Base patches for MTTCG enablement.

-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQExBAABCAAbBQJYF07FFBxwYm9uemluaUByZWRoYXQuY29tAAoJEL/70l94x66D
 ppoIAI4AxWocso5WIUH6uEHjOAxw9ZNhZ92nF8VtcbvGtN/eh8Qk4jfRX+W/Jl0q
 D13Rm3m8ynNHqh8YFs+O6i/WSgxHGxKwb75mNr36HDnYnMFluTvRQkvYJUXRyRuL
 CVtNgy8+q8FbbWo+NiJ5I7gfk2Si4BQfZN0uCLqGuCwqvvA/spN13xUcpeBXEKhL
 TeDGZBT/atDnT2bRcve8E8g5/0RKjTL9EB0jwfJjHocT5bs+toPe6js9VnZDRNWN
 ZldcONgEHj3zAj9j7hTkVWFTGPSCx/tt6y6JeORq1oxk0mCCswEk0U9A3hLzLjc/
 94XHsLaEoZ7HNAKtkLc07NYhkQM=
 =+6Sj
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream-mttcg' into staging

Base patches for MTTCG enablement.

# gpg: Signature made Mon 31 Oct 2016 14:01:41 GMT
# gpg:                using RSA key 0xBFFBD25F78C7AE83
# gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>"
# gpg:                 aka "Paolo Bonzini <pbonzini@redhat.com>"
# Primary key fingerprint: 46F5 9FBD 57D6 12E7 BFD4  E2F7 7E15 100C CD36 69B1
#      Subkey fingerprint: F133 3857 4B66 2389 866C  7682 BFFB D25F 78C7 AE83

* remotes/bonzini/tags/for-upstream-mttcg:
  tcg: move locking for tb_invalidate_phys_page_range up
  *_run_on_cpu: introduce run_on_cpu_data type
  cpus: re-factor out handle_icount_deadline
  tcg: cpus rm tcg_exec_all()
  tcg: move tcg_exec_all and helpers above thread fn
  target-arm/arm-powerctl: wake up sleeping CPUs
  tcg: protect translation related stuff with tb_lock.
  translate-all: Add assert_(memory|tb)_lock annotations
  linux-user/elfload: ensure mmap_lock() held while setting up
  tcg: comment on which functions have to be called with tb_lock held
  cpu-exec: include cpu_index in CPU_LOG_EXEC messages
  translate-all: add DEBUG_LOCKING asserts
  translate_all: DEBUG_FLUSH -> DEBUG_TB_FLUSH
  cpus: make all_vcpus_paused() return bool

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2016-10-31 15:29:12 +00:00
commit 6bc56d317f
25 changed files with 426 additions and 222 deletions

View File

@ -42,6 +42,11 @@ void mmap_unlock(void)
}
}
bool have_mmap_lock(void)
{
return mmap_lock_count > 0 ? true : false;
}
/* Grab lock to make sure things are in a consistent state after fork(). */
void mmap_fork_start(void)
{

View File

@ -143,8 +143,9 @@ static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
uint8_t *tb_ptr = itb->tc_ptr;
qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
"Trace %p [" TARGET_FMT_lx "] %s\n",
itb->tc_ptr, itb->pc, lookup_symbol(itb->pc));
"Trace %p [%d: " TARGET_FMT_lx "] %s\n",
itb->tc_ptr, cpu->cpu_index, itb->pc,
lookup_symbol(itb->pc));
#if defined(DEBUG_DISAS)
if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
@ -204,15 +205,21 @@ static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
if (max_cycles > CF_COUNT_MASK)
max_cycles = CF_COUNT_MASK;
tb_lock();
tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
max_cycles | CF_NOCACHE
| (ignore_icount ? CF_IGNORE_ICOUNT : 0));
tb->orig_tb = orig_tb;
tb_unlock();
/* execute the generated code */
trace_exec_tb_nocache(tb, tb->pc);
cpu_tb_exec(cpu, tb);
tb_lock();
tb_phys_invalidate(tb, -1);
tb_free(tb);
tb_unlock();
}
#endif

