The current api from safe_syscall_base() is to return -errno, which is
the interface provided by *some* linux kernel abis. The wrapper macro,
safe_syscall(), detects error, stores into errno, and returns -1, to
match the api of the system syscall().
For those kernel abis that do not return -errno natively, this leads
to double syscall error detection. E.g. Linux ppc64, which sets the
SO flag for error.
Simplify the usage from C by moving the error detection into assembly,
and usage from assembly by providing a C helper with which to set errno.
Reviewed-by: Warner Losh <imp@bsdimp.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Warner Losh <imp@bsdimp.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Suggested-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
* remove unnecessary #ifdef
* SCSI and i386 fixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmG9sTYUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMqAQf/bXVDN0gFTki4kPcycgTxnW8gDzMX
dKFqh/mH+wnl9g/XBqP8t6+IOJQYFxCAIAzILX+kIDo0hW9RGkTtchGMk4k54IO5
HEK/vtZZHdkcmIbJBpoDRb78O7LvgB5bhI0XCdQb0fsuI43SnEsC0xhkL8b7Uhic
lbVKRqEG15XLOsGeSaft+41AvARtjJ1Cd6UAZsXbHmSIP+G2865oeM+omrnvGeCk
K/UHn5vLlQJzqs3/37UGnSgdWSxrmYp1HvPESErhReIWGblUZ+FEuzlZaE3qhFcL
cyxaV1d4m/CmMVOirTNh63Khusfx7VXdxl4MGvvWeMoiH3auvBkCmhj1gw==
=8LxX
-----END PGP SIGNATURE-----
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
* configure and meson cleanups and fixes
* remove unnecessary #ifdef
* SCSI and i386 fixes
# gpg: Signature made Sat 18 Dec 2021 02:00:22 AM PST
# gpg: using RSA key F13338574B662389866C7682BFFBD25F78C7AE83
# gpg: issuer "pbonzini@redhat.com"
# gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>" [unknown]
# gpg: aka "Paolo Bonzini <pbonzini@redhat.com>" [unknown]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg: There is no indication that the signature belongs to the owner.
# Primary key fingerprint: 46F5 9FBD 57D6 12E7 BFD4 E2F7 7E15 100C CD36 69B1
# Subkey fingerprint: F133 3857 4B66 2389 866C 7682 BFFB D25F 78C7 AE83
* tag 'for-upstream' of https://gitlab.com/bonzini/qemu:
hw/i386/vmmouse: Require 'i8042' property to be set
tests/qtest/fuzz-megasas-test: Add test for GitLab issue #521
hw/scsi/megasas: Fails command if SGL buffer overflows
hw/scsi: Fix scsi_bus_init_named() docstring
meson: add "check" argument to run_command
cpu: remove unnecessary #ifdef CONFIG_TCG
meson: reenable test-fdmon-epoll
configure: remove DIRS
configure: remove unnecessary symlinks
configure, meson: move ARCH to meson.build
meson: rename "arch" variable
configure: unify x86_64 and x32
configure: unify ppc64 and ppc64le
configure: unify two case statements on $cpu
configure: move target detection before CPU detection
configure: make $targetos lowercase, use windows instead of MINGW32
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
If the 'i8042' property is not set, mouse events handled by
vmmouse_mouse_event() end calling i8042_isa_mouse_fake_event()
with a NULL argument, resulting in ps2_mouse_fake_event() being
called with invalid PS2MouseState pointer. Fix by requiring
the 'i8042' property to be always set:
$ qemu-system-x86_64 -device vmmouse
qemu-system-x86_64: -device vmmouse: 'i8042' link is not set
Fixes: 91c9e09147 ("vmmouse: convert to qdev")
Reported-by: Calvin Buckley <calvin@cmpct.info>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/752
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20211201223253.36080-1-f4bug@amsat.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Without the previous commit, this test triggers:
$ make check-qtest-x86_64
[...]
Running test qtest-x86_64/fuzz-megasas-test
qemu-system-x86_64: softmmu/physmem.c:3229: address_space_unmap: Assertion `mr != NULL' failed.
