The M-profile architecture specifies that the DebugMonitor exception
should be initially disabled, not enabled. It should be controlled
by the DEMCR register's MON_EN bit, but we don't implement that
register yet (like most of the debug architecture for M-profile).
Note that BKPT instructions will still work, because they
will be escalated to HardFault.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190430131439.25251-4-peter.maydell@linaro.org
The non-secure versions of the BFAR and BFSR registers are
supposed to be RAZ/WI if AICR.BFHFNMINS == 0; we were
incorrectly allowing NS code to access the real values.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190430131439.25251-3-peter.maydell@linaro.org
Rule R_CQRV says that if two pending interrupts have the same
group priority then ties are broken by looking at the subpriority.
We had a comment describing this but had forgotten to actually
implement the subpriority comparison. Correct the omission.
(The further tie break rules of "lowest exception number" and
"secure before non-secure" are handled implicitly by the order
in which we iterate through the exceptions in the loops.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190430131439.25251-2-peter.maydell@linaro.org
In the v7M architecture, if an exception is generated in the process
of doing the lazy stacking of FP registers, the handling of
possible escalation to HardFault is treated differently to the normal
approach: it works based on the saved information about exception
readiness that was stored in the FPCCR when the stack frame was
created. Provide a new function armv7m_nvic_set_pending_lazyfp()
which pends exceptions during lazy stacking, and implements
this logic.
This corresponds to the pseudocode TakePreserveFPException().
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190416125744.27770-22-peter.maydell@linaro.org
Implement the code which updates the FPCCR register on an
exception entry where we are going to use lazy FP stacking.
We have to defer to the NVIC to determine whether the
various exceptions are currently ready or not.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20190416125744.27770-12-peter.maydell@linaro.org
The M-profile floating point support has three associated config
registers: FPCAR, FPCCR and FPDSCR. It also makes the registers
CPACR and NSACR have behaviour other than reads-as-zero.
Add support for all of these as simple reads-as-written registers.
We will hook up actual functionality later.
The main complexity here is handling the FPCCR register, which
has a mix of banked and unbanked bits.
Note that we don't share storage with the A-profile
cpu->cp15.nsacr and cpu->cp15.cpacr_el1, though the behaviour
is quite similar, for two reasons:
* the M profile CPACR is banked between security states
* it preserves the invariant that M profile uses no state
inside the cp15 substruct
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190416125744.27770-4-peter.maydell@linaro.org
For M-profile the MVFR* ID registers are memory mapped, in the
range we implement via the NVIC. Allow them to be read.
(If the CPU has no FPU, these registers are defined to be RAZ.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190416125744.27770-3-peter.maydell@linaro.org
Tracked down with cleanup-trace-events.pl. Funnies requiring manual
post-processing:
* block.c and blockdev.c trace points are in block/trace-events.
* hw/block/nvme.c uses the preprocessor to hide its trace point use
from cleanup-trace-events.pl.
* include/hw/xen/xen_common.h trace points are in hw/xen/trace-events.
* net/colo-compare and net/filter-rewriter.c use pseudo trace points
colo_compare_udp_miscompare and colo_filter_rewriter_debug to guard
debug code.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-id: 20190314180929.27722-5-armbru@redhat.com
Message-Id: <20190314180929.27722-5-armbru@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
We spell out sub/dir/ in sub/dir/trace-events' comments pointing to
source files. That's because when trace-events got split up, the
comments were moved verbatim.
Delete the sub/dir/ part from these comments. Gets rid of several
misspellings.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20190314180929.27722-3-armbru@redhat.com
Message-Id: <20190314180929.27722-3-armbru@redhat.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
H_IPOLL takes the CPU# of the processor to poll as an argument,
it doesn't operate on self.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190314063855.27890-1-clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Not all interrupt controllers have a working implementation of
message-signalled interrupts; in some cases, the guest may expect
MSI to work but it won't due to the buggy or lacking emulation.
