This makes use of @cpu_dt_id and related API in:
1. emulated XICS hypercall handlers as they receive fixed CPU indexes;
2. XICS-KVM to enable in-kernel XICS on right CPU;
3. device-tree renderer.
This removes @cpu_index fixup as @cpu_dt_id is used instead so QEMU monitor
can accept command-line CPU indexes again.
This changes kvm_arch_vcpu_id() to use ppc_get_vcpu_dt_id() as at the moment
KVM CPU id and device tree ID are calculated using the same algorithm.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Mike Day <ncmike@ncultra.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
The qemu_devtree API is a wrapper around the fdt_ set of APIs.
Rename accordingly.
Signed-off-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
[agraf: also convert hw/arm/virt.c]
Signed-off-by: Alexander Graf <agraf@suse.de>
Today we generate the device tree once on machine initialization and then
store the finalized blob in memory to reload it on reset.
This is bad for 2 reasons. First we potentially waste a bunch of RAM for no
good reason, as we have all information required to regenerate the device
tree available anyways.
The second reason is even more important. On machine init when we generate
the device tree for the first time, we don't have all of the devices fully
initialized yet. But the device tree needs to potentially walk devices to
put information about them into the device tree.
Move the generation into a reset function. That way we just generate it new
every time we reset, solving both of the above issues.
Signed-off-by: Alexander Graf <agraf@suse.de>
Pass on the generic arguments unadulterated, and the machine-specific
ones as separate argument.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Acked-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Move next_cpu from CPU_COMMON to CPUState.
Move first_cpu variable to qom/cpu.h.
gdbstub needs to use CPUState::env_ptr for now.
cpu_copy() no longer needs to save and restore cpu_next.
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
[AF: Rebased, simplified cpu_copy()]
Signed-off-by: Andreas Färber <afaerber@suse.de>
The previous two commits fixed bugs in -machine option queries. I
can't find fault with the remaining queries, but let's use
qemu_get_machine_opts() everywhere, for consistency, simplicity and
robustness.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-id: 1372943363-24081-7-git-send-email-armbru@redhat.com
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Multiple -machine options with the same ID are merged. All but the
one without an ID are to be silently ignored.
In most places, we query these options with a null ID. This is
correct.
In some places, we instead query whatever options come first in the
list. This is wrong. When the -machine processed first happens to
have an ID, options are taken from that ID, and the ones specified
without ID are silently ignored.
Example:
$ upstream-qemu -nodefaults -S -display none -monitor stdio -machine id=foo -machine accel=kvm,usb=on
$ upstream-qemu -nodefaults -S -display none -monitor stdio -machine id=foo,accel=kvm,usb=on -machine accel=xen
$ upstream-qemu -nodefaults -S -display none -monitor stdio -machine accel=xen -machine id=foo,accel=kvm,usb=on
$ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine accel=kvm,usb=on
QEMU 1.5.50 monitor - type 'help' for more information
(qemu) info kvm
kvm support: enabled
(qemu) info usb
(qemu) q
$ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine id=foo -machine accel=kvm,usb=on
QEMU 1.5.50 monitor - type 'help' for more information
(qemu) info kvm
kvm support: disabled
(qemu) info usb
(qemu) q
$ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine id=foo,accel=kvm,usb=on -machine accel=xen
QEMU 1.5.50 monitor - type 'help' for more information
(qemu) info kvm
kvm support: enabled
(qemu) info usb
USB support not enabled
(qemu) q
$ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine accel=xen -machine id=foo,accel=kvm,usb=on
xc: error: Could not obtain handle on privileged command interface (2 = No such file or directory): Internal error
xen be core: can't open xen interface
failed to initialize Xen: Operation not permitted
Option usb is queried correctly, and the one without an ID wins,
regardless of option order.
Option accel is queried incorrectly, and which one wins depends on
option order and ID.
Affected options are accel (and its sugared forms -enable-kvm and
-no-kvm), kernel_irqchip, kvm_shadow_mem.
