During boot, PAPR guests negotiate CPU model support with the
ibm,client-architecture-support mechanism. The logic to implement this in
qemu is very convoluted. This cleans it up to be cleaner, using the new
ppc_check_compat() call.
The new logic for choosing a compatibility mode is:
1. Usually, use the most recent compatibility mode that is
a) supported by the guest
b) supported by the CPU
and c) no later than the maximum allowed (if specified)
2. If no suitable compatibility mode was found, the guest *does*
support this CPU explicitly, and no maximum compatibility mode is
specified, then use "raw" mode for the current CPU
3. Otherwise, fail the boot.
This differs from the results of the old code: the old code preferred using
"raw" mode to a compatibility mode, whereas the new code prefers a
compatibility mode if available. Using compatibility mode preferentially
means that we're more likely to be able to migrate the guest to a similar
but not identical host.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Machine supports both Open Hack'Ware and OpenBIOS.
Open Hack'Ware is the default because OpenBIOS is currently unable to boot
PReP boot partitions or PReP kernels.
Signed-off-by: Hervé Poussineau <hpoussin@reactos.org>
[dwg: Correct compile failure with KVM located by Thomas Huth]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Hervé Poussineau <hpoussin@reactos.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Added CONFIG_RS6000_MC to ppc64 or it breaks testcases]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This device is a partial duplicate of System I/O device available in hw/ppc/prep.c
This new one doesn't have all the Motorola-specific registers.
The old one should be deprecated and removed with the 'prep' machine.
Partial documentation available at
ftp://ftp.software.ibm.com/rs6000/technology/spec/srp1_1.exe
section 6.1.5 (I/O Device Mapping)
Signed-off-by: Hervé Poussineau <hpoussin@reactos.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Drop the old SysBus init function and use instance_init
Signed-off-by: xiaoqiang zhao <zxq_yx_007@163.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Drop the old SysBus init function and use instance_init
Signed-off-by: xiaoqiang zhao <zxq_yx_007@163.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
To continue consolidation of compatibility mode information, this rewrites
the ppc_get_compat_smt_threads() function using the table of compatiblity
modes in target-ppc/compat.c.
It's not a direct replacement, the new ppc_compat_max_threads() function
has simpler semantics - it just returns the number of threads the cpu
model has, taking into account any compatiblity mode it is in.
This no longer takes into account kvmppc_smt_threads() as the previous
version did. That check wasn't useful because we check in
ppc_cpu_realizefn() that CPUs aren't instantiated with more threads
than kvm allows (or if we didn't things will already be broken and
this won't make it any worse).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
When passing through an USB storage device to a pseries guest, it
is currently not possible to automatically boot from the device
if the "bootindex" property has been specified, too (e.g. when using
"-device nec-usb-xhci -device usb-host,hostbus=1,hostaddr=2,bootindex=0"
at the command line). The problem is that QEMU builds a device tree path
like "/pci@800000020000000/usb@0/usb-host@1" and passes it to SLOF
in the /chosen/qemu,boot-list property. SLOF, however, probes the
USB device, recognizes that it is a storage device and thus changes
its name to "storage", and additionally adds a child node for the
SCSI LUN, so the correct boot path in SLOF is something like
"/pci@800000020000000/usb@0/storage@1/disk@101000000000000" instead.
So when we detect an USB mass storage device with SCSI interface,
we've got to adjust the firmware boot-device path properly that
SLOF can automatically boot from the device.
Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=1354177
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The H_SIGNAL_SYS_RESET hcall allows a guest CPU to raise a system reset
exception on CPUs within the same guest -- all CPUs, all-but-self, or a
specific CPU (including self).
This has not made its way to a PAPR release yet, but we have an hcall
number assigned.
H_SIGNAL_SYS_RESET = 0x380
Syntax:
hcall(uint64 H_SIGNAL_SYS_RESET, int64 target);
Generate a system reset NMI on the threads indicated by target.
