device tree nodes related to secondary CPU cores contain wrong
"cpu-version" and "ibm,pa-features" values, as shown below.
Guest started on a POWER8 host with:
-smp cores=2 -machine pseries,max-cpu-compat=compat7
ibm,pa-features = [18 00 f6 3f c7 c0 80 f0 80 00
00 00 00 00 00 00 00 00 80 00 80 00 80 00 00 00];
cpu-version = <0x4d0200>;
^^^
second CPU core
ibm,pa-features = <0x600f63f 0xc70080c0>;
cpu-version = <0xf000003>;
^^^
boot CPU core
The second core is advertised in raw POWER8 mode. This happens because
CAS assumes all CPUs to have the same compatibility mode. Since the
boot CPU already has the requested compatibility mode, the CAS code
does not set it for the secondary one, and exposes the bogus device
tree properties in in the CAS response to the guest.
A similar situation is observed when hot-plugging a CPU core. The
related device tree properties are generated and exposed to guest
with the "ibm,configure-connector" RTAS before "start-cpu" is called.
The CPU core is advertised to the guest in raw mode as well.
It both cases, it boils down to the fact that "start-cpu" happens too
late. This can be fixed globally by propagating the compatibility mode
of the boot CPU to the other CPUs during reset. For this to work, the
compatibility mode of the boot CPU must be set before the machine code
actually resets all CPUs.
It is not needed to set the compatibility mode in "start-cpu" anymore,
so the code is dropped.
Fixes: 51f84465dd
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
A variable is already defined at the begining of the function to
hold a pointer to the CPU core object:
sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
No need to define it again in the pre-2.10 compatibility code snipplet.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We've got the config switch CONFIG_PPC4XX, so we should use it
in the Makefile accordingly and only include the PPC4xx boards
if this switch has been enabled. (Note: Unfortunately, the files
ppc4xx_devs.c and ppc405_uc.c still have to be included in the
build anyway to fulfil some complicated linker dependencies ...
so these are subject to a more thourough clean-up later)
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Remove dependency of possible_cpus on 1st CPU instance,
which decouples configuration data from CPU instances that
are created using that data.
Also later it would be used for enabling early cpu to numa node
configuration at runtime qmp_query_hotpluggable_cpus() should
provide a list of available cpu slots at early stage,
before machine_init() is called and the 1st cpu is created,
so that mgmt might be able to call it and use output to set
numa mapping.
Use MachineClass::possible_cpu_arch_ids() callback to set
cpu type info, along with the rest of possible cpu properties,
to let machine define which cpu type* will be used.
* for SPAPR it will be a spapr core type and for ARM/s390x/x86
a respective descendant of CPUClass.
Move parse_numa_opts() in vl.c after cpu_model is parsed into
cpu_type so that possible_cpu_arch_ids() would know which
cpu_type to use during layout initialization.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <1515597770-268979-1-git-send-email-imammedo@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
TYPE_SPAPR_PCI_HOST_BRIDGE is the only dynamic sysbus device not
rejected by ppc_spapr_reset(), so it can be the only entry on the
allowed list.
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Alexander Graf <agraf@suse.de>
Cc: qemu-ppc@nongnu.org
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20171125151610.20547-5-ehabkost@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
platform_bus_create_devtree() already rejects all dynamic sysbus
devices except TYPE_ETSEC_COMMON, so register it as the only
allowed dynamic sysbus device for the ppce500 machine-type.
Cc: Alexander Graf <agraf@suse.de>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: qemu-ppc@nongnu.org
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20171125151610.20547-4-ehabkost@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
The existing has_dynamic_sysbus flag makes the machine accept
every user-creatable sysbus device type on the command-line.
Replace it with a list of allowed device types, so machines can
easily accept some sysbus devices while rejecting others.
To keep exactly the same behavior as before, the existing
has_dynamic_sysbus=true assignments are replaced with a
TYPE_SYS_BUS_DEVICE entry on the allowed list. Other patches
will replace the TYPE_SYS_BUS_DEVICE entries with more specific
lists of devices.
Cc: Peter Maydell <peter.maydell@linaro.org>
Cc: Marcel Apfelbaum <marcel@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Alexander Graf <agraf@suse.de>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: qemu-arm@nongnu.org
Cc: qemu-ppc@nongnu.org
Cc: xen-devel@lists.xenproject.org
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <20171125151610.20547-2-ehabkost@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
When skiboot starts, it first clears the CPU structs for all possible
CPUs on a system :
for (i = 0; i <= cpu_max_pir; i++)
memset(&cpu_stacks[i].cpu, 0, sizeof(struct cpu_thread));
On POWER9, cpu_max_pir is quite big, 0x7fff, and the skiboot cpu_stacks
array overlaps with the memory region in which QEMU maps the initramfs
file. Move it upwards in memory to keep it safe.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XSCOM base address of the core chiplet was wrongly calculated. Use
the OPAL macros to fix that and do a couple of renames.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
These are useful when instantiating device models which are shared
between the POWER8 and the POWER9 processor families.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When addressed by XSCOM, the first core has the 0x20 chiplet ID but
the CPU PIR can start at 0x0.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
commit 1ed9c8af50 ("target/ppc: Add POWER9 DD2.0 model information")
deprecated the POWER9 model v1.0.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
fa98fbfc "PC: KVM: Support machine option to set VSMT mode" introduced the
"vsmt" parameter for the pseries machine type, which controls the spacing
of the vcpu ids of thread 0 for each virtual core. This was done to bring
some consistency and stability to how that was done, while still allowing
backwards compatibility for migration and otherwise.