View File

@ -109,7 +109,7 @@ void cpu_list_remove(CPUState *cpu)
struct qemu_work_item {
struct qemu_work_item *next;
run_on_cpu_func func;
void *data;
run_on_cpu_data data;
bool free, exclusive, done;
};
@ -129,7 +129,7 @@ static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
qemu_cpu_kick(cpu);
}
void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data,
void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
QemuMutex *mutex)
{
struct qemu_work_item wi;
@ -154,7 +154,7 @@ void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data,
}
}
void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data)
void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
{
struct qemu_work_item *wi;
@ -296,7 +296,8 @@ void cpu_exec_end(CPUState *cpu)
}
}
void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data)
void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
run_on_cpu_data data)
{
struct qemu_work_item *wi;

259
cpus.c
View File

@ -69,7 +69,6 @@
#endif /* CONFIG_LINUX */
static CPUState *next_cpu;
int64_t max_delay;
int64_t max_advance;
@ -557,7 +556,7 @@ static const VMStateDescription vmstate_timers = {
}
};
static void cpu_throttle_thread(CPUState *cpu, void *opaque)
static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
{
double pct;
double throttle_ratio;
@ -588,7 +587,8 @@ static void cpu_throttle_timer_tick(void *opaque)
}
CPU_FOREACH(cpu) {
if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
async_run_on_cpu(cpu, cpu_throttle_thread, NULL);
async_run_on_cpu(cpu, cpu_throttle_thread,
RUN_ON_CPU_NULL);
}
}
@ -915,7 +915,7 @@ void qemu_init_cpu_loop(void)
qemu_thread_get_self(&io_thread);
}
void run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data)
void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
{
do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
}
@ -1055,12 +1055,102 @@ static void *qemu_dummy_cpu_thread_fn(void *arg)
#endif
}
static void tcg_exec_all(void);
static int64_t tcg_get_icount_limit(void)
{
int64_t deadline;
if (replay_mode != REPLAY_MODE_PLAY) {
deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
/* Maintain prior (possibly buggy) behaviour where if no deadline
* was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
* INT32_MAX nanoseconds ahead, we still use INT32_MAX
* nanoseconds.
*/
if ((deadline < 0) || (deadline > INT32_MAX)) {
deadline = INT32_MAX;
}
return qemu_icount_round(deadline);
} else {
return replay_get_instructions();
}
}
static void handle_icount_deadline(void)
{
if (use_icount) {
int64_t deadline =
qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
if (deadline == 0) {
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
}
}
}
static int tcg_cpu_exec(CPUState *cpu)
{
int ret;
#ifdef CONFIG_PROFILER
int64_t ti;
#endif
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
if (use_icount) {
int64_t count;
int decr;
timers_state.qemu_icount -= (cpu->icount_decr.u16.low
+ cpu->icount_extra);
cpu->icount_decr.u16.low = 0;
cpu->icount_extra = 0;
count = tcg_get_icount_limit();
timers_state.qemu_icount += count;
decr = (count > 0xffff) ? 0xffff : count;
count -= decr;
cpu->icount_decr.u16.low = decr;
cpu->icount_extra = count;
}
cpu_exec_start(cpu);
ret = cpu_exec(cpu);
cpu_exec_end(cpu);
#ifdef CONFIG_PROFILER
tcg_time += profile_getclock() - ti;
#endif
if (use_icount) {
/* Fold pending instructions back into the
instruction counter, and clear the interrupt flag. */
timers_state.qemu_icount -= (cpu->icount_decr.u16.low
+ cpu->icount_extra);
cpu->icount_decr.u32 = 0;
cpu->icount_extra = 0;
replay_account_executed_instructions();
}
return ret;
}
/* Destroy any remaining vCPUs which have been unplugged and have
* finished running
*/
static void deal_with_unplugged_cpus(void)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
if (cpu->unplug && !cpu_can_run(cpu)) {
qemu_tcg_destroy_vcpu(cpu);
cpu->created = false;
qemu_cond_signal(&qemu_cpu_cond);
break;
}
}
}
static void *qemu_tcg_cpu_thread_fn(void *arg)
{
CPUState *cpu = arg;