In QEMU this is represented by the "msi_nonbroken" variable. This
patch adds a new configuration symbol enabled whenever the binary
contains an interrupt controller that will set "msi_nonbroken". We
can then use it to remove devices that cannot be possibly added
to the machine, because they require MSI.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The BCM2836 control logic module includes a simple
"local timer" which is a programmable down-counter that
can generates an interrupt. Implement this functionality.
Signed-off-by: Zoltán Baldaszti <bztemail@gmail.com>
[PMM: wrote commit message; wrapped long line; tweaked
some comments to match the final version of the code]
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The qemu coding standard is to use CamelCase for type and structure names,
and the pseries code follows that... sort of. There are quite a lot of
places where we bend the rules in order to preserve the capitalization of
internal acronyms like "PHB", "TCE", "DIMM" and most commonly "sPAPR".
That was a bad idea - it frequently leads to names ending up with hard to
read clusters of capital letters, and means they don't catch the eye as
type identifiers, which is kind of the point of the CamelCase convention in
the first place.
In short, keeping type identifiers look like CamelCase is more important
than preserving standard capitalization of internal "words". So, this
patch renames a heap of spapr internal type names to a more standard
CamelCase.
In addition to case changes, we also make some other identifier renames:
VIOsPAPR* -> SpaprVio*
The reverse word ordering was only ever used to mitigate the capital
cluster, so revert to the natural ordering.
VIOsPAPRVTYDevice -> SpaprVioVty
VIOsPAPRVLANDevice -> SpaprVioVlan
Brevity, since the "Device" didn't add useful information
sPAPRDRConnector -> SpaprDrc
sPAPRDRConnectorClass -> SpaprDrcClass
Brevity, and makes it clearer this is the same thing as a "DRC"
mentioned in many other places in the code
This is 100% a mechanical search-and-replace patch. It will, however,
conflict with essentially any and all outstanding patches touching the
spapr code.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The NSR register of the HV ring has a different, although similar, bit
layout. TM_QW3_NSR_HE_PHYS bit should now be raised when the
Hypervisor interrupt line is signaled. Other bits TM_QW3_NSR_HE_POOL
and TM_QW3_NSR_HE_LSI are not modeled. LSI are for special interrupts
reserved for HW bringup and the POOL bit is used when signaling a
group of VPs. This is not currently implemented in Linux but it is in
pHyp.
The most important special commands on the HV TIMA page are added to
let the core manage interrupts : acking and changing the CPU priority.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-10-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This is a simple model of the POWER9 XIVE interrupt controller for the
PowerNV machine which only addresses the needs of the skiboot
firmware. The PowerNV model reuses the common XIVE framework developed
for sPAPR as the fundamentals aspects are quite the same. The
difference are outlined below.
The controller initial BAR configuration is performed using the XSCOM
bus from there, MMIO are used for further configuration.
The MMIO regions exposed are :
- Interrupt controller registers
- ESB pages for IPIs and ENDs
- Presenter MMIO (Not used)
- Thread Interrupt Management Area MMIO, direct and indirect
The virtualization controller MMIO region containing the IPI ESB pages
and END ESB pages is sub-divided into "sets" which map portions of the
VC region to the different ESB pages. These are modeled with custom
address spaces and the XiveSource and XiveENDSource objects are sized
to the maximum allowed by HW. The memory regions are resized at
run-time using the configuration of EDT set translation table provided
by the firmware.
The XIVE virtualization structure tables (EAT, ENDT, NVTT) are now in
the machine RAM and not in the hypervisor anymore. The firmware
(skiboot) configures these tables using Virtual Structure Descriptor
defining the characteristics of each table : SBE, EAS, END and
NVT. These are later used to access the virtual interrupt entries. The
internal cache of these tables in the interrupt controller is updated
and invalidated using a set of registers.