Broken pipe
ERROR qtest-x86_64/fuzz-megasas-test - too few tests run (expected 2, got 1)
Suggested-by: Alexander Bulekov <alxndr@bu.edu>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Message-Id: <20211119201141.532377-3-philmd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If we detect an overflow on the SGL buffer, do not
keep processing the command: discard it. TARGET_FAILURE
sense code will be returned (MFI_STAT_SCSI_DONE_WITH_ERROR).
Reported-by: Alexander Bulekov <alxndr@bu.edu>
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/521
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Message-Id: <20211119201141.532377-2-philmd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 739e95f574 ("scsi: Replace scsi_bus_new() with
scsi_bus_init(), scsi_bus_init_named()") forgot to rename
scsi_bus_init() in the function documentation string.
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20211122104744.1051554-1-f4bug@amsat.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Meson is planning to change the default of the "check" argument to
run_command (from false to true). Be explicit and include it in
all invocations.
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
"if (tcg_enabled())" allows elision of the code inside it; we only need
the prototype to exist, so that the code compile even for the --disable-tcg
case.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The test was disabled when CONFIG_EPOLL_CREATE1 was moved out
of config-host.mak. Fix the condition.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
DIRS is used to create the directory in which the LINKS symbolic links
reside, or to create directories for object files. The former can
be done directly in the symlinking loop, while the latter is done
by Meson already, so DIRS is not necessary.
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make pc-bios/meson.build use the files in the source tree as inputs
to bzip2.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
$ARCH and the HOST_* symbols are only used by the QEMU build; configure
uses $cpu instead. Remove it from config-host.mak.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Avoid confusion between the ARCH variable of configure/config-host.mak
and the same-named variable of meson.build.
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The only difference between the two, as far as either configure or
Meson are concerned, is in the multilib flags passed to the compiler.
For QEMU, this fixes the handling of TYPE_OLDDEVT in
include/exec/user/thunk.h and enables testing of dirty ring buffer,
because both are using HOST_X86_64.
For tests/tcg, this means that on a hypothetical x32 host the
cross compiler will not be used to build the tests.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The only difference between the two, as far as either configure or
Meson are concerned, is the default endianness of the compiler.
For tests/tcg, specify the endianness explicitly on the command line;
for configure, do the same so that it is possible to have --cpu=ppc64le
on a bigendian system or vice versa. Apart from this, cpu=ppc64le can
be normalized to ppc64 also in configure and not just in the meson
cross file.
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
targetos is already mostly the same as Meson host_machine.system(),
just in CamelCase. Adjust Windows, which is different, and switch to
lowercase to match Meson.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* General cleanup for Mac machines (Peter)
* Fixes for FPU exceptions (Lucas)
* Support for new ISA31 instructions (Matheus)
* Fixes for ivshmem (Daniel)
* Cleanups for PowerNV PHB (Christophe and Cedric)