CPUState *remove_cpu = NULL;
rcu_register_thread();
@ -1087,29 +1177,44 @@ static void *qemu_tcg_cpu_thread_fn(void *arg)
/* process any pending work */
atomic_mb_set(&exit_request, 1);
cpu = first_cpu;
while (1) {
tcg_exec_all();
/* Account partial waits to QEMU_CLOCK_VIRTUAL. */
qemu_account_warp_timer();
if (use_icount) {
int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
if (deadline == 0) {
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
}
if (!cpu) {
cpu = first_cpu;
}
qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus));
CPU_FOREACH(cpu) {
if (cpu->unplug && !cpu_can_run(cpu)) {
remove_cpu = cpu;
for (; cpu != NULL && !exit_request; cpu = CPU_NEXT(cpu)) {
qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
(cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
if (cpu_can_run(cpu)) {
int r;
r = tcg_cpu_exec(cpu);
if (r == EXCP_DEBUG) {
cpu_handle_guest_debug(cpu);
break;
}
} else if (cpu->stop || cpu->stopped) {
if (cpu->unplug) {
cpu = CPU_NEXT(cpu);
}
break;
}
}
if (remove_cpu) {
qemu_tcg_destroy_vcpu(remove_cpu);
cpu->created = false;
qemu_cond_signal(&qemu_cpu_cond);
remove_cpu = NULL;
}
} /* for cpu.. */
/* Pairs with smp_wmb in qemu_cpu_kick. */
atomic_mb_set(&exit_request, 0);
handle_icount_deadline();
qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus));
deal_with_unplugged_cpus();
}
return NULL;
@ -1207,17 +1312,17 @@ void qemu_mutex_unlock_iothread(void)
qemu_mutex_unlock(&qemu_global_mutex);
}
static int all_vcpus_paused(void)
static bool all_vcpus_paused(void)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
if (!cpu->stopped) {
return 0;
return false;
}
}
return 1;
return true;
}
void pause_all_vcpus(void)
@ -1412,106 +1517,6 @@ int vm_stop_force_state(RunState state)
}
}
static int64_t tcg_get_icount_limit(void)
{
int64_t deadline;
if (replay_mode != REPLAY_MODE_PLAY) {
deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
/* Maintain prior (possibly buggy) behaviour where if no deadline
* was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
* INT32_MAX nanoseconds ahead, we still use INT32_MAX
* nanoseconds.
*/
if ((deadline < 0) || (deadline > INT32_MAX)) {
deadline = INT32_MAX;
}
return qemu_icount_round(deadline);
} else {
return replay_get_instructions();
}
}
static int tcg_cpu_exec(CPUState *cpu)
{
int ret;
#ifdef CONFIG_PROFILER
int64_t ti;
#endif
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
if (use_icount) {
int64_t count;
int decr;
timers_state.qemu_icount -= (cpu->icount_decr.u16.low
+ cpu->icount_extra);
cpu->icount_decr.u16.low = 0;
cpu->icount_extra = 0;
count = tcg_get_icount_limit();
timers_state.qemu_icount += count;
decr = (count > 0xffff) ? 0xffff : count;
count -= decr;
cpu->icount_decr.u16.low = decr;
cpu->icount_extra = count;
}
cpu_exec_start(cpu);
ret = cpu_exec(cpu);
cpu_exec_end(cpu);
#ifdef CONFIG_PROFILER
tcg_time += profile_getclock() - ti;
#endif
if (use_icount) {
/* Fold pending instructions back into the
instruction counter, and clear the interrupt flag. */
timers_state.qemu_icount -= (cpu->icount_decr.u16.low
+ cpu->icount_extra);
cpu->icount_decr.u32 = 0;
cpu->icount_extra = 0;
replay_account_executed_instructions();
}
return ret;
}
static void tcg_exec_all(void)
{
int r;
/* Account partial waits to QEMU_CLOCK_VIRTUAL. */
qemu_account_warp_timer();
if (next_cpu == NULL) {
next_cpu = first_cpu;
}
for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) {
CPUState *cpu = next_cpu;
qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
(cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
if (cpu_can_run(cpu)) {
r = tcg_cpu_exec(cpu);
if (r == EXCP_DEBUG) {
cpu_handle_guest_debug(cpu);
break;
} else if (r == EXCP_ATOMIC) {
cpu_exec_step_atomic(cpu);
}
} else if (cpu->stop || cpu->stopped) {
if (cpu->unplug) {
next_cpu = CPU_NEXT(cpu);
}
break;
}
}
/* Pairs with smp_wmb in qemu_cpu_kick. */
atomic_mb_set(&exit_request, 0);
}
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
{
/* XXX: implement xxx_cpu_list for targets that still miss it */