Additionally, option kernel_irqchip is normally on by default, except
it's off when no -machine options are given. Bug can't bite, because
kernel_irqchip is used only when KVM is enabled, KVM is off by
default, and enabling always creates -machine options. Downstreams
that enable KVM by default do get bitten, though.
Use qemu_get_machine_opts() to fix these bugs.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-id: 1372943363-24081-5-git-send-email-armbru@redhat.com
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This includes some pci enhancements:
Better support for systems with multiple PCI root buses
FW cfg interface for more robust pci programming in BIOS
Minor fixes/cleanups for fw cfg and cross-version migration -
because of dependencies with other patches
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.13 (GNU/Linux)
iQEcBAABAgAGBQJR2ctmAAoJECgfDbjSjVRpQpAH/Rk00yLrQ2R5ScNa8AL9LeaJ
gVFndBmmuRz4gdhyATx6lzR98ic32iTr0+YR5mL51btgmM5a0bEd/SIu34nXriWj
PsM0wdXfo/oEygdttxhvzJOH17tohRV9xg2WA2d8BEwDzrDyqoQ4J0VJlHlG7u3W
nq4KVDVUpLNQFKG8ZgJ2vW0WMw/mBSj2rluhQUALhcuvChphtvAFZ2rsSfJr6bzD
aBELrtIvfLvPGN/0WVeYs9qlp4EE03H3X6gN61QvV3/YElxubKUV5XyMDOX2dW3D
2j0NQi84LYHn0SFap2r/Kgm47/F6Q56SFk5lrgZrg60mhQTwocw7PfL8CGxjXRI=
=gxxc
-----END PGP SIGNATURE-----
Merge remote-tracking branch 'mst/tags/for_anthony' into staging
pci,misc enhancements
This includes some pci enhancements:
Better support for systems with multiple PCI root buses
FW cfg interface for more robust pci programming in BIOS
Minor fixes/cleanups for fw cfg and cross-version migration -
because of dependencies with other patches
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
# gpg: Signature made Sun 07 Jul 2013 03:11:18 PM CDT using RSA key ID D28D5469
# gpg: Can't check signature: public key not found
# By David Gibson (10) and others
# Via Michael S. Tsirkin
* mst/tags/for_anthony:
pci: Fold host_buses list into PCIHostState functionality
pci: Remove domain from PCIHostBus
pci: Simpler implementation of primary PCI bus
pci: Add root bus parameter to pci_nic_init()
pci: Add root bus argument to pci_get_bus_devfn()
pci: Replace pci_find_domain() with more general pci_root_bus_path()
pci: Use helper to find device's root bus in pci_find_domain()
pci: Abolish pci_find_root_bus()
pci: Move pci_read_devaddr to pci-hotplug-old.c
pci: Cleanup configuration for pci-hotplug.c
pvpanic: fix fwcfg for big endian hosts
pvpanic: initialization cleanup
MAINTAINERS: s/Marcelo/Paolo/
e1000: cleanup process_tx_desc
pc_piix: cleanup init compat handling
pc: pass PCI hole ranges to Guests
pci: store PCI hole ranges in guestinfo structure
range: add Range structure
Message-id: 1373228271-31223-1-git-send-email-mst@redhat.com
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
At present, pci_nic_init() and pci_nic_init_nofail() assume that they will
only create a NIC under the primary PCI root. As we add support for
multiple PCI roots, that may no longer be the case. This patch adds a root
bus parameter to pci_nic_init() (and updates callers accordingly) to allow
the machine init code using it to specify the right PCI root for NICs
created by old-style -net nic parameters. NICs created new-style, with
-device can of course be put anywhere.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Introduce type constant and cast macro.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Enables support for the in-kernel MPIC that thas been merged into the
KVM next branch. This includes irqfd/KVM_IRQ_LINE support from Alex
Graf (along with some other improvements).
Note from Alex regarding kvm_irqchip_create():
On x86, one would call kvm_irqchip_create() to initialize an
in-kernel interrupt controller. That function then goes ahead and
initializes global capability variables as well as the default irq
routing table.