* Updates of PowerNV and pSeries documentation (Leonardo and Daniel)
* Fixes for PowerNV (Daniel)
* Large cleanup of FPU implementation (Richard)
* Removal of SoftTLBs support for PPC74x CPUs (Fabiano)
* Fixes for exception models in MPCx and 60x CPUs (Fabiano)
* Removal of 401/403 CPUs (Cedric)
* Deprecation of taihu machine (Thomas)
* Large rework of PPC405 machine (Cedric)
* Fixes for VSX instructions (Victor and Matheus)
* Fix for e6500 CPU (Fabiano)
* Initial support for PMU (Daniel)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEoPZlSPBIlev+awtgUaNDx8/77KEFAmG8xt8ACgkQUaNDx8/7
7KG3Dg/9EXK3GslNgUNRvB1pgRSimnrUirGUiDmZPXxevIbsoPsYaXmUcD1zOnlb
zXiCzQ2Bvi8ZUjT1uScP7dkFCdzs6gXYbTEcTzscX3k2VnTjXHXhQ3cnb0uModP5
U1QzrjV7K/q1usJW5OVSGZS1PoWOqWuZNdcp0mIUWcJHhSaYtUGGPohp7rH0JSug
ncmkRA0KLgIX8eg8swyfJxrw9wCcXlFIcmwHipB8S/Dd/gUpmFEoaQsmugSJNYZe
zi8Fd4jfzlRXVwb8EUSiOiaXSd/WKjEcQx/usbzzaBacbktk/nfy+rligUMryCpO
vGFM5blxEX5SXD3Cd0vcFwYhCZImphD8K+Sxe6Us69rsUH11hJS+q29/Puk1MkHt
DTubqB3k4BheiatOV1zeUMlbRm5svUhGj3VstFZYZeZ3Oh47Jsx3XH4hoytUuc/1
lP9UGkaf3nIx12vSqBA/3Crc7zalWX5OhaUV5RG30+jxd8zHOKcasKbd22710DNz
4WybQLb3bpUr091mWMKcaAkP6bxcE8S+mR4LE2kdELboAnkB+OgSmrdZ3slceaCv
btV8qjNl4f8lBvyFQVxZ5bn05+TfxUXFlFxXipxf1fI64bYwRnyQQ3yRxMHipRYK
CRta1akVgIgcBbeeRHBZLA12UgTQJY6WIoDaZMz9NxIDHJnX/jw=
=APFd
-----END PGP SIGNATURE-----
Merge tag 'pull-ppc-20211217' of https://github.com/legoater/qemu into staging
ppc 7.0 queue:
* General cleanup for Mac machines (Peter)
* Fixes for FPU exceptions (Lucas)
* Support for new ISA31 instructions (Matheus)
* Fixes for ivshmem (Daniel)
* Cleanups for PowerNV PHB (Christophe and Cedric)
* Updates of PowerNV and pSeries documentation (Leonardo and Daniel)
* Fixes for PowerNV (Daniel)
* Large cleanup of FPU implementation (Richard)
* Removal of SoftTLBs support for PPC74x CPUs (Fabiano)
* Fixes for exception models in MPCx and 60x CPUs (Fabiano)
* Removal of 401/403 CPUs (Cedric)
* Deprecation of taihu machine (Thomas)
* Large rework of PPC405 machine (Cedric)
* Fixes for VSX instructions (Victor and Matheus)
* Fix for e6500 CPU (Fabiano)
* Initial support for PMU (Daniel)
# gpg: Signature made Fri 17 Dec 2021 09:20:31 AM PST
# gpg: using RSA key A0F66548F04895EBFE6B0B6051A343C7CFFBECA1
# gpg: Good signature from "Cédric Le Goater <clg@kaod.org>" [unknown]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg: There is no indication that the signature belongs to the owner.
# Primary key fingerprint: A0F6 6548 F048 95EB FE6B 0B60 51A3 43C7 CFFB ECA1
* tag 'pull-ppc-20211217' of https://github.com/legoater/qemu: (101 commits)
ppc/pnv: Use QOM hierarchy to scan PEC PHB4 devices
ppc/pnv: Move realize of PEC stacks under the PEC model
ppc/pnv: Remove "system-memory" property from PHB4 PEC
ppc/pnv: Compute the PHB index from the PHB4 PEC model
ppc/pnv: Introduce a num_stack class attribute
ppc/pnv: Introduce a "chip" property under the PHB4 model
ppc/pnv: Introduce version and device_id class atributes for PHB4 devices
ppc/pnv: Introduce a num_pecs class attribute for PHB4 PEC devices
ppc/pnv: Use QOM hierarchy to scan PHB3 devices
ppc/pnv: Move mapping of the PHB3 CQ regions under pnv_pbcq_realize()
ppc/pnv: Drop the "num-phbs" property
ppc/pnv: Use the chip class to check the index of PHB3 devices
ppc/pnv: Introduce a "chip" property under PHB3
PPC64/TCG: Implement 'rfebb' instruction
target/ppc/power8-pmu.c: add PM_RUN_INST_CMPL (0xFA) event
target/ppc: enable PMU instruction count
target/ppc: enable PMU counter overflow with cycle events
target/ppc: PMU: update counters on MMCR1 write
target/ppc: PMU: update counters on PMCs r/w
target/ppc: PMU basic cycle count for pseries TCG
...