The default value we used for vsmt was set to the max of the host's
advertised default number of threads and the number of vthreads per vcore
in the guest. This was done to continue running without extra parameters
on older KVM versions which don't allow the VSMT value to be changed.
Unfortunately, even that smaller than before leakage of host configuration
into guest visible configuration still breaks things. Specifically a guest
with 4 (or less) vthread/vcore will get a different vsmt value when
running on a POWER8 (vsmt==8) and POWER9 (vsmt==4) host. That means the
vcpu ids don't line up so you can't migrate between them, though you should
be able to.
Long term we really want to make vsmt == smp_threads for sufficiently
new machine types. However, that means that qemu will then require a
sufficiently recent KVM (one which supports changing VSMT) - that's still
not widely enough deployed to be really comfortable to do.
In the meantime we need some default that will work as often as
possible. This patch changes that default to 8 in all circumstances.
This does change guest visible behaviour (including for existing
machine versions) for many cases - just not the most common/important
case.
Following is case by case justification for why this is still the least
worst option. Note that any of the old behaviours can still be duplicated
after this patch, it's just that it requires manual intervention by
setting the vsmt property on the command line.
KVM HV on POWER8 host:
This is the overwhelmingly common case in production setups, and is
unchanged by design. POWER8 hosts will advertise a default VSMT mode
of 8, and > 8 vthreads/vcore isn't permitted
KVM HV on POWER7 host:
Will break, but POWER7s allowing KVM were never released to the public.
KVM HV on POWER9 host:
Not yet released to the public, breaking this now will reduce other
breakage later.
KVM HV on PowerPC 970:
Will theoretically break it, but it was barely supported to begin with
and already required various user visible hacks to work. Also so old
that I just don't care.
TCG:
This is the nastiest one; it means migration of TCG guests (without
manual vsmt setting) will break. Since TCG is rarely used in production
I think this is worth it for the other benefits. It does also remove
one more barrier to TCG<->KVM migration which could be interesting for
debugging applications.
KVM PR:
As with TCG, this will break migration of existing configurations,
without adding extra manual vsmt options. As with TCG, it is rare in
production so I think the benefits outweigh breakages.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
At present if we require a vsmt mode that's not equal to the kernel's
default, and the kernel doesn't let us change it (e.g. because it's an old
kernel without support) then we always fail.
But in fact we can cope with the kernel having a different vsmt as long as
a) it's >= the actual number of vthreads/vcore (so that guest threads
that are supposed to be on the same core act like it)
b) it's a submultiple of the requested vsmt mode (so that guest threads
spaced by the vsmt value will act like they're on different cores)
Allowing this case gives us a bit more freedom to adjust the vsmt behaviour
without breaking existing cases.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Tested-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
We recently had some discussions that were sidetracked for a while, because
nearly everyone misapprehended the purpose of the 'max_threads' field in
the compatiblity modes table. It's all about guest expectations, not host
expectations or support (that's handled elsewhere).
In an attempt to avoid a repeat of that confusion, rename the field to
'max_vthreads' and add an explanatory comment.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
The options field here is intended to list the available values for the
capability. It's not used yet, because the existing capabilities are
boolean.
We're going to add capabilities that aren't, but in that case the info on
the possible values can be folded into the .description field.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Currently spapr_caps are tied to boolean values (on or off). This patch
reworks the caps so that they can have any uint8 value. This allows more
capabilities with various values to be represented in the same way
internally. Capabilities are numbered in ascending order. The internal
representation of capability values is an array of uint8s in the
sPAPRMachineState, indexed by capability number.
Capabilities can have their own name, description, options, getter and
setter functions, type and allow functions. They also each have their own
section in the migration stream. Capabilities are only migrated if they
were explictly set on the command line, with the assumption that
otherwise the default will match.
On migration we ensure that the capability value on the destination
is greater than or equal to the capability value from the source. So
long at this remains the case then the migration is considered
compatible and allowed to continue.
This patch implements generic getter and setter functions for boolean
capabilities. It also converts the existings cap-htm, cap-vsx and
cap-dfp capabilities to this new format.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Decimal Floating Point has been available on POWER7 and later (server)
cpus. However, it can be disabled on the hypervisor, meaning that it's
not available to guests.
We currently handle this by conditionally advertising DFP support in the
device tree depending on whether the guest CPU model supports it - which
can also depend on what's allowed in the host for -cpu host. That can lead
to confusion on migration, since host properties are silently affecting
guest visible properties.
This patch handles it by treating it as an optional capability for the
pseries machine type.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
We currently have some conditionals in the spapr device tree code to decide
whether or not to advertise the availability of the VMX (aka Altivec) and
VSX vector extensions to the guest, based on whether the guest cpu has
those features.
This can lead to confusion and subtle failures on migration, since it makes
a guest visible change based only on host capabilities. We now have a
better mechanism for this, in spapr capabilities flags, which explicitly
depend on user options rather than host capabilities.
Rework the advertisement of VSX and VMX based on a new VSX capability. We
no longer bother with a conditional for VMX support, because every CPU
that's ever been supported by the pseries machine type supports VMX.
NOTE: Some userspace distributions (e.g. RHEL7.4) already rely on
availability of VSX in libc, so using cap-vsx=off may lead to a fatal
SIGILL in init.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Now that the "pseries" machine type implements optional capabilities (well,
one so far) there's the possibility of having different capabilities
available at either end of a migration. Although arguably a user error,
it would be nice to catch this situation and fail as gracefully as we can.
This adds code to migrate the capabilities flags. These aren't pulled
directly into the destination's configuration since what the user has
specified on the destination command line should take precedence. However,
they are checked against the destination capabilities.