22
exec.c
View File

@ -687,7 +687,11 @@ void cpu_exec_realizefn(CPUState *cpu, Error **errp)
#if defined(CONFIG_USER_ONLY)
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
mmap_lock();
tb_lock();
tb_invalidate_phys_page_range(pc, pc + 1, 0);
tb_unlock();
mmap_unlock();
}
#else
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
@ -696,6 +700,7 @@ static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
int asidx = cpu_asidx_from_attrs(cpu, attrs);
if (phys != -1) {
/* Locks grabbed by tb_invalidate_phys_addr */
tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
phys | (pc & ~TARGET_PAGE_MASK));
}
@ -1988,7 +1993,11 @@ ram_addr_t qemu_ram_addr_from_host(void *ptr)
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
uint64_t val, unsigned size)
{
bool locked = false;
if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
locked = true;
tb_lock();
tb_invalidate_phys_page_fast(ram_addr, size);
}
switch (size) {
@ -2004,6 +2013,11 @@ static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
default:
abort();
}
if (locked) {
tb_unlock();
}
/* Set both VGA and migration bits for simplicity and to remove
* the notdirty callback faster.
*/
@ -2064,6 +2078,12 @@ static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
continue;
}
cpu->watchpoint_hit = wp;
/* The tb_lock will be reset when cpu_loop_exit or
* cpu_loop_exit_noexc longjmp back into the cpu_exec
* main loop.
*/
tb_lock();
tb_check_watchpoint(cpu);
if (wp->flags & BP_STOP_BEFORE_ACCESS) {
cpu->exception_index = EXCP_DEBUG;
@ -2471,7 +2491,9 @@ static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
}
if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
tb_lock();
tb_invalidate_phys_range(addr, addr + length);
tb_unlock();
dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
}
cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);

View File

@ -133,9 +133,9 @@ static void kvm_apic_vapic_base_update(APICCommonState *s)
}
}
static void kvm_apic_put(CPUState *cs, void *data)
static void kvm_apic_put(CPUState *cs, run_on_cpu_data data)
{
APICCommonState *s = data;
APICCommonState *s = data.host_ptr;
struct kvm_lapic_state kapic;
int ret;
@ -151,12 +151,12 @@ static void kvm_apic_put(CPUState *cs, void *data)
static void kvm_apic_post_load(APICCommonState *s)
{
run_on_cpu(CPU(s->cpu), kvm_apic_put, s);
run_on_cpu(CPU(s->cpu), kvm_apic_put, RUN_ON_CPU_HOST_PTR(s));
}
static void do_inject_external_nmi(CPUState *cpu, void *data)
static void do_inject_external_nmi(CPUState *cpu, run_on_cpu_data data)
{
APICCommonState *s = data;
APICCommonState *s = data.host_ptr;
uint32_t lvt;
int ret;
@ -174,7 +174,7 @@ static void do_inject_external_nmi(CPUState *cpu, void *data)
static void kvm_apic_external_nmi(APICCommonState *s)
{
run_on_cpu(CPU(s->cpu), do_inject_external_nmi, s);
run_on_cpu(CPU(s->cpu), do_inject_external_nmi, RUN_ON_CPU_HOST_PTR(s));
}
static void kvm_send_msi(MSIMessage *msg)
@ -213,7 +213,7 @@ static void kvm_apic_reset(APICCommonState *s)
/* Not used by KVM, which uses the CPU mp_state instead. */
s->wait_for_sipi = 0;
run_on_cpu(CPU(s->cpu), kvm_apic_put, s);
run_on_cpu(CPU(s->cpu), kvm_apic_put, RUN_ON_CPU_HOST_PTR(s));
}
static void kvm_apic_realize(DeviceState *dev, Error **errp)