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
When -nodefaults is supported for PHB4 devices, the pecs array under
the chip will be empty. This will break the 'info pic' HMP command.
Do a QOM loop on the chip children and look for PEC PHB4 devices
instead.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211213132830.108372-15-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This change will help us providing support for user created PHB4
devices.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-14-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This is not useful and will be in the way for support of user created
PHB4 devices.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-13-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Use the num_stacks class attribute to compute the PHB index depending
on the PEC index :
* PEC0 provides 1 PHB (PHB0)
* PEC1 provides 2 PHBs (PHB1 and PHB2)
* PEC2 provides 3 PHBs (PHB3, PHB4 and PHB5)
The routine pnv_pec_phb_offset() is a bit complex but it also prepares
ground for PHB5 which has a different layout of stacks: 3 per PECs.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-12-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Each PEC device of the POWER9 chip has a predefined number of stacks,
equivalent of a root port complex:
PEC0 -> 1 stack
PEC1 -> 2 stacks
PEC2 -> 3 stacks
Introduce a class attribute to hold these values and remove the
"num-stacks" property.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-11-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
And check the PEC index using the chip class.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-10-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
It prepares ground for PHB5 which has different values.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-9-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
POWER9 processor comes with 3 PHB4 PEC (PCI Express Controller) and
each PEC can have several PHBs :
* PEC0 provides 1 PHB (PHB0)
* PEC1 provides 2 PHBs (PHB1 and PHB2)
* PEC2 provides 3 PHBs (PHB3, PHB4 and PHB5)
A num_pecs class attribute represents better the logic units of the
POWER9 chip. Use that instead of num_phbs which fits POWER8 chips.
This will ease adding support for user created devices.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-8-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
When -nodefaults is supported for PHB3 devices, the phbs array under
the chip will be empty. This will break the XICSFabric handlers, and
all interrupt delivery, and the 'info pic' HMP command.
Do a QOM loop on the chip children and look for PHB3 devices instead.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211213132830.108372-7-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This change will help us providing support for user created PHB3
devices.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-6-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
It is never used.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-5-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The maximum number of PHB3 devices per chip can be different depending
on the POWER8 processor model.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211213132830.108372-4-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This change will help us move the mapping of XSCOM regions under the
PHB3 realize routine, which will be necessary for user created PHB3
devices.
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213132830.108372-3-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
An Event-Based Branch (EBB) allows applications to change the NIA when a
event-based exception occurs. Event-based exceptions are enabled by
setting the Branch Event Status and Control Register (BESCR). If the
event-based exception is enabled when the exception occurs, an EBB
happens.
The following operations happens during an EBB:
- Global Enable (GE) bit of BESCR is set to 0;
- bits 0-61 of the Event-Based Branch Return Register (EBBRR) are set
to the the effective address of the NIA that would have executed if the EBB
didn't happen;
- Instruction fetch and execution will continue in the effective address
contained in the Event-Based Branch Handler Register (EBBHR).
The EBB Handler will process the event and then execute the Return From
Event-Based Branch (rfebb) instruction. rfebb sets BESCR_GE and then
redirects execution to the address pointed in EBBRR. This process is
described in the PowerISA v3.1, Book II, Chapter 6 [1].
This patch implements the rfebb instruction. Descriptions of all
relevant BESCR bits are also added - this patch is only using BESCR_GE,
but the next patches will use the remaining bits.
[1] https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-9-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
PM_RUN_INST_CMPL, instructions completed with the run latch set, is
the architected PowerISA v3.1 event defined with PMC4SEL = 0xFA.
Implement it by checking for the CTRL RUN bit before incrementing the
counter. To make this work properly we also need to force a new
translation block each time SPR_CTRL is written. A small tweak in
pmu_increment_insns() is then needed to only increment this event
if the thread has the run latch.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-8-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The PMU is already counting cycles by calculating time elapsed in
nanoseconds. Counting instructions is a different matter and requires
another approach.