If the source was using a capability which is absent on the destination,
we fail the migration, since that could easily cause a guest crash or other
bad behaviour. If the source lacked a capability which is present on the
destination we warn, but allow the migration to proceed.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
This adds an spapr capability bit for Hardware Transactional Memory. It is
enabled by default for pseries-2.11 and earlier machine types. with POWER8
or later CPUs (as it must be, since earlier qemu versions would implicitly
allow it). However it is disabled by default for the latest pseries-2.12
machine type.
This means that with the latest machine type, HTM will not be available,
regardless of CPU, unless it is explicitly enabled on the command line.
That change is made on the basis that:
* This way running with -M pseries,accel=tcg will start with whatever cpu
and will provide the same guest visible model as with accel=kvm.
- More specifically, this means existing make check tests don't have
to be modified to use cap-htm=off in order to run with TCG
* We hope to add a new "HTM without suspend" feature in the not too
distant future which could work on both POWER8 and POWER9 cpus, and
could be enabled by default.
* Best guesses suggest that future POWER cpus may well only support the
HTM-without-suspend model, not the (frankly, horribly overcomplicated)
POWER8 style HTM with suspend.
* Anecdotal evidence suggests problems with HTM being enabled when it
wasn't wanted are more common than being missing when it was.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Because PAPR is a paravirtual environment access to certain CPU (or other)
facilities can be blocked by the hypervisor. PAPR provides ways to
advertise in the device tree whether or not those features are available to
the guest.
In some places we automatically determine whether to make a feature
available based on whether our host can support it, in most cases this is
based on limitations in the available KVM implementation.
Although we correctly advertise this to the guest, it means that host
factors might make changes to the guest visible environment which is bad:
as well as generaly reducing reproducibility, it means that a migration
between different host environments can easily go bad.
We've mostly gotten away with it because the environments considered mature
enough to be well supported (basically, KVM on POWER8) have had consistent
feature availability. But, it's still not right and some limitations on
POWER9 is going to make it more of an issue in future.
This introduces an infrastructure for defining "sPAPR capabilities". These
are set by default based on the machine version, masked by the capabilities
of the chosen cpu, but can be overriden with machine properties.
The intention is at reset time we verify that the requested capabilities
can be supported on the host (considering TCG, KVM and/or host cpu
limitations). If not we simply fail, rather than silently modifying the
advertised featureset to the guest.
This does mean that certain configurations that "worked" may now fail, but
such configurations were already more subtly broken.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Currently the pseries machine sets the compatibility mode for the
guest's cpus in two places: 1) at machine reset and 2) after CAS
negotiation.
This means that if we set or negotiate a compatiblity mode, then
hotplug a cpu, the hotplugged cpu doesn't get the right mode set and
will incorrectly have the full native features.
To correct this, we set the compatibility mode on a cpu when it is
brought online with the 'start-cpu' RTAS call. Given that we no
longer need to set the compatibility mode on all CPUs at machine
reset, so we change that to only set the mode for the boot cpu.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reported-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
It's a deprecated dummy device since QEMU v2.6.0. That should have
been enough time to allow the users to update their scripts in case
they still use it, so let's remove this legacy code now.
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Also introduce utilities to manipulate bitmasks (originaly from OPAL)
which be will be used in the model of the XIVE interrupt controller.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'pnv' prefix is now used for all and the routines populating the
device tree start with 'pnv_dt'. The handler of the PnvXScomInterface
is also renamed to 'dt_xscom' which should reflect that it is
populating the device tree under the 'xscom@' node of the chip.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
These two are definitely warnings. Let's use the appropriate API.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
applied using ./scripts/clean-includes
not needed since 7ebaf79556
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
applied using ./scripts/clean-includes
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
if KVM is enabled and KVM capabilities MMU radix is available,
the partition table entry (patb_entry) for the radix mode is
initialized by default in ppc_spapr_reset().
It's a problem if we want to migrate the guest to a POWER8 host
while the kernel is not started to set the value to the one
expected for a POWER8 CPU.
The "-machine max-cpu-compat=power8" should allow to migrate
a POWER9 KVM host to a POWER8 KVM host, but because patb_entry
is set, the destination QEMU tries to enable radix mode on the
POWER8 host. This fails and cancels the migration:
Process table config unsupported by the host
error while loading state for instance 0x0 of device 'spapr'
load of migration failed: Invalid argument
This patch doesn't set the PATB entry if the user provides
a CPU compatibility mode that doesn't support radix mode.
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We conditionally adjust part of the guest device tree based on the
global msi_nonbroken flag. However, the main machine type code
initializes msi_nonbroken to true and there's nothing that would set
it to false again.
So replace the test with an assert().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Machine objects have two init functions - the generic QOM level
instance_init which should only do static object initialization, and
the Machine specific MachineClass::init which does the actual
construction of the machine.
In spapr the functions implementing these two have names -
ppc_machine_initfn() and ppc_spapr_init() - which don't correspond closely
to either of those. To prevent people (read, me) from confusing which is
which, rename them spapr_instance_init() and spapr_machine_init() to
make it clearer which is which.
While we're there rename ppc_spapr_reset() to spapr_machine_reset() to
match.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
According to LoPAPR 1.1 B.6.12, the "/event-sources" node has an "interrupt-
ranges" property, the format of which is described in B.6.9.1.2 as follows:
“interrupt-ranges”
Standard property name that defines the interrupt number(s) and range(s)
handled by this unit.
prop-encoded-array: List of (int-number, range) specifications.
Int-number is encoded as with encode-int.
Range is encoded as with encode-int.
The first entry in this list shall contain the int-number associated with
the first “reg” property entry. The int-num-ber is the value representing
the interrupt source as would appear in the PowerPC External Interrupt
Architecture XISR. The range shall be the number of sequential interrupt
numbers which this unit can generate.