On ppc, we can't call kvm_irqchip_create() because we can have
different types of interrupt controllers. So we want to do all the
things that function would do for us in the in-kernel device init
handler.
Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: squash in kvm_irqchip_commit_routes patch, fix non-kvm build,
fix ppcemb]
Signed-off-by: Alexander Graf <agraf@suse.de>
KVM in-kernel MPIC support is going to expand this even more,
so let's keep it contained.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
We should sync params->ram_size after we fixup memory size on
a alignment boundary. Otherwise Guest would exceed the actual
memory region.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
ePAPR defines the initial values of cpu registers.
This patch initialize the GPRs as per ePAPR specification.
This resolves the issue of guest reboot/reset (guest hang on reboot).
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
[agraf: add whitespace line]
Signed-off-by: Alexander Graf <agraf@suse.de>
Many of these should be cleaned up with proper qdev-/QOM-ification.
Right now there are many catch-all headers in include/hw/ARCH depending
on cpu.h, and this makes it necessary to compile these files per-target.
However, fixing this does not belong in these patches.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both fields are used in VMState, thus need to be moved together.
Explicitly zero them on reset since they were located before
breakpoints.
Pass PowerPCCPU to kvmppc_handle_halt().
Signed-off-by: Andreas Färber <afaerber@suse.de>
Since we still need env for ppc-specific fields, obtain it via the new
env_ptr fields to avoid "cpu" name conflicts between CPUState and
PowerPCCPU for now.
This fixes a potential issue with env being NULL at the end of the loop
but cpu still being a valid pointer corresponding to a previous env.
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Andreas Färber <afaerber@suse.de>
The compatible string is changed to fsl,mpic on all e500 platforms, to
advertise the existence of BRR1. This matches what the device tree will
have on real hardware.
With MPIC v4.2 max_cpu can be increased from 15 to 32.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
MPIC+0xa0 is IACK for the current CPU. MPIC+0x200a0 is IACK for CPU 0.
This fix allows EPR to work with an SMP target.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Replace by SYS_BUS_DEVICE() QOM cast macro using a scripted conversion.
Avoids the old macro creeping into new code.
Resolve a Coding Style warning in openpic code.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Cc: Anthony Liguori <anthony@codemonkey.ws>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Today, we load
<kernel> <initrd> <dtb>
into memory in that order. However, Linux has a bug where it can only
handle the dtb if it's within the first 64MB of where <kernel> starts.
So instead, let's change the order to
<kernel> <dtb> <initrd>
making Linux happy.
Signed-off-by: Alexander Graf <agraf@suse.de>
We have 3 blobs we need to load when booting the system:
- kernel
- initrd
- dtb
We place them in physical memory in that order. At least we should.
This patch fixes the location calculation up to take any module into
account, fixing the dtb offset along the way.
Reported-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Note that target-alpha accesses this field from TCG, now using a
negative offset. Therefore the field is placed last in CPUState.
Pass PowerPCCPU to [kvm]ppc_fixup_cpu() to facilitate this change.
Move common parts of mips cpu_state_reset() to mips_cpu_reset().
Acked-by: Richard Henderson <rth@twiddle.net> (for alpha)
[AF: Rebased onto ppc CPU subclasses and openpic changes]
Signed-off-by: Andreas Färber <afaerber@suse.de>
We already used to support the external proxy facility of FSL MPICs,
but only implemented it halfway correctly.
This patch adds support for
* dynamic enablement of the EPR facility
* interrupt acknowledgement only when the interrupt is delivered
This way the implementation now is closer to real hardware.
Signed-off-by: Alexander Graf <agraf@suse.de>
On e500mc, the platform doesn't provide a way for the CPU to go idle.
To still not uselessly burn CPU time, expose an idle hypercall to the guest
if kvm supports it.
Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
[agraf: adjust for current code base, add patch description, fix non-kvm case]
Signed-off-by: Alexander Graf <agraf@suse.de>
Move public headers to include/net, and leave private headers in net/.