This patch adds the capability of counting completed instructions (Perf
event PM_INST_CMPL) by counting the amount of instructions translated in
each translation block right before exiting it.
A new pmu_count_insns() helper in translation.c was added to do that.
After verifying that the PMU is counting instructions, call
helper_insns_inc(). This new helper from power8-pmu.c will add the
instructions to the relevant counters. It'll also be responsible for
triggering counter negative overflows as it is already being done with
cycles.
To verify whether the PMU is counting instructions or now, a new hflags
named 'HFLAGS_INSN_CNT' is introduced. This flag will match the internal
state of the PMU. We're be using this flag to avoid calling
helper_insn_inc() when we do not have a valid instruction event being
sampled.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-7-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The PowerISA v3.1 defines that if the proper bits are set (MMCR0_PMC1CE
for PMC1 and MMCR0_PMCjCE for the remaining PMCs), counter negative
conditions are enabled. This means that if the counter value overflows
(i.e. exceeds 0x80000000) a performance monitor alert will occur. This alert
can trigger an event-based exception (to be implemented in the next patches)
if the MMCR0_EBE bit is set.
For now, overflowing the counter when the PMC is counting cycles will
just trigger a performance monitor alert. This is done by starting the
overflow timer to expire in the moment the overflow would be occuring. The
timer will call fire_PMC_interrupt() (via cpu_ppc_pmu_timer_cb) which will
trigger the PMU alert and, if the conditions are met, an EBB exception.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-6-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
MMCR1 determines the events to be sampled by the PMU. Updating the
counters at every MMCR1 write ensures that we're not sampling more
or less events by looking only at MMCR0 and the PMCs.
It is worth noticing that both the Book3S PowerPC PMU, and this IBM
Power8+ PMU that we're modeling, also uses MMCRA, MMCR2 and MMCR3 to
control the PMU. These three registers aren't being handled in this
initial implementation, so for now we're controlling all the PMU
aspects using MMCR0, MMCR1 and the PMCs.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-5-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Calling pmu_update_cycles() on every PMC read/write operation ensures
that the values being fetched are up to date with the current PMU state.
In theory we can get away by just trapping PMCs reads, but we're going
to trap PMC writes to deal with counter overflow logic later on. Let's
put the required wiring for that and make our lives a bit easier in the
next patches.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-4-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This patch adds the barebones of the PMU logic by enabling cycle
counting. The overall logic goes as follows:
- MMCR0 reg initial value is set to 0x80000000 (MMCR0_FC set) to avoid
having to spin the PMU right at system init;
- to retrieve the events that are being profiled, pmc_get_event() will
check the current MMCR0 and MMCR1 value and return the appropriate
PMUEventType. For PMCs 1-4, event 0x2 is the implementation dependent
value of PMU_EVENT_INSTRUCTIONS and event 0x1E is the implementation
dependent value of PMU_EVENT_CYCLES. These events are supported by IBM
Power chips since Power8, at least, and the Linux Perf driver makes use
of these events until kernel v5.15. For PMC1, event 0xF0 is the
architected PowerISA event for cycles. Event 0xFE is the architected
PowerISA event for instructions;
- if the counter is frozen, either via the global MMCR0_FC bit or its
individual frozen counter bits, PMU_EVENT_INACTIVE is returned;
- pmu_update_cycles() will go through each counter and update the
values of all PMCs that are counting cycles. This function will be
called every time a MMCR0 update is done to keep counters values
up to date. Upcoming patches will use this function to allow the
counters to be properly updated during read/write of the PMCs
and MMCR1 writes.
Given that the base CPU frequency is fixed at 1Ghz for both powernv and
pseries clock, cycle calculation assumes that 1 nanosecond equals 1 CPU
cycle. Cycle value is then calculated by adding the elapsed time, in
nanoseconds, of the last cycle update done via pmu_update_cycles().