There's no such thing as a cell count at the end of the array, like the
one introduced by commit ffbb1705a3 in QEMU 2.8. It doesn't seem it had
any impact on existing guests and I couldn't find any related workaround
in linux. So, let's just drop the bogus lines.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
LoPAPR 1.1 B.6.9.1.2 describes the "#interrupt-cells" property of the
PowerPC External Interrupt Source Controller node as follows:
“#interrupt-cells”
Standard property name to define the number of cells in an interrupt-
specifier within an interrupt domain.
prop-encoded-array: An integer, encoded as with encode-int, that denotes
the number of cells required to represent an interrupt specifier in its
child nodes.
The value of this property for the PowerPC External Interrupt option shall
be 2. Thus all interrupt specifiers (as used in the standard “interrupts”
property) shall consist of two cells, each containing an integer encoded
as with encode-int. The first integer represents the interrupt number the
second integer is the trigger code: 0 for edge triggered, 1 for level
triggered.
This patch fixes the interrupt specifiers in the "interrupt-map" property
of the PHB node, that were setting the second cell to 8 (confusion with
IRQ_TYPE_LEVEL_LOW ?) instead of 1.
VIO devices and RTAS event sources use the same format for interrupt
specifiers: while here, we introduce a common helper to handle the
encoding details.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Cédric Le Goater <clg@kaod.org>
--
v3: - reference public LoPAPR instead of internal PAPR+ in changelog
- change helper name to spapr_dt_xics_irq()
v2: - drop the erroneous changes to the "interrupts" prop in PCI device nodes
- introduce a common helper to encode interrupt specifiers
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
SPAPR is the last user of numa_get_node() and a bunch of
supporting code to maintain numa_info[x].addr list.
Get LMB node id from pc-dimm list, which allows to
remove ~80LOC maintaining dynamic address range
lookup list.
It also removes pc-dimm dependency on numa_[un]set_mem_node_id()
and makes pc-dimms a sole source of information about which
node it belongs to and removes duplicate data from global
numa_info.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
xics_get_qirq() is only used by the sPAPR machine. Let's move it there
and change its name to reflect its scope. It will be useful for XIVE
support which will use its own set of qirqs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It will make synchronisation easier with the XIVE interrupt mode when
available. The 'irq' parameter refers to the global IRQ number space.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Also change the prototype to use a sPAPRMachineState and prefix them
with spapr_irq_. It will let us synchronise the IRQ allocation with
the XIVE interrupt mode when available.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'intc' pointer of the CPU references the interrupt presenter in
the XICS interrupt mode. When the XIVE interrupt mode is available and
activated, the machine will need to reassign this pointer to reflect
the change.
Moving this assignment under the realize routine of the CPU will ease
the process when the interrupt mode is toggled.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The sPAPR and the PowerNV core objects create the interrupt presenter
object of the CPUs in a very similar way. Let's provide a common
routine in which we use the presenter 'type' as a child identifier.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When a CPU is stopped with the 'stop-self' RTAS call, its state
'halted' is switched to 1 and, in this case, the MSR is not taken into
account anymore in the cpu_has_work() routine. Only the pending
hardware interrupts are checked with their LPCR:PECE* enablement bit.
The CPU is now also protected from the decrementer interrupt by the
LPCR:PECE* bits which are disabled in the 'stop-self' RTAS
call. Reseting the MSR is pointless.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Just like for hot unplug CPUs, when a guest is rebooted, the secondary
CPUs can be awaken by the decrementer and start entering SLOF at the
same time the boot CPU is.
To be safe, let's disable on the secondaries all the exceptions which
can cause an exit while the CPU is in power-saving mode.
Based on previous work from Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When a CPU is stopped with the 'stop-self' RTAS call, its state
'halted' is switched to 1 and, in this case, the MSR is not taken into
account anymore in the cpu_has_work() routine. Only the pending
hardware interrupts are checked with their LPCR:PECE* enablement bit.
If the DECR timer fires after 'stop-self' is called and before the CPU
'stop' state is reached, the nearly-dead CPU will have some work to do
and the guest will crash. This case happens very frequently with the
not yet upstream P9 XIVE exploitation mode. In XICS mode, the DECR is
occasionally fired but after 'stop' state, so no work is to be done
and the guest survives.
I suspect there is a race between the QEMU mainloop triggering the
timers and the TCG CPU thread but I could not quite identify the root
cause. To be safe, let's disable in the LPCR all the exceptions which
can cause an exit while the CPU is in power-saving mode and reenable
them when the CPU is started.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The current code assumes that only the CPU core object holds a
reference on each individual CPU object, and happily frees their
allocated memory when the core is unrealized. This is dangerous
as some other code can legitimely keep a pointer to a CPU if it
calls object_ref(), but it would end up with a dangling pointer.
Let's allocate all CPUs with object_new() and let QOM free them
when their reference count reaches zero. This greatly simplify the
code as we don't have to fiddle with the instance size anymore.
Signed-off-by: Greg Kurz <groug@kaod.org>
Acked-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
While we're at it fix a couple of small errors in the 2.11 and 2.10 models
(they didn't have any real effect, but don't quite match the template).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The bus pointer in PCIDevice is basically redundant with QOM information.
It's always initialized to the qdev_get_parent_bus(), the only difference
is the type.
Therefore this patch eliminates the field, instead creating a pci_get_bus()
helper to do the type mangling to derive it conveniently from the QOM
Device object underneath.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
pci_bus_init(), pci_bus_new_inplace(), pci_bus_new() and pci_register_bus()
are misleadingly named. They're not used for initializing *any* PCI bus,
but only for a root PCI bus.