View File

@ -17,6 +17,7 @@
#include "sysemu/kvm.h"
#include "hw/i386/apic_internal.h"
#include "hw/sysbus.h"
#include "tcg/tcg.h"
#define VAPIC_IO_PORT 0x7e
@ -449,6 +450,9 @@ static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
resume_all_vcpus();
if (!kvm_enabled()) {
/* tb_lock will be reset when cpu_loop_exit_noexc longjmps
* back into the cpu_exec loop. */
tb_lock();
tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
cpu_loop_exit_noexc(cs);
}
@ -483,10 +487,9 @@ typedef struct VAPICEnableTPRReporting {
bool enable;
} VAPICEnableTPRReporting;
static void vapic_do_enable_tpr_reporting(CPUState *cpu, void *data)
static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
{
VAPICEnableTPRReporting *info = data;
VAPICEnableTPRReporting *info = data.host_ptr;
apic_enable_tpr_access_reporting(info->apic, info->enable);
}
@ -501,7 +504,7 @@ static void vapic_enable_tpr_reporting(bool enable)
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
info.apic = cpu->apic_state;
run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
}
}
@ -734,9 +737,9 @@ static void vapic_realize(DeviceState *dev, Error **errp)
nb_option_roms++;
}
static void do_vapic_enable(CPUState *cs, void *data)
static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
{
VAPICROMState *s = data;
VAPICROMState *s = data.host_ptr;
X86CPU *cpu = X86_CPU(cs);
static const uint8_t enabled = 1;
@ -758,7 +761,7 @@ static void kvmvapic_vm_state_change(void *opaque, int running,
if (s->state == VAPIC_ACTIVE) {
if (smp_cpus == 1) {
run_on_cpu(first_cpu, do_vapic_enable, s);
run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
} else {
zero = g_malloc0(s->rom_state.vapic_size);
cpu_physical_memory_write(s->vapic_paddr, zero,

View File

@ -84,11 +84,11 @@ static void mmubooke_create_initial_mapping(CPUPPCState *env,
env->tlb_dirty = true;
}
static void spin_kick(CPUState *cs, void *data)
static void spin_kick(CPUState *cs, run_on_cpu_data data)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
SpinInfo *curspin = data;
SpinInfo *curspin = data.host_ptr;
hwaddr map_size = 64 * 1024 * 1024;
hwaddr map_start;
@ -147,7 +147,7 @@ static void spin_write(void *opaque, hwaddr addr, uint64_t value,
if (!(ldq_p(&curspin->addr) & 1)) {
/* run CPU */
run_on_cpu(cpu, spin_kick, curspin);
run_on_cpu(cpu, spin_kick, RUN_ON_CPU_HOST_PTR(curspin));
}
}

View File

@ -2186,7 +2186,7 @@ static void spapr_machine_finalizefn(Object *obj)
g_free(spapr->kvm_type);
}
static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, void *arg)
static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
{
cpu_synchronize_state(cs);
ppc_cpu_do_system_reset(cs);
@ -2197,7 +2197,7 @@ static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
CPUState *cs;
CPU_FOREACH(cs) {
async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, NULL);
async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
}
}