Values for target:
-1 = target all online threads including the caller
-2 = target all online threads except for the caller
All other negative values: reserved
Positive values: The thread to be targeted, obtained from the value
of the "ibm,ppc-interrupt-server#s" property of the CPU in the OF
device tree.
Semantics:
- Invalid target: return H_Parameter.
- Otherwise: Generate a system reset NMI on target thread(s),
return H_Success.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The 'cpu_version' field in PowerPCCPU is badly named. It's named after the
'cpu-version' device tree property where it is advertised, but that meaning
may not be obvious in most places it appears.
Worse, it doesn't even really correspond to that device tree property. The
property contains either the processor's PVR, or, if the CPU is running in
a compatibility mode, a special "logical PVR" representing which mode.
Rename the cpu_version field, and a number of related variables to
compat_pvr to make this clearer.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Thomas Huth <thuth@redhat.com>
The pseries machine type is a bit unusual in that it runs a paravirtualized
guest. The guest expects to interact with a hypervisor, and qemu
emulates the functions of that hypervisor directly, rather than executing
hypervisor code within the emulated system.
To implement this in TCG, we need to intercept hypercall instructions and
direct them to the machine's hypercall handlers, rather than attempting to
perform a privilege change within TCG. This is controlled by a global
hook - cpu_ppc_hypercall.
This cleanup makes the handling a little cleaner and more extensible than
a single global variable. Instead, each CPU to have hypercalls intercepted
has a pointer set to a QOM object implementing a new virtual hypervisor
interface. A method in that interface is called by TCG when it sees a
hypercall instruction. It's possible we may want to add other methods in
future.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
spapr_h_cas_compose_response() includes a cpu_update parameter which
controls whether it includes updated information on the CPUs in the device
tree fragment returned from the ibm,client-architecture-support (CAS) call.
Providing the updated information is essential when CAS has negotiated
compatibility options which require different cpu information to be
presented to the guest. However, it should be safe to provide in other
cases (it will just override the existing data in the device tree with
identical data). This simplifies the code by removing the parameter and
always providing the cpu update information.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Currently the pseries machine has two paths for constructing CPUs. On
newer machine type versions, which support cpu hotplug, it constructs
cpu core objects, which in turn construct CPU threads. For older machine
versions it individually constructs the CPU threads.
This division is going to make some future changes to the cpu construction
harder, so this patch unifies them. Now cpu core objects are always
created. This requires some updates to allow core objects to be created
without a full complement of threads (since older versions allowed a
number of cpus not a multiple of the threads-per-core). Likewise it needs
some changes to the cpu core hot/cold plug path so as not to choke on the
old machine types without hotplug support.
For good measure, we move the cpu construction to its own subfunction,
spapr_init_cpus().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Move the generic cpu_synchronize_ functions to the common hw_accel.h header,
in order to prepare for the addition of a second hardware accelerator.
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Vincent Palatin <vpalatin@chromium.org>
Message-Id: <f5c3cffe8d520011df1c2e5437bb814989b48332.1484045952.git.vpalatin@chromium.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>
Currently we set the initial isolation/allocation state for DRCs
associated with coldplugged LMBs to ISOLATED/UNUSABLE,
respectively, under the assumption that the guest will move this
state to UNISOLATED/USABLE.
In fact, this is only the case for LMBs added via hotplug. For
coldplugged LMBs, the guest actually assumes the initial state to
be UNISOLATED/USABLE.
In practice, this only becomes an issue when we attempt to unplug
one of these LMBs, where the guest kernel will issue an
rtas-get-sensor-state call to check that the corresponding DRC is
in an USABLE state before it will release the LMB back to
QEMU. If the returned state is otherwise, the guest will assume no
further action is needed, which bypasses the QEMU-side cleanup that
occurs during the USABLE->UNUSABLE transition. This results in
LMBs and their corresponding pc-dimm devices to stick around
indefinitely.