Still to address to complete the model but not fully required is the
support for block grouping. Escalation support will be necessary for
KVM guests.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-7-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The PowerNV machine with need to encode the block id in the source
interrupt number before forwarding the source event notification to
the Router.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-5-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The PowerNV machine can perform indirect loads and stores on the TIMA
on behalf of another CPU. Give the controller the possibility to call
the TIMA memory accessors with a XiveTCTX of its choice.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-4-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
By default on P9, the HW CAM line (23bits) is hardwired to :
0x000||0b1||4Bit chip number||7Bit Thread number.
When the block group mode is enabled at the controller level (PowerNV),
the CAM line is changed for CAM compares to :
4Bit chip number||0x001||7Bit Thread number
This will require changes in xive_presenter_tctx_match() possibly.
This is a lowlevel functionality of the HW controller and it is not
strictly needed. Leave it for later.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190306085032.15744-2-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The POWERNV switch should always select ISA_IPMI_BT, then the other
IPMI options are turned on automatically now.
CONFIG_DIMM should always be selected by the pseries machine,
which in turn depends on CONFIG_MEM_DEVICE since DIMM implements
this interface.
CONFIG_VIRTIO_VGA can be dropped from default-configs/ppc64-softmmu.mak
completely since this device is already automatically enabled via
hw/display/Kconfig now.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The make_device_config.sh script is replaced by minikconf, which
is modified to support the same command line as its predecessor.
The roots of the parsing are default-configs/*.mak, Kconfig.host and
hw/Kconfig. One difference with make_device_config.sh is that all symbols
have to be defined in a Kconfig file, including those coming from the
configure script. This is the reason for the Kconfig.host file introduced
in the previous patch. Whenever a file in default-configs/*.mak used
$(...) to refer to a config-host.mak symbol, this is replaced by a
Kconfig dependency; this part must be done already in this patch
for bisectability.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Acked-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20190123065618.3520-28-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The Kconfig files were generated mostly with this script:
for i in `grep -ho CONFIG_[A-Z0-9_]* default-configs/* | sort -u`; do
set fnord `git grep -lw $i -- 'hw/*/Makefile.objs' `
shift
if test $# = 1; then
cat >> $(dirname $1)/Kconfig << EOF
config ${i#CONFIG_}
bool
EOF
git add $(dirname $1)/Kconfig
else
echo $i $*
fi
done
sed -i '$d' hw/*/Kconfig
for i in hw/*; do
if test -d $i && ! test -f $i/Kconfig; then
touch $i/Kconfig
git add $i/Kconfig
fi
done
Whenever a symbol is referenced from multiple subdirectories, the
script prints the list of directories that reference the symbol.
These symbols have to be added manually to the Kconfig files.
Kconfig.host and hw/Kconfig were created manually.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20190123065618.3520-27-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Both functions, object_initialize() and object_property_add_child() increase
the reference counter of the new object, so one of the references has to be
dropped afterwards to get the reference counting right. Otherwise the child
object will not be properly cleaned up when the parent gets destroyed.
Thus let's use now object_initialize_child() instead to get the reference
counting here right.
Suggested-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <1550748288-30598-1-git-send-email-thuth@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Patch "target/ppc: Add POWER9 external interrupt model" should have
removed the section covering PPC_FLAGS_INPUT_POWER7.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190219142530.17807-1-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This will be needed by PHB hotplug in order to access the "phandle"
property of the interrupt controller node.
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <155059668867.1466090.6339199751719123386.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The pseries machine only uses LSIs to support legacy PCI devices. Every
PHB claims 4 LSIs at realize time. When using in-kernel XICS (or upcoming
in-kernel XIVE), QEMU synchronizes the state of all irqs, including these
LSIs, later on at machine reset.