View File

@ -19,9 +19,9 @@ struct SPRSyncState {
target_ulong mask;
};
static void do_spr_sync(CPUState *cs, void *arg)
static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
{
struct SPRSyncState *s = arg;
struct SPRSyncState *s = arg.host_ptr;
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
@ -38,7 +38,7 @@ static void set_spr(CPUState *cs, int spr, target_ulong value,
.value = value,
.mask = mask
};
run_on_cpu(cs, do_spr_sync, &s);
run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
}
static bool has_spr(PowerPCCPU *cpu, int spr)
@ -886,10 +886,10 @@ typedef struct {
Error *err;
} SetCompatState;
static void do_set_compat(CPUState *cs, void *arg)
static void do_set_compat(CPUState *cs, run_on_cpu_data arg)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
SetCompatState *s = arg;
SetCompatState *s = arg.host_ptr;
cpu_synchronize_state(cs);
ppc_set_compat(cpu, s->cpu_version, &s->err);
@ -990,7 +990,7 @@ static target_ulong h_client_architecture_support(PowerPCCPU *cpu_,
.err = NULL,
};
run_on_cpu(cs, do_set_compat, &s);
run_on_cpu(cs, do_set_compat, RUN_ON_CPU_HOST_PTR(&s));
if (s.err) {
error_report_err(s.err);

View File

@ -316,6 +316,7 @@ static inline void tb_set_jmp_target(TranslationBlock *tb,
#endif
/* Called with tb_lock held. */
static inline void tb_add_jump(TranslationBlock *tb, int n,
TranslationBlock *tb_next)
{
@ -369,6 +370,7 @@ void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
#if defined(CONFIG_USER_ONLY)
void mmap_lock(void);
void mmap_unlock(void);
bool have_mmap_lock(void);
static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
{

View File

@ -231,7 +231,25 @@ struct kvm_run;
#define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
/* work queue */
typedef void (*run_on_cpu_func)(CPUState *cpu, void *data);
/* The union type allows passing of 64 bit target pointers on 32 bit
* hosts in a single parameter
*/
typedef union {
int host_int;
unsigned long host_ulong;
void *host_ptr;
vaddr target_ptr;
} run_on_cpu_data;
#define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
#define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
#define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
#define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
#define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
struct qemu_work_item;
/**
@ -319,7 +337,10 @@ struct CPUState {
MemoryRegion *memory;
void *env_ptr; /* CPUArchState */
/* Writes protected by tb_lock, reads not thread-safe */
struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
struct GDBRegisterState *gdb_regs;
int gdb_num_regs;
int gdb_num_g_regs;
@ -634,7 +655,7 @@ bool cpu_is_stopped(CPUState *cpu);
*
* Used internally in the implementation of run_on_cpu.
*/
void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data,
void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
QemuMutex *mutex);
/**
@ -645,7 +666,7 @@ void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data,
*
* Schedules the function @func for execution on the vCPU @cpu.
*/
void run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
/**
* async_run_on_cpu:
@ -655,7 +676,7 @@ void run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
*
* Schedules the function @func for execution on the vCPU @cpu asynchronously.
*/
void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
/**
* async_safe_run_on_cpu:
@ -669,7 +690,7 @@ void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
* Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
* BQL.
*/
void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data);
void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
/**
* qemu_get_cpu:

View File

@ -1856,7 +1856,7 @@ void kvm_flush_coalesced_mmio_buffer(void)
s->coalesced_flush_in_progress = false;
}
static void do_kvm_cpu_synchronize_state(CPUState *cpu, void *arg)
static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
{
if (!cpu->kvm_vcpu_dirty) {
kvm_arch_get_registers(cpu);
@ -1867,11 +1867,11 @@ static void do_kvm_cpu_synchronize_state(CPUState *cpu, void *arg)
void kvm_cpu_synchronize_state(CPUState *cpu)
{
if (!cpu->kvm_vcpu_dirty) {
run_on_cpu(cpu, do_kvm_cpu_synchronize_state, NULL);
run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
}
}
static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, void *arg)
static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
{
kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
cpu->kvm_vcpu_dirty = false;
@ -1879,10 +1879,10 @@ static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, void *arg)
void kvm_cpu_synchronize_post_reset(CPUState *cpu)
{
run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, NULL);
run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
}
static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, void *arg)
static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
{
kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
cpu->kvm_vcpu_dirty = false;
@ -1890,7 +1890,7 @@ static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, void *arg)
void kvm_cpu_synchronize_post_init(CPUState *cpu)
{
run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, NULL);
run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
}
int kvm_cpu_exec(CPUState *cpu)
@ -2218,9 +2218,10 @@ struct kvm_set_guest_debug_data {
int err;
};
static void kvm_invoke_set_guest_debug(CPUState *cpu, void *data)
static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
{
struct kvm_set_guest_debug_data *dbg_data = data;
struct kvm_set_guest_debug_data *dbg_data =
(struct kvm_set_guest_debug_data *) data.host_ptr;
dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
&dbg_data->dbg);
@ -2237,7 +2238,8 @@ int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
}
kvm_arch_update_guest_debug(cpu, &data.dbg);
run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
run_on_cpu(cpu, kvm_invoke_set_guest_debug,
RUN_ON_CPU_HOST_PTR(&data));
return data.err;
}