This patch fixes the issue by manually setting DRCs associated with
cold-plugged LMBs to UNISOLATED/ALLOCATED, but leaving the hotplug
state untouched. As it turns out, this is analogous to the handling
for cold-plugged CPUs in spapr_core_plug().
Cc: qemu-ppc@nongnu.org
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Greg Kurz <gkurz@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
daa2369 "spapr_pci: Add a 64-bit MMIO window" subtly broke migration
from qemu-2.7 to the current version. It split the device's MMIO
window into two pieces for 32-bit and 64-bit MMIO.
The patch included backwards compatibility code to convert the old
property into the new format. However, the property value was also
transferred in the migration stream and compared with a (probably
unwise) VMSTATE_EQUAL. So, the "raw" value from 2.7 is compared to
the new style converted value from (pre-)2.8 giving a mismatch and
migration failure.
Along with the actual field that caused the breakage, there are
several other ill-advised VMSTATE_EQUAL()s. To fix forwards
migration, we read the values in the stream into scratch variables and
ignore them, instead of comparing for equality. To fix backwards
migration, we populate those scratch variables in pre_save() with
adjusted values to match the old behaviour.
To permit the eventual possibility of removing this cruft from the
stream, we only include these compatibility fields if a new
'pre-2.8-migration' property is set. We clear it on the pseries-2.8
machine type, which obviously can't be migrated backwards, but set it
on earlier machine type versions.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
This reverts commit 9b54ca0ba7.
The commit above corrected a migration breakage between qemu-2.7 and
qemu-2.8. However it did so by advancing the migration version for
the PCI host bridge, which obviously breaks migration backwards to
earlier qemu versions.
Although it's not totally essential, we'd like to maintain the
possibility for backwards migration, so revert the change in
preparation for a better fix.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Until very recently, the vmstate for ppc cpus included some poorly
thought out VMSTATE_EQUAL() components, that can easily break
migration compatibility, and did so between qemu-2.6 and later
versions. A hack was recently added which fixes this migration
breakage, but it leaves the unhelpful cruft of these fields in the
migration stream.
This patch adds a new cpu property allowing these fields to be removed
from the stream entirely. For the pseries-2.8 machine type - which
comes after the fix - and for all non-pseries machine types - which
aren't mature enough to care about cross-version migration - we remove
the fields from the stream.
For pseries-2.7 and earlier, The migration hack remains in place,
allowing backwards and forwards migration with the older machine
types.
This restricts the migration compatibility cruft to older machine
types, and at least opens the possibility of eventually deprecating
and removing it entirely.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
With the additional of the OV5_HP_EVT option vector, we now have
certain functionality (namely, memory unplug) that checks at run-time
for whether or not the guest negotiated the option via CAS. Because
we don't currently migrate these negotiated values, we are unable
to unplug memory from a guest after it's been migrated until after
the guest is rebooted and CAS-negotiation is repeated.
This patch fixes this by adding CAS-negotiated options to the
migration stream. We do this using a subsection, since the
negotiated value of OV5_HP_EVT is the only option currently needed
to maintain proper functionality for a running guest.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PC will use this field in other way, so move it outside the common
code so PC could set a different value, i.e. all CPUs
regardless of where they are coming from (-smp X | -device cpu...).
It's quick and dirty hack as it could be implemented in more generic
way in MashineClass. But do it in simple way since only PC is affected
so far.
Later we can generalize it when another affected target gets support
for -device cpu.
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Message-Id: <1479212236-183810-3-git-send-email-imammedo@redhat.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
If the pnv machine type is compiled on a 32-bit host, the unsigned long
(host) type is 32-bit. This means that the hweight_long() used to
calculate the number of allowed cores only considers the low 32 bits of
the cores_mask variable, and can thus return 0 in some circumstances.