Non-root buses - i.e. ones under a logical PCI to PCI bridge - are instead
created with a direct qbus_create_inplace() (see pci_bridge_initfn()).
This patch renames the functions to make it clear they're only used for
a root bus.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
At guest reset time, we allocate a hash page table (HPT) for the guest
based on the guest's RAM size. If dynamic HPT resizing is not available we
use the maximum RAM size, if it is we use the current RAM size.
But the "current RAM size" calculation is incorrect - we just use the
"base" ram_size from the machine structure. This doesn't include any
pluggable DIMMs that are already plugged at reset time.
This means that if you try to start a 'pseries' machine with a DIMM
specified on the command line that's much larger than the "base" RAM size,
then the guest will get a woefully inadequate HPT. This can lead to a
guest freeze during boot as it runs out of HPT space during initial MMU
setup.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
Migration of pseries is broken with TCG because
QEMU tries to restore KVM MMU state unconditionally.
The result is a SIGSEGV in kvm_vm_ioctl():
#0 kvm_vm_ioctl (s=0x0, type=-2146390353)
at qemu/accel/kvm/kvm-all.c:2032
#1 0x00000001003e3e2c in kvmppc_configure_v3_mmu (cpu=<optimized out>,
radix=<optimized out>, gtse=<optimized out>, proc_tbl=<optimized out>)
at qemu/target/ppc/kvm.c:396
#2 0x00000001002f8b88 in spapr_post_load (opaque=0x1019103c0,
version_id=<optimized out>) at qemu/hw/ppc/spapr.c:1578
#3 0x000000010059e4cc in vmstate_load_state (f=0x106230000,
vmsd=0x1009479e0 <vmstate_spapr>, opaque=0x1019103c0,
version_id=<optimized out>) at qemu/migration/vmstate.c:165
#4 0x00000001005987e0 in vmstate_load (f=<optimized out>, se=<optimized out>)
at qemu/migration/savevm.c:748
This patch fixes the problem by not calling the KVM function with the
TCG mode.
Fixes: d39c90f5f3 ("spapr: Fix migration of Radix guests")
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The patb_entry is used to store the location of the process table in
guest memory. The msb is also used to indicate the mmu mode of the
guest, that is patb_entry & 1 << 63 ? radix_mode : hash_mode.
Currently we set this to zero in spapr_setup_hpt_and_vrma() since if
this function gets called then we know we're hash. However some code
paths, such as setting up the hpt on incoming migration of a hash guest,
call spapr_reallocate_hpt() directly bypassing this higher level
function. Since we assume radix if the host is capable this results in
the msb in patb_entry being left set so in spapr_post_load() we call
kvmppc_configure_v3_mmu() and tell the host we're radix which as
expected means addresses cannot be translated once we actually run the cpu.
To fix this move the zeroing of patb_entry into spapr_reallocate_hpt().
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
LUNs >= 256 have to be encoded with the so-called "flat space
addressing method" for virtio-scsi, where an additional bit has to
be set. SLOF already took care of this with the following commit:
https://git.qemu.org/?p=SLOF.git;a=commitdiff;h=f72a37713fea47da
(see https://bugzilla.redhat.com/show_bug.cgi?id=1431584 for details)
But QEMU does not use this encoding yet for device tree paths
that have to be handed over to SLOF to deal with the "bootindex"
property, so SLOF currently fails to boot from virtio-scsi devices
with LUNs >= 256 in the right boot order. Fix it by using the bit
to indicate the "flat space addressing method" for LUNs >= 256.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
A DRC with a pending unplug request releases its associated device at
machine reset time.
In the case of LMB, when all DRCs for a DIMM device have been reset,
the DIMM gets unplugged, causing guest memory to disappear. This may
be very confusing for anything still using this memory.
This is exactly what happens with vhost backends, and QEMU aborts
with:
qemu-system-ppc64: used ring relocated for ring 2
qemu-system-ppc64: qemu/hw/virtio/vhost.c:649: vhost_commit: Assertion
`r >= 0' failed.
The issue is that each DRC registers a QEMU reset handler, and we
don't control the order in which these handlers are called (ie,
a LMB DRC will unplug a DIMM before the virtio device using the
memory on this DIMM could stop its vhost backend).
To avoid such situations, let's reset DRCs after all devices
have been reset.
Reported-by: Mallesh N. Koti <mallesh@linux.vnet.ibm.com>
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Daniel Henrique Barboza <danielhb@linux.vnet.ibm.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The device tree nodes ibm,arch-vec-5-platform-support and ibm,pa-features
are used to communicate features of the cpu to the guest operating
system. The properties of each of these are determined based on the
selected cpu model and the availability of hypervisor features.
Currently the compatibility mode of the cpu is not taken into account.
The ibm,arch-vec-5-platform-support node is used to communicate the
level of support for various ISAv3 processor features to the guest
before CAS to inform the guests' request. The available mmu mode should
only be hash unless the cpu is a POWER9 which is not in a prePOWER9
compat mode, in which case the available modes depend on the
accelerator and the hypervisor capabilities.
The ibm,pa-featues node is used to communicate the level of cpu support
for various features to the guest os. This should only contain features
relevant to the operating mode of the processor, that is the selected
cpu model taking into account any compat mode. This means that the
compat mode should be taken into account when choosing the properties of
ibm,pa-features and they should match the compat mode selected, or the
cpu model selected if no compat mode.
Update the setting of these cpu features in the device tree as described
above to properly take into account any compat mode. We use the
ppc_check_compat function which takes into account the current processor
model and the cpu compat mode.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
KVM HV will soon support running a guest in hash mode on a POWER9 host
running in radix mode (see [1]), however the guest currently fails to
boot.