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-3-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This patch starts an IBM Power8+ compatible PMU implementation by adding
the representation of PMU events that we are going to sample,
PMUEventType. This enum represents a Perf event that is being sampled by
a specific counter 'sprn'. Events that aren't available (i.e. no event
was set in MMCR1) will be of type 'PMU_EVENT_INVALID'. Events that are
inactive due to frozen counter bits state are of type
'PMU_EVENT_INACTIVE'. Other types added in this patch are
PMU_EVENT_CYCLES and PMU_EVENT_INSTRUCTIONS. More types will be added
later on.
Let's also add the required PMU cycle overflow timers. They will be used
to trigger cycle overflows when cycle events are being sampled. This
timer will call cpu_ppc_pmu_timer_cb(), which in turn calls
fire_PMC_interrupt(). Both functions are stubs that will be implemented
later on when EBB support is added.
Two new helper files are created to host this new logic.
cpu_ppc_pmu_init() will init all overflow timers during CPU init time.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-2-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This reverts commit 336e91f853.
It breaks the --disable-tcg build:
../target/ppc/excp_helper.c:463:29: error: implicit declaration of
function ‘cpu_ldl_code’ [-Werror=implicit-function-declaration]
We should not have TCG code in powerpc_excp because some kvm-only
routines use it indirectly to dispatch interrupts. See
kvm_handle_debug, spapr_mce_req_event and
spapr_do_system_reset_on_cpu.
We can re-introduce the change once we have split the interrupt
injection code between KVM and TCG.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20211209173323.2166642-1-farosas@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
When Altivec support was added to the e6500 kernel in 2012[1], the
QEMU code was not changed, so we don't register the VPU/VPUA
exceptions for the e6500:
qemu: fatal: Raised an exception without defined vector 73
Note that the error message says 73, instead of 32, which is the IVOR
for VPU. This is because QEMU knows only knows about the VPU interrupt
for the 7400s. In theory, we should not be raising _that_ VPU
interrupt, but instead another one specific for the e6500.
We unfortunately cannot register e6500-specific VPU/VPUA interrupts
because the SPEU/EFPDI interrupts also use IVOR32/33. These are
present only in the e500v1/2 versions. From the user manual:
e500v1, e500v2: only SPEU/EFPDI/EFPRI
e500mc, e5500: no SPEU/EFPDI/EFPRI/VPU/VPUA
e6500: only VPU/VPUA
So I'm leaving IVOR32/33 as SPEU/EFPDI, but altering the dispatch code
to convert the VPU #73 to a #32 when we're in the e6500. Since the
handling for SPEU and VPU is the same this is the only change that's
needed. The EFPDI is not implemented and will cause an abort. I don't
think it worth it changing the error message to take VPUA into
consideration, so I'm not changing anything there.
This bug was discussed in the thread:
https://lists.gnu.org/archive/html/qemu-ppc/2021-06/msg00222.html
1- https://git.kernel.org/torvalds/c/cd66cc2ee52
Reported-by: <mario@locati.it>
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211213133542.2608540-1-farosas@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
This instruction has VRT and VRB fields instead of T/TX and B/BX.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Message-Id: <20211213120958.24443-4-victor.colombo@eldorado.org.br>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Victor Colombo <victor.colombo@eldorado.org.br>
Message-Id: <20211213120958.24443-3-victor.colombo@eldorado.org.br>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
PPC instruction xsmaxcdp, xsmincdp, xsmaxjdp, and xsminjdp are using
vector registers when they should be using VSX ones. This happens
because the instructions are using GEN_VSX_HELPER_R3, which adds 32
to the register numbers, effectively making them vector registers.
This patch fixes it by changing these instructions to use
GEN_VSX_HELPER_X3.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Victor Colombo <victor.colombo@eldorado.org.br>
Message-Id: <20211213120958.24443-2-victor.colombo@eldorado.org.br>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Adapt the fields offset in the board information for Linux. Since
Linux relies on the CPU frequency value, I wonder how it ever worked.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211206103712.1866296-15-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The board information for the 405EP first appeared in commit 04f20795ac
("Move PowerPC 405 specific definitions into a separate file ...")
An Ethernet address is a 6 byte number. Fix that.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20211206103712.1866296-14-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>