This corrects the bug.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Suggested-by: Richard Henderson <rth@twiddle.net>
[clg: replaced hweight_long() by ctpop64() ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
High addresses can overflow the uint32_t pcba variable after the 8byte
shift.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
The XSCOM addresses for the core registers are encoded in a slightly
different way on POWER8 and POWER9.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
daa2369 "spapr_pci: Add a 64-bit MMIO window" subtly broke migration from
qemu-2.7 to the current version. It split the device's MMIO window into
two pieces for 32-bit and 64-bit MMIO.
The patch included backwards compatibility code to convert the old property
into the new format. However, the property value was also transferred in
the migration stream and compared with a (probably unwise) VMSTATE_EQUAL.
So, the "raw" value from 2.7 is compared to the new style converted value
from (pre-)2.8 giving a mismatch and migration failure.
Although it would be technically possible to fix this in a way allowing
backwards migration, that would leave an ugly legacy around indefinitely.
This patch takes the simpler approach of bumping the migration version,
dropping the unwise VMSTATE_EQUAL (and some equally unwise ones around it)
and ignoring them on an incoming migration.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
PnvChip is defined twice and this can confuse old compilers :
CC ppc64-softmmu/hw/ppc/pnv_xscom.o
In file included from qemu.git/hw/ppc/pnv.c:29:
qemu.git/include/hw/ppc/pnv.h:60: error: redefinition of typedef ‘PnvChip’
qemu.git/include/hw/ppc/pnv_xscom.h:24: note: previous declaration of ‘PnvChip’ was here
make[1]: *** [hw/ppc/pnv.o] Error 1
make[1]: *** Waiting for unfinished jobs....
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
powernv has some code (derived from the spapr equivalent) used in device
tree generation which depends on the CPU's compatibility mode / logical
PVR. However, compatibility modes don't make sense on powernv - at least
not as a property controlled by the host - because the guest in powernv
has full hypervisor level access to the virtual system, and so owns the
PCR (Processor Compatibility Register) which implements compatiblity modes.
Note: the new logic doesn't take into account kvmppc_smt_threads() like the
old version did. However, if core->nr_threads exceeds kvmppc_smt_threads()
then things will already be broken and clamping the value in the device
tree isn't going to save us.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
This changes the *_run_on_cpu APIs (and helpers) to pass data in a
run_on_cpu_data type instead of a plain void *. This is because we
sometimes want to pass a target address (target_ulong) and this fails on
32 bit hosts emulating 64 bit guests.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20161027151030.20863-24-alex.bennee@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Some files contain multiple #includes of the same header file.
Removed most of those unnecessary duplicate entries using
scripts/clean-includes.
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Anand J <anand.indukala@gmail.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Add support to hot remove pc-dimm memory devices.
Since we're introducing a machine-level unplug_request hook, we also
had handling for CPU unplug there as well to ensure CPU unplug
continues to work as it did before.
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
* add hooks to CAS/cmdline enablement of hotplug ACR support
* add hook for CPU unplug
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Commit 0a417869:
spapr: Move memory hotplug to RTAS_LOG_V6_HP_ID_DRC_COUNT type
dropped per-DRC/per-LMB hotplugs event in favor of a bulk add via a
single LMB count value. This was to avoid overrunning the guest EPOW
event queue with hotplug events. This works fine, but relies on the
guest exhaustively scanning for pluggable LMBs to satisfy the
requested count by issuing rtas-get-sensor(DR_ENTITY_SENSE, ...) calls
until all the LMBs associated with the DIMM are identified.
With newer support for dedicated hotplug event source, this queue
exhaustion is no longer as much of an issue due to implementation
details on the guest side, but we still try to avoid excessive hotplug
events by now supporting both a count and a starting index to avoid
unecessary work. This patch makes use of that approach when the
capability is available.
Cc: bharata@linux.vnet.ibm.com
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Add support for DRC count indexed hotplug ID type which is primarily
needed for memory hot unplug. This type allows for specifying the
number of DRs that should be plugged/unplugged starting from a given
DRC index.