This is because the "htab_shift" value (the size of the MMU's hash
table) is added to the device tree before KVM has had a chance to
change it. If the host is in hash mode, KVM does not need to change it
and so the problem is not seen, but when the host is in radix mode a
change is required and we see a problem.
To fix this, move the call spapr_setup_hpt_and_vrma() (where
htab_shift could be changed) up a little so that it's called before
spapr_h_cas_compose_response() (where htab_shift is added to the
device tree).
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
[1] See http://www.spinics.net/lists/kvm-ppc/msg13057.html
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Actual number of interrupt pins isn't known
in ppce500_init_mpic() so a hardcoded number
was used, which causes a crash with older openpic.
Instead, return the DeviceState* and change ppce500_init()
to call qdev_get_gpio_in() to get only the irq pins
which are needed.
Signed-off-by: Michael Davidsaver <mdavidsaver@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This makes the code easier to understand and it is consistent with what
we already do for PHBs.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
QEMU currently crashes when the user tries to add an spapr-pci-host-bridge
on a non-pseries machine:
$ qemu-system-ppc64 -M ppce500 -device spapr-pci-host-bridge,index=1
hw/ppc/spapr_pci.c:1535:spapr_phb_realize:
Object 0x1003dacae60 is not an instance of type spapr-machine
Aborted (core dumped)
The same thing happens with the deprecated but still available child type
spapr-pci-vfio-host-bridge.
Fix both by checking the machine type with object_dynamic_cast().
Reviewed-by: Daniel Henrique Barboza <danielhb@linux.vnet.ibm.com>
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
In order to prevent the guest from forcing the allocation of large amounts
of qemu memory (or host kernel memory, in the case of KVM HV), we limit
the size of Hashed Page Table (HPT) it is allowed to allocated, based on
its RAM size.
However, the current calculation is not correct: it only adds up the size
of plugged memory, ignoring the base memory size. This patch corrects it.
While we're there, use get_plugged_memory_size() instead of directly
calling pc_existing_dimms_capacity(). The only difference is that it
will abort on failure, which is right: a failure here indicates something
wrong within qemu.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Use a new DEFINE_TYPES() helper to simplify type registration
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
deduce core type directly from chip type instead of
maintaining type mapping in PnvChipClass::cpu_model.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
pnv core type definition doesn't have any fields that
require it to be defined at runtime. So replace code
that fills in TypeInfo at runtime with static TypeInfo
array that does the same at complie time.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
deduce cpu type directly from core type instead of
maintaining type mapping in PnvCoreClass::cpu_oc and doing
extra cpu_model parsing in pnv_core_class_init()
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
typically for cpus/core type names following convention is used
new_type_prefix-superclass_typename
make PNV core/chip to follow common convention.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
use common cpu_model prasing in vl.c and set default cpu_model
using generic MachineClass::default_cpu_type.
Beside of switching to generic infrastructure it solves several
issues.
* ppc_cpu_class_by_name() is used to deal with lower/upper case
and alias translations into actual cpu type, which fixes
'-M powernv -cpu power8' and '-M powernv -cpu power9_v1.0'
usecases which error out with:
'invalid CPU model 'FOO' for powernv machine'
* allows to switch to lower-case typenames in pnv chip/core name
(by convention typnames should be lower-case)
* replace aliased names /power8, power9, .../ with exact cpu model
names (i.e. typenames should be stable but aliases might decide to
point to other cpu model withi family or changed by kvm). It will
also help to simplify pnv_chip/core code and get rid of dependency
on cpu_model parsing.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
[dwg: Updated to make DD2.0 as default POWER9 chip]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
use generic cpu_model parsing introduced by
(6063d4c0f vl.c: convert cpu_model to cpu type and set of global properties before machine_init())
it allows to:
* replace sPAPRMachineClass::tcg_default_cpu with
MachineClass::default_cpu_type
* drop cpu_parse_cpu_model() from hw/ppc/spapr.c and reuse
one in vl.c
* simplify spapr_get_cpu_core_type() by removing
not needed anymore recurrsion since alias look up
happens earlier at vl.c and spapr_get_cpu_core_type()
works only with resulted from that cpu type.
* spapr no more needs to parse/depend on being phased out
MachineState::cpu_model, all tha parsing done by generic
code and target specific callback.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
[dwg: Correct minor compile error]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
consolidate 'host' core type registration by moving it from
KVM specific code into spapr_cpu_core.c, similar like it's
done in x86 target.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
replace sPAPRCPUCoreClass::cpu_class with cpu type name
since it were needed just to get that at points it were
accessed.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
spapr core type definition doesn't have any fields that
require it to be defined at runtime. So replace code
that fills in TypeInfo at runtime with static TypeInfo
array that does the same at complie time.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
there is a dedicated callback CPUClass::parse_features
which purpose is to convert -cpu features into a set of
global properties AND deal with compat/legacy features
that couldn't be directly translated into CPU's properties.
Create ppc variant of it (ppc_cpu_parse_featurestr) and
move 'compat=val' handling from spapr_cpu_core.c into it.
That removes a dependency of board/core code on cpu_model
parsing and would let to reuse common -cpu parsing
introduced by 6063d4c0
Set "max-cpu-compat" property only if it exists, in practice
it should limit 'compat' hack to spapr machine and allow
to avoid including machine/spapr headers in target/ppc/cpu.c
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
ppc_cpu_parse_features() is doing practically the same thing as
generic cpu_parse_cpu_model(). So remove duplicated impl. and
reuse generic one.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
LMB removal is completed only when the spapr_lmb_release callback
is called after all DRCs of the dimm are detached. During this
time, it is possible that a unplug request for the same dimm
arrives, trying to detach DRCs that were detached by the guest
in the first unplug_request.