In order to support PHB hotplug, we need a way to tell KVM about the LSIs
that doesn't require a machine reset. An easy way to do that is to always
inform KVM when an interrupt is claimed, which really isn't a performance
path.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155059668360.1466090.5969630516627776426.stgit@bahia.lab.toulouse-stg.fr.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Adds support for the Hypervisor directed interrupts in addition to the
OS ones.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[clg: - modified the icp_realize() and xive_tctx_realize() to take
into account explicitely the POWER9 interrupt model
- introduced a specific power9_set_irq for POWER9 ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190215161648.9600-10-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The KVM ICS class isn't used anymore. Drop it.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023084177.1011724.14693955932559990358.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
We want to use the "simple" ICS type in both KVM and non-KVM setups.
Teach the "simple" ICS how to present interrupts to KVM and adapt
sPAPR accordingly.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023082996.1011724.16237920586343905010.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The KVM ICS reset handler simply writes the ICS state to KVM. This
doesn't need the overkill parent_reset logic we have today. Also
we want to use the same ICS type for the KVM and non-KVM case with
pseries.
Call icp_set_kvm_state() from the "simple" ICS reset function.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023082407.1011724.1983100830860273401.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The pre_save(), post_load() and synchronize_state() methods of the
ICSStateClass type are really KVM only things. Make that obvious
by dropping the indirections and directly calling the KVM functions
instead.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023081817.1011724.14078777320394028836.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The KVM ICP class isn't used anymore. Drop it.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023081228.1011724.12474992370439652538.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The realization of KVM ICP currently follows the parent_realize logic,
which is a bit overkill here. Also we want to get rid of the KVM ICP
class. Explicitely call icp_kvm_realize() from the base ICP realize
function.
Note that ICPStateClass::parent_realize is retained because powernv
needs it.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023080049.1011724.15423463482790260696.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The KVM ICP reset handler simply writes the ICP state to KVM. This
doesn't need the overkill parent_reset logic we have today. Call
icp_set_kvm_state() from the base ICP reset function instead.
Since there are no other users for ICPStateClass::parent_reset, and
it isn't currently expected to change, drop it as well.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023079461.1011724.12644984391500635645.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The pre_save(), post_load() and synchronize_state() methods of the
ICPStateClass type are really KVM only things. Make that obvious
by dropping the indirections and directly calling the KVM functions
instead.
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155023078871.1011724.3083923389814185598.stgit@bahia.lan>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
MSI is the default and LSI specific code is guarded by the
xive_source_irq_is_lsi() helper. The xive_source_irq_set()
helper is a nop for MSIs.
Simplify the code by turning xive_source_irq_set() into
xive_source_irq_set_lsi() and only call it for LSIs. The
call to xive_source_irq_set(false) in spapr_xive_irq_free()
is also a nop. Just drop it.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <154999584656.690774.18352404495120358613.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The code for handling the NVIC SHPR1 register intends to permit
byte and halfword accesses (as the architecture requires). However
the 'case' line for it only lists the base address of the
register, so attempts to access bytes other than the first one
end up in the "bad write" default logic. This bug was added
accidentally when we split out the SHPR1 logic from SHPR2 and
SHPR3 to support v6M.
Fixes: 7c9140afd5 ("nvic: Handle ARMv6-M SCS reserved registers")
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
---
The Zephyr RTOS happens to access SHPR1 byte at a time,
which is how I spotted this.
Next step is to remove them from under the PowerPCCPU
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
It provides a mean to retrieve the XiveTCTX of a CPU. This will become
necessary with future changes which move the interrupt presenter
object pointers under the PowerPCCPU machine_data.
The PowerNV machine has an extra requirement on TIMA accesses that
this new method addresses. The machine can perform indirect loads and
stores on the TIMA on behalf of another CPU. The PIR being defined in
the controller registers, we need a way to peek in the controller
model to find the PIR value.