View File

@ -1842,6 +1842,8 @@ static void load_elf_image(const char *image_name, int image_fd,
info->pt_dynamic_addr = 0;
#endif
mmap_lock();
/* Find the maximum size of the image and allocate an appropriate
amount of memory to handle that. */
loaddr = -1, hiaddr = 0;
@ -2002,6 +2004,8 @@ static void load_elf_image(const char *image_name, int image_fd,
load_symbols(ehdr, image_fd, load_bias);
}
mmap_unlock();
close(image_fd);
return;

View File

@ -41,6 +41,11 @@ void mmap_unlock(void)
}
}
bool have_mmap_lock(void)
{
return mmap_lock_count > 0 ? true : false;
}
/* Grab lock to make sure things are in a consistent state after fork(). */
void mmap_fork_start(void)
{

View File

@ -9,4 +9,4 @@ obj-y += neon_helper.o iwmmxt_helper.o
obj-y += gdbstub.o
obj-$(TARGET_AARCH64) += cpu64.o translate-a64.o helper-a64.o gdbstub64.o
obj-y += crypto_helper.o
obj-y += arm-powerctl.o
obj-$(CONFIG_SOFTMMU) += arm-powerctl.o

View File

@ -166,6 +166,8 @@ int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
/* Start the new CPU at the requested address */
cpu_set_pc(target_cpu_state, entry);
qemu_cpu_kick(target_cpu_state);
/* We are good to go */
return QEMU_ARM_POWERCTL_RET_SUCCESS;
}

View File

@ -1121,9 +1121,9 @@ typedef struct MCEInjectionParams {
int flags;
} MCEInjectionParams;
static void do_inject_x86_mce(CPUState *cs, void *data)
static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
{
MCEInjectionParams *params = data;
MCEInjectionParams *params = data.host_ptr;
X86CPU *cpu = X86_CPU(cs);
CPUX86State *cenv = &cpu->env;
uint64_t *banks = cenv->mce_banks + 4 * params->bank;
@ -1230,7 +1230,7 @@ void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
return;
}
run_on_cpu(cs, do_inject_x86_mce, &params);
run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
if (flags & MCE_INJECT_BROADCAST) {
CPUState *other_cs;
@ -1243,7 +1243,7 @@ void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
if (other_cs == cs) {
continue;
}
run_on_cpu(other_cs, do_inject_x86_mce, &params);
run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
}
}
}

View File

@ -183,7 +183,7 @@ static int kvm_get_tsc(CPUState *cs)
return 0;
}
static inline void do_kvm_synchronize_tsc(CPUState *cpu, void *arg)
static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
{
kvm_get_tsc(cpu);
}
@ -194,7 +194,7 @@ void kvm_synchronize_all_tsc(void)
if (kvm_enabled()) {
CPU_FOREACH(cpu) {
run_on_cpu(cpu, do_kvm_synchronize_tsc, NULL);
run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
}
}
}