BQL doesn't help in this case - the lock will prevent any concurrent
removal from happening until the end of spapr_memory_unplug_request
only. What happens is that the second unplug_request ends up calling
spapr_drc_detach in a DRC that were detached already, causing an
assert error in spapr_drc_detach (e.g
https://bugs.launchpad.net/qemu/+bug/1718118).
spapr_lmb_release uses a structure called sPAPRDIMMState, stored in the
spapr->pending_dimm_unplugs QTAIL, to track how many LMB DRCs are left
to be detached by the guest. When there are no more DRCs left, this
structure is deleted and the pc-dimm unplug handler is called to
finish the process.
This patch reuses the sPAPRDIMMState to allow unplug_request to know
if there is an ongoing unplug process for a given dimm, aborting the
unplug request in this case, by doing the following changes:
- in spapr_lmb_release callback, move the dimm state removal to the
end, after pc-dimm unplug handler. With this change we can check for
the existence of the dimm state to see if the unplug process is
done.
- use spapr_pending_dimm_unplugs_find in spapr_memory_unplug_request
to check if the dimm state exists. If positive, there is an unplug
operation already in progress for this dimm, meaning that we should
abort it and warn the user about it.
Fixes: https://bugs.launchpad.net/qemu/+bug/1718118
Signed-off-by: Daniel Henrique Barboza <danielhb@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
At the moment the only POWER9 model which is listed in qemu is v1.0 (aka
"DD1"). This is a very early (read, buggy) version which will never be
released to the public - it was included in qemu only for the convenience
of those doing bringup on the early silicon. For bonus points, we actually
had its PVR incorrect in the table (0x004e0000 instead of 0x004e0100). We
also never actually implemented the differences in behaviour (read, bugs)
that marked DD1 in qemu.
Now that we know the PVR for the substantially better v2.0 (DD2) chip,
include it and make it the default POWER9 in qemu. For the time being we
leave the DD1 definition in place for the poor souls (read, me) who still
need to work with DD1 hardware.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The CAS buffer is provided by SLOF. A broken SLOF could pass a silly
size: either smaller than the diff header, in which case the current
code will try to allocate 16 Exabytes of memory and g_malloc0() will
abort, or bigger than the maximum memory provisioned for SLOF (ie,
40 Megabytes), which doesn't make sense. Both cases indicate that
SLOF has a bug.
Let's print out an explicit error message and exit since rebooting as
we do with other errors would only result in a reset loop.
Signed-off-by: Greg Kurz <groug@kaod.org>
[dwg: Fix format specifier that broke 32-bit builds]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The offset of the root node is guaranteed to be 0.
This doesn't fix anything, it's just trivial cleanup of the two
remaining places where this was done under hw/ppc.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Daniel Henrique Barboza <danielhb@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add INTERFACE_CONVENTIONAL_PCI_DEVICE to all direct subtypes of
TYPE_PCI_DEVICE, except:
1) The ones that already have INTERFACE_PCIE_DEVICE set:
* base-xhci
* e1000e
* nvme
* pvscsi
* vfio-pci
* virtio-pci
* vmxnet3
2) base-pci-bridge
Not all PCI bridges are Conventional PCI devices, so
INTERFACE_CONVENTIONAL_PCI_DEVICE is added only to the subtypes
that are actually Conventional PCI:
* dec-21154-p2p-bridge
* i82801b11-bridge
* pbm-bridge
* pci-bridge
The direct subtypes of base-pci-bridge not touched by this patch
are:
* xilinx-pcie-root: Already marked as PCIe-only.
* pcie-pci-bridge: Already marked as PCIe-only.
* pcie-port: all non-abstract subtypes of pcie-port are already
marked as PCIe-only devices.
3) megasas-base
Not all megasas devices are Conventional PCI devices, so the
interface names are added to the subclasses registered by
megasas_register_types(), according to information in the
megasas_devices[] array.
"megasas-gen2" already implements INTERFACE_PCIE_DEVICE, so add
INTERFACE_CONVENTIONAL_PCI_DEVICE only to "megasas".
Acked-by: Alberto Garcia <berto@igalia.com>
Acked-by: John Snow <jsnow@redhat.com>
Acked-by: Anthony PERARD <anthony.perard@citrix.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Marcel Apfelbaum <marcel@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZy64HAAoJEAUWMx68W/3nTqwP/A5Gx4Qwkv5KKdpM0YLq//d+
OODmzl7Ni3a5Up1ETqGdLb84estrgY+5DISp73Rkt4a5tbT7+XKrhb4qD+93NnTe
zynY9in4C1jGxYm7YzeOhwSeIiuLZMTCLQlGdYw7/nunIFwkItUEvAFx3AG1WCJe
2Mk0lvmg4LikruDDMdzqZaJu7h5RU5sQjA7SsyrTBdsN7tNWl3rKLYGXwgzv0uz5
n2xkUgzvvnj1Bk/Adojkn05yxA86xKD/4rhFED9fjNVSjAGHMrHIWOJ70V26Cg5w
3gJ+5mesWsH+erf0JFYv0S38SyFbmIOE39Nn13D/d0o1x89P8B8cgqbi3ADTKM77
875wuIVnZzi2vIwVdxXQ9GHQ79cpXwr2fOfQ2rjT6Ll95K+u/MQG86fQiO0eJW+0
KwQVCwwh+HmCUcCogMuxAc9+F8C8qolwCi/9QXwS2yLBElHKaWDIMyTce36cW9d7
cZaKIOeSJUGNFoaWZnXN88MRuOYbdywTl+GddVAW3+VJCTYV2oi0o5fsTfxXy5AV
y7uYo/pcSj2gSZJ5GairMlB6p5iXnE8yusi1e4ZKA1x1TaSHSb6zR59lRUFr+j/L
JhUCfA85v5/elGqgkYp6UhSzFDJ2ID2oSEMQTIzfVrinOXtnf2KEh33YMbUH5qyo
yHVEu12uPe9rE6A0vWlu
=/+LV
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'remotes/dgilbert/tags/pull-migration-20170927a' into staging