The XiveTCTX is moved above the XiveRouter definition to avoid forward
typedef declarations.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Currently the ARMv7M NVIC object's realize method assumes that the
CPU the NVIC is attached to is CPU 0, because it thinks there can
only ever be one CPU in the system. To allow a dual-Cortex-M33
setup we need to remove this assumption; instead the armv7m
wrapper object tells the NVIC its CPU, in the same way that it
already tells the CPU what the NVIC is.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20190121185118.18550-2-peter.maydell@linaro.org
When compiling with Clang in -std=gnu99 mode, there is a warning/error:
CC ppc64-softmmu/hw/intc/xics_spapr.o
In file included from /home/thuth/devel/qemu/hw/intc/xics_spapr.c:34:
/home/thuth/devel/qemu/include/hw/ppc/xics.h:203:34: error: redefinition of typedef 'sPAPRMachineState' is a C11 feature
[-Werror,-Wtypedef-redefinition]
typedef struct sPAPRMachineState sPAPRMachineState;
^
/home/thuth/devel/qemu/include/hw/ppc/spapr_irq.h:25:34: note: previous definition is here
typedef struct sPAPRMachineState sPAPRMachineState;
^
We have to remove the duplicated typedef here and include "spapr.h" instead.
But "spapr.h" should not be included for the pnv machine files. So move
the spapr-related prototypes into a new file called "xics_spapr.h" instead.
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
Most files that have TABs only contain a handful of them. Change
them to spaces so that we don't confuse people.
disas, standard-headers, linux-headers and libdecnumber are imported
from other projects and probably should be exempted from the check.
Outside those, after this patch the following files still contain both
8-space and TAB sequences at the beginning of the line. Many of them
have a majority of TABs, or were initially committed with all tabs.
bsd-user/i386/target_syscall.h
bsd-user/x86_64/target_syscall.h
crypto/aes.c
hw/audio/fmopl.c
hw/audio/fmopl.h
hw/block/tc58128.c
hw/display/cirrus_vga.c
hw/display/xenfb.c
hw/dma/etraxfs_dma.c
hw/intc/sh_intc.c
hw/misc/mst_fpga.c
hw/net/pcnet.c
hw/sh4/sh7750.c
hw/timer/m48t59.c
hw/timer/sh_timer.c
include/crypto/aes.h
include/disas/bfd.h
include/hw/sh4/sh.h
libdecnumber/decNumber.c
linux-headers/asm-generic/unistd.h
linux-headers/linux/kvm.h
linux-user/alpha/target_syscall.h
linux-user/arm/nwfpe/double_cpdo.c
linux-user/arm/nwfpe/fpa11_cpdt.c
linux-user/arm/nwfpe/fpa11_cprt.c
linux-user/arm/nwfpe/fpa11.h
linux-user/flat.h
linux-user/flatload.c
linux-user/i386/target_syscall.h
linux-user/ppc/target_syscall.h
linux-user/sparc/target_syscall.h
linux-user/syscall.c
linux-user/syscall_defs.h
linux-user/x86_64/target_syscall.h
slirp/cksum.c
slirp/if.c
slirp/ip.h
slirp/ip_icmp.c
slirp/ip_icmp.h
slirp/ip_input.c
slirp/ip_output.c
slirp/mbuf.c
slirp/misc.c
slirp/sbuf.c
slirp/socket.c
slirp/socket.h
slirp/tcp_input.c
slirp/tcpip.h
slirp/tcp_output.c
slirp/tcp_subr.c
slirp/tcp_timer.c
slirp/tftp.c
slirp/udp.c
slirp/udp.h
target/cris/cpu.h
target/cris/mmu.c
target/cris/op_helper.c
target/sh4/helper.c
target/sh4/op_helper.c
target/sh4/translate.c
tcg/sparc/tcg-target.inc.c
tests/tcg/cris/check_addo.c
tests/tcg/cris/check_moveq.c
tests/tcg/cris/check_swap.c
tests/tcg/multiarch/test-mmap.c
ui/vnc-enc-hextile-template.h
ui/vnc-enc-zywrle.h
util/envlist.c