Put the virtio headers in include/net/tap.h, removing the multiple copies
that existed. Leave include/net/tap.h as the interface for NICs, and
net/tap_int.h as the interface for OS-specific parts of the tap backend.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Various header files rely on qemu-char.h including qemu-config.h or
main-loop.h, but they really do not need qemu-char.h at all (particularly
interesting is the case of the block layer!). Clean this up, and also
add missing inclusions of qemu-char.h itself.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We need the calculation method to get from a PCI slot ID to its respective
interrupt line twice. Once in the internal map function and once when
assembling the device tree.
So let's extract the calculation to a separate function that can be called
by both users.
Signed-off-by: Alexander Graf <agraf@suse.de>
We have a params struct that allows us to expose differences between
e500 machine models. Include PCI slot information there, so we can have
different machines with different PCI slot topology.
Signed-off-by: Alexander Graf <agraf@suse.de>
Today we're hardcoding the PCI interrupt map in the e500 machine file.
Instead, let's write it dynamically so that different machine types
can have different slot properties.
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that our interrupt controller supports MSIs, let's expose that feature
to the guest through the device tree!
Signed-off-by: Alexander Graf <agraf@suse.de>
This patch converts the OpenPIC device to qdev. Along the way it
renames the "openpic" target to "raven" and the "mpic" target to
"fsl_mpic_20", to better reflect the actual models they implement.
This way we have a generic OpenPIC device now that can handle
different flavors of the OpenPIC specification.
Signed-off-by: Alexander Graf <agraf@suse.de>
The current openpic emulation contains half-ready code for bypass mode.
Remove it, so that when someone wants to finish it they can start from a
clean state.
Signed-off-by: Alexander Graf <agraf@suse.de>
MPIC interrupt numbers in Linux (device tree) and in QEMU are different,
because QEMU takes the sparseness of the IRQ number space into account.
Remove that cleverness and instead assume a flat number space. This makes
the code easier to understand, because we are actually aligned with Linux
on the view of our worlds.
Signed-off-by: Alexander Graf <agraf@suse.de>
PCI Root complex have TYPE-1 configuration header while PCI endpoint
have type-0 configuration header. The type-1 configuration header have
a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci
address space to CCSR address space. This can used for 2 purposes: 1)
for MSI interrupt generation 2) Allow CCSR registers access when configured
as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest.
What I observed is that when guest read the size of BAR0 of host controller
configuration header (TYPE1 header) then it always reads it as 0. When
looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller
device registering BAR0. I do not find any other controller also doing so
may they do not use BAR0.
There are two issues when BAR0 is not there (which I can think of):
1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and
when reading the size of BAR0, it should give size as per real h/w.
2) Do we need this BAR0 inbound address translation?
When BAR0 is of non-zero size then it will be configured for PCI
address space to local address(CCSR) space translation on inbound access.
The primary use case is for MSI interrupt generation. The device is
configured with an address offsets in PCI address space, which will be
translated to MSI interrupt generation MPIC registers. Currently I do
not understand the MSI interrupt generation mechanism in QEMU and also
IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines.
But this BAR0 will be used when using MSI on e500.
I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c,
but i do not see these being used for address translation.
So far that works because pci address space and local address space are 1:1
mapped. BAR0 inbound translation + ATMU translation will complete the address
translation of inbound traffic.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
[agraf: fix double variable assignment w/o read]
Signed-off-by: Alexander Graf <agraf@suse.de>
All devices are also placed under CCSR memory region.
The CCSR memory region is exported to pci device. The MSI interrupt
generation is the main reason to export the CCSR region to PCI device.
This put the requirement to move mpic under CCSR region, but logically
all devices should be under CCSR. So this patch places all emulated
devices under ccsr region.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
On PPC, we don't have PIO. So usually PIO space behind a PCI bridge is
accessible via MMIO. Do this mapping explicitly by mapping the PIO space
of our PCI bus into a memory region that lives in memory space.
Signed-off-by: Alexander Graf <agraf@suse.de>