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
* updated rtas_event_log_v6_hp to reflect count/index field ordering
used in PAPR hotplug ACR
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
This adds machine options of the form:
-machine pseries,modern-hotplug-events=true
-machine pseries,modern-hotplug-events=false
If false, QEMU will force the use of "legacy" style hotplug events,
which are surfaced through EPOW events instead of a dedicated
hot plug event source, and lack certain features necessary, mainly,
for memory unplug support.
If true, QEMU will enable support for "modern" dedicated hot plug
event source. Note that we will still default to "legacy" style unless
the guest advertises support for the "modern" hotplug events via
ibm,client-architecture-support hcall during early boot.
For pseries-2.7 and earlier we default to false, for newer machine
types we default to true.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Hotplug events were previously delivered using an EPOW interrupt
and were queued by linux guests into a circular buffer. For traditional
EPOW events like shutdown/resets, this isn't an issue, but for hotplug
events there are cases where this buffer can be exhausted, resulting
in the loss of hotplug events, resets, etc.
Newer-style hotplug event are delivered using a dedicated event source.
We enable this in supported guests by adding standard an additional
event source in the guest device-tree via /event-sources, and, if
the guest advertises support for the newer-style hotplug events,
using the corresponding interrupt to signal the available of
hotplug/unplug events.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
ibm,architecture-vec-5 is supposed to encode all option vector 5 bits
negotiated between platform/guest. Currently we hardcode this property
in the boot-time device tree to advertise a single negotiated
capability, "Form 1" NUMA Affinity, regardless of whether or not CAS
has been invoked or that capability has actually been negotiated.
Improve this by generating ibm,architecture-vec-5 based on the full
set of option vector 5 capabilities negotiated via CAS.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
In some cases, ibm,client-architecture-support calls can fail. This
could happen in the current code for situations where the modified
device tree segment exceeds the buffer size provided by the guest
via the call parameters. In these cases, QEMU will reset, allowing
an opportunity to regenerate the device tree from scratch via
boot-time handling. There are potentially other scenarios as well,
not currently reachable in the current code, but possible in theory,
such as cases where device-tree properties or nodes need to be removed.
We currently don't handle either of these properly for option vector
capabilities however. Instead of carrying the negotiated capability
beyond the reset and creating the boot-time device tree accordingly,
we start from scratch, generating the same boot-time device tree as we
did prior to the CAS-generated and the same device tree updates as we
did before. This could (in theory) cause us to get stuck in a reset
loop. This hasn't been observed, but depending on the extensiveness
of CAS-induced device tree updates in the future, could eventually
become an issue.
Address this by pulling capability-related device tree
updates resulting from CAS calls into a common routine,
spapr_dt_cas_updates(), and adding an sPAPROptionVector*
parameter that allows us to test for newly-negotiated capabilities.
We invoke it as follows:
1) When ibm,client-architecture-support gets called, we
call spapr_dt_cas_updates() with the set of capabilities
added since the previous call to ibm,client-architecture-support.
For the initial boot, or a system reset generated by something
other than the CAS call itself, this set will consist of *all*
options supported both the platform and the guest. For calls
to ibm,client-architecture-support immediately after a CAS-induced
reset, we call spapr_dt_cas_updates() with only the set
of capabilities added since the previous call, since the other
capabilities will have already been addressed by the boot-time
device-tree this time around. In the unlikely event that
capabilities are *removed* since the previous CAS, we will
generate a CAS-induced reset. In the unlikely event that we
cannot fit the device-tree updates into the buffer provided
by the guest, well generate a CAS-induced reset.