util/readline.c
The following have only TABs:
bsd-user/i386/target_signal.h
bsd-user/sparc64/target_signal.h
bsd-user/sparc64/target_syscall.h
bsd-user/sparc/target_signal.h
bsd-user/sparc/target_syscall.h
bsd-user/x86_64/target_signal.h
crypto/desrfb.c
hw/audio/intel-hda-defs.h
hw/core/uboot_image.h
hw/sh4/sh7750_regnames.c
hw/sh4/sh7750_regs.h
include/hw/cris/etraxfs_dma.h
linux-user/alpha/termbits.h
linux-user/arm/nwfpe/fpopcode.h
linux-user/arm/nwfpe/fpsr.h
linux-user/arm/syscall_nr.h
linux-user/arm/target_signal.h
linux-user/cris/target_signal.h
linux-user/i386/target_signal.h
linux-user/linux_loop.h
linux-user/m68k/target_signal.h
linux-user/microblaze/target_signal.h
linux-user/mips64/target_signal.h
linux-user/mips/target_signal.h
linux-user/mips/target_syscall.h
linux-user/mips/termbits.h
linux-user/ppc/target_signal.h
linux-user/sh4/target_signal.h
linux-user/sh4/termbits.h
linux-user/sparc64/target_syscall.h
linux-user/sparc/target_signal.h
linux-user/x86_64/target_signal.h
linux-user/x86_64/termbits.h
pc-bios/optionrom/optionrom.h
slirp/mbuf.h
slirp/misc.h
slirp/sbuf.h
slirp/tcp.h
slirp/tcp_timer.h
slirp/tcp_var.h
target/i386/svm.h
target/sparc/asi.h
target/xtensa/core-dc232b/xtensa-modules.inc.c
target/xtensa/core-dc233c/xtensa-modules.inc.c
target/xtensa/core-de212/core-isa.h
target/xtensa/core-de212/xtensa-modules.inc.c
target/xtensa/core-fsf/xtensa-modules.inc.c
target/xtensa/core-sample_controller/core-isa.h
target/xtensa/core-sample_controller/xtensa-modules.inc.c
target/xtensa/core-test_kc705_be/core-isa.h
target/xtensa/core-test_kc705_be/xtensa-modules.inc.c
tests/tcg/cris/check_abs.c
tests/tcg/cris/check_addc.c
tests/tcg/cris/check_addcm.c
tests/tcg/cris/check_addoq.c
tests/tcg/cris/check_bound.c
tests/tcg/cris/check_ftag.c
tests/tcg/cris/check_int64.c
tests/tcg/cris/check_lz.c
tests/tcg/cris/check_openpf5.c
tests/tcg/cris/check_sigalrm.c
tests/tcg/cris/crisutils.h
tests/tcg/cris/sys.c
tests/tcg/i386/test-i386-ssse3.c
ui/vgafont.h
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20181213223737.11793-3-pbonzini@redhat.com>
Reviewed-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Wainer dos Santos Moschetta <wainersm@redhat.com>
Acked-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: Eric Blake <eblake@redhat.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Stefan Markovic <smarkovic@wavecomp.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make them more QOMConventional.
Cc:qemu-trivial@nongnu.org
Signed-off-by: Li Qiang <liq3ea@163.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <20190105023831.66910-1-liq3ea@163.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Depending on the interrupt mode of the machine, enable or disable the
XIVE MMIOs.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The qemu_irq array is now allocated at the machine level using a sPAPR
IRQ set_irq handler depending on the chosen interrupt mode. The use of
this handler is slightly inefficient today but it will become necessary
when the 'dual' interrupt mode is introduced.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
To support the 'dual' interrupt mode, XICS and XIVE, we plan to move
the qemu_irq array of each interrupt controller under the machine and
do the allocation under the sPAPR IRQ init method.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>