Migration pull 2017-09-27
# gpg: Signature made Wed 27 Sep 2017 14:56:23 BST
# gpg: using RSA key 0x0516331EBC5BFDE7
# gpg: Good signature from "Dr. David Alan Gilbert (RH2) <dgilbert@redhat.com>"
# gpg: WARNING: This key is not certified with sufficiently trusted signatures!
# gpg: It is not certain that the signature belongs to the owner.
# Primary key fingerprint: 45F5 C71B 4A0C B7FB 977A 9FA9 0516 331E BC5B FDE7
* remotes/dgilbert/tags/pull-migration-20170927a:
migration: Route more error paths
migration: Route errors up through vmstate_save
migration: wire vmstate_save_state errors up to vmstate_subsection_save
migration: Check field save returns
migration: check pre_save return in vmstate_save_state
migration: pre_save return int
migration: disable auto-converge during bulk block migration
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Modify the pre_save method on VMStateDescription to return an int
rather than void so that it potentially can fail.
Changed zillions of devices to make them return 0; the only
case I've made it return non-0 is hw/intc/s390_flic_kvm.c that already
had an error_report/return case.
Note: If you add an error exit in your pre_save you must emit
an error_report to say why.
Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Message-Id: <20170925112917.21340-2-dgilbert@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Juan Quintela <quintela@redhat.com>
Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Using a standard QOM object link we can pass a reference to the MAC_DBDMA
controller to the MACIO_IDE object which removes the last external parameter
to macio_ide_register_dma().
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
One of the reasons macio_ide_register_dma() needs to exist is because the
channel id isn't passed into the MACIO_IDE object. Pass in the channel id
using a qdev property to remove this requirement.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When running with KVM PR, if a new HPT is allocated we need to inform
KVM about the HPT address and size. This is currently done by hacking
the value of SDR1 and pushing it to KVM in several places.
Also, migration breaks the guest since it is very unlikely the HPT has
the same address in source and destination, but we push the incoming
value of SDR1 to KVM anyway.
This patch introduces a new virtual hypervisor hook so that the spapr
code can provide the correct value of SDR1 to be pushed to KVM each
time kvmppc_put_books_sregs() is called.
It allows to get rid of all the hacking in the spapr/kvmppc code and
it fixes migration of nested KVM PR.
Suggested-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
and exit before uselessly trying to load it if the file does not
exists.
Issue discovered by Coverity Scan.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PHBs can be created with an index property, in which case the machine
code automatically sets all the MMIO windows at addresses derived from
the index. Alternatively, they can be manually created without index,
but the user has to provide addresses for all MMIO windows.
The non-index way happens to be more trouble than it's worth: it's
difficult to use, keeps requiring (potentially incompatible) changes
when some new parameter needs adding, and is awkward to check for
collisions. It currently even has a bug that prevents to use two
non-index PHBs because their child DRCs are all derived from the
same index == -1 value, and, thus, collide.
This patch hence makes the index property mandatory. As a consequence,
the PHB's memory regions and BUID are now always configured according
to the index, and it is no longer possible to set them from the command
line.
This DOES BREAK backwards compat, but we don't think the non-index
PHB feature was used in practice (at least libvirt doesn't) and the
simplification is worth it.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This consolidates some duplicated code in a dedicated helpers.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The use of KVM_PPC_GET_HTAB_FD is open-coded in kvmppc_read_hptes()
and kvmppc_write_hpte().
This patch modifies kvmppc_get_htab_fd() so that it can be used
everywhere we need to access the in-kernel htab:
- add an index argument
=> only kvmppc_read_hptes() passes an actual index, all other users
pass 0
- add an errp argument to propagate error messages to the caller.
=> spapr migration code prints the error
=> hpte helpers pass &error_abort to keep the current behavior
of hw_error()
While here, this also fixes a bug in kvmppc_write_hpte() so that it
opens the htab fd for writing instead of reading as it currently does.
This never broke anything because we currently never call this code,
as explained in the changelog of commit c138593380:
"This support updating htab managed by the hypervisor. Currently
we don't have any user for this feature. This actually bring the
store_hpte interface in-line with the load_hpte one. We may want
to use this when we want to emulate henter hcall in qemu for HV
kvm."
The above is still true today.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
When kvmppc_get_htab_fd() fails, its return value is propagated up to
qemu_savevm_state_iterate() or to qemu_savevm_state_complete_precopy().
All savevm handlers expect to receive a negative errno on error.
Let's patch kvmppc_get_htab_fd() accordingly.
While here, let's change htab_load() in the spapr code to also
propagate the error, since it doesn't make sense to abort() if
we couldn't get the htab fd from KVM.
Signed-off-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Apple uses an IBM MPIC2A without timers, it has 64 sources.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The timing register exists on all variants of MacIO IDE, we just
store and return its value.
The interrupts register only exists on KeyLargo but it doesn't
hurt to have it. The lack of this register causes MacOS X to
hangs under some circumstances.
Both are 32-bit only. The HW might support smaller access sizes
but no known OS uses them.
Because the core IDE subsystem doesn't provide us with a way
to query the main (level) interrupt state, nor do we have a way
to know that DBDMA issued a (edge) interrupt, we reflect both
through a private pair of qirq's in order to maintain the
register state.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>