2) When a CAS update results in the need to reset the machine and
include the updates in the boot-time device tree, we call the
spapr_dt_cas_updates() using the full set of negotiated
capabilities as part of the reset path. At initial boot, or after
a reset generated by something other than the CAS call itself,
this set will be empty, resulting in what should be the same
boot-time device-tree as we generated prior to this patch. For
CAS-induced reset, this routine will be called with the full set of
capabilities negotiated by the platform/guest in the previous
CAS call, which should result in CAS updates from previous call
being accounted for in the initial boot-time device tree.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[dwg: Changed an int -> bool conversion to be more explicit]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Currently we access individual bytes of an option vector via
ldub_phys() to test for the presence of a particular capability
within that byte. Currently this is only done for the "dynamic
reconfiguration memory" capability bit. If that bit is present,
we pass a boolean value to spapr_h_cas_compose_response()
to generate a modified device tree segment with the additional
properties required to enable this functionality.
As more capability bits are added, will would need to modify the
code to add additional option vector accesses and extend the
param list for spapr_h_cas_compose_response() to include similar
boolean values for these parameters.
Avoid this by switching to spapr_ovec_* helpers so we can do all
the parsing in one shot and then test for these additional bits
within spapr_h_cas_compose_response() directly.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
PAPR guests advertise their capabilities to the platform by passing
an ibm,architecture-vec structure via an
ibm,client-architecture-support hcall as described by LoPAPR v11,
B.6.2.3. during early boot.
Using this information, the platform enables the capabilities it
supports, then encodes a subset of those enabled capabilities (the
5th option vector of the ibm,architecture-vec structure passed to
ibm,client-architecture-support) into the guest device tree via
"/chosen/ibm,architecture-vec-5".
The logical format of these these option vectors is a bit-vector,
where individual bits are addressed/documented based on the byte-wise
offset from the beginning of the bit-vector, followed by the bit-wise
index starting from the byte-wise offset. Thus the bits of each of
these bytes are stored in reverse order. Additionally, the first
byte of each option vector is encodes the length of the option vector,
so byte offsets begin at 1, and bit offset at 0.
This is not very intuitive for the purposes of mapping these bits to
a particular documented capability, so this patch introduces a set
of abstractions that encapsulate the work of parsing/encoding these
options vectors and testing for individual capabilities.
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
[dwg: Tweaked double-include protection to not trigger a checkpatch
false positive]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
For historical reasons construction of the guest device tree in spapr is
divided between spapr_create_fdt_skel() which is called at init time, and
spapr_build_fdt() which runs at reset time. Over time, more and more
things have needed to be moved to reset time.
Previous cleanups mean the only things left in spapr_create_fdt_skel() are
the properties of the root node itself. Finish consolidating these two
parts of device tree construction, by moving this to the start of
spapr_build_fdt(), and removing spapr_create_fdt_skel() entirely.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Construction of the /vdevice node (and its children) is divided between
spapr_create_fdt_skel() (at init time), which creates the base node, and
spapr_populate_vdevice() (at reset time) which creates the nodes for each
individual virtual device.
This consolidates both into a single function called from
spapr_build_fdt().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Currently the /hypervisor device tree node is constructed in
spapr_create_fdt_skel(). As part of consolidating device tree construction
to reset time, move it to a function called from spapr_build_fdt().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
The /event-sources device tree node is built from spapr_create_fdt_skel().
As part of consolidating device tree construction to reset time, this moves
it to spapr_build_fdt().
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
For historical reasons construction of the /rtas node in the device
tree (amongst others) is split into several places. In particular
it's split between spapr_create_fdt_skel(), spapr_build_fdt() and
spapr_rtas_device_tree_setup().
In fact, as well as adding the actual RTAS tokens to the device tree,
spapr_rtas_device_tree_setup() just adds the ibm,lrdr-capacity
property, which despite going in the /rtas node, doesn't have a lot to
do with RTAS.
This patch consolidates the code constructing /rtas together into a new
spapr_dt_rtas() function. spapr_rtas_device_tree_setup() is renamed to
spapr_dt_rtas_tokens() and now only adds the token properties.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
For historical reasons, building the /chosen node in the guest device tree
is split across several places and includes both parts which write the DT
sequentially and others which use random access functions.
This patch consolidates construction of the node into one place, using
random access functions throughout.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>