View File

@ -164,7 +164,7 @@ static void s390_cpu_machine_reset_cb(void *opaque)
{
S390CPU *cpu = opaque;
run_on_cpu(CPU(cpu), s390_do_cpu_full_reset, NULL);
run_on_cpu(CPU(cpu), s390_do_cpu_full_reset, RUN_ON_CPU_NULL);
}
#endif
@ -220,7 +220,7 @@ static void s390_cpu_realizefn(DeviceState *dev, Error **errp)
s390_cpu_gdb_init(cs);
qemu_init_vcpu(cs);
#if !defined(CONFIG_USER_ONLY)
run_on_cpu(cs, s390_do_cpu_full_reset, NULL);
run_on_cpu(cs, s390_do_cpu_full_reset, RUN_ON_CPU_NULL);
#else
cpu_reset(cs);
#endif

View File

@ -502,13 +502,13 @@ static inline hwaddr decode_basedisp_s(CPUS390XState *env, uint32_t ipb,
#define decode_basedisp_rs decode_basedisp_s
/* helper functions for run_on_cpu() */
static inline void s390_do_cpu_reset(CPUState *cs, void *arg)
static inline void s390_do_cpu_reset(CPUState *cs, run_on_cpu_data arg)
{
S390CPUClass *scc = S390_CPU_GET_CLASS(cs);
scc->cpu_reset(cs);
}
static inline void s390_do_cpu_full_reset(CPUState *cs, void *arg)
static inline void s390_do_cpu_full_reset(CPUState *cs, run_on_cpu_data arg)
{
cpu_reset(cs);
}

View File

@ -1607,7 +1607,7 @@ int kvm_s390_cpu_restart(S390CPU *cpu)
{
SigpInfo si = {};
run_on_cpu(CPU(cpu), sigp_restart, &si);
run_on_cpu(CPU(cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
return 0;
}
@ -1683,31 +1683,31 @@ static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order,
switch (order) {
case SIGP_START:
run_on_cpu(CPU(dst_cpu), sigp_start, &si);
run_on_cpu(CPU(dst_cpu), sigp_start, RUN_ON_CPU_HOST_PTR(&si));
break;
case SIGP_STOP:
run_on_cpu(CPU(dst_cpu), sigp_stop, &si);
run_on_cpu(CPU(dst_cpu), sigp_stop, RUN_ON_CPU_HOST_PTR(&si));
break;
case SIGP_RESTART:
run_on_cpu(CPU(dst_cpu), sigp_restart, &si);
run_on_cpu(CPU(dst_cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
break;
case SIGP_STOP_STORE_STATUS:
run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, &si);
run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, RUN_ON_CPU_HOST_PTR(&si));
break;
case SIGP_STORE_STATUS_ADDR:
run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, &si);
run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, RUN_ON_CPU_HOST_PTR(&si));
break;
case SIGP_STORE_ADTL_STATUS:
run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, &si);
run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, RUN_ON_CPU_HOST_PTR(&si));
break;
case SIGP_SET_PREFIX:
run_on_cpu(CPU(dst_cpu), sigp_set_prefix, &si);
run_on_cpu(CPU(dst_cpu), sigp_set_prefix, RUN_ON_CPU_HOST_PTR(&si));
break;
case SIGP_INITIAL_CPU_RESET:
run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, &si);
run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
break;
case SIGP_CPU_RESET:
run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, &si);
run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
break;
default:
DPRINTF("KVM: unknown SIGP: 0x%x\n", order);

View File

@ -126,7 +126,7 @@ static int modified_clear_reset(S390CPU *cpu)
pause_all_vcpus();
cpu_synchronize_all_states();
CPU_FOREACH(t) {
run_on_cpu(t, s390_do_cpu_full_reset, NULL);
run_on_cpu(t, s390_do_cpu_full_reset, RUN_ON_CPU_NULL);
}
s390_cmma_reset();
subsystem_reset();
@ -145,7 +145,7 @@ static int load_normal_reset(S390CPU *cpu)
pause_all_vcpus();
cpu_synchronize_all_states();
CPU_FOREACH(t) {
run_on_cpu(t, s390_do_cpu_reset, NULL);
run_on_cpu(t, s390_do_cpu_reset, RUN_ON_CPU_NULL);
}
s390_cmma_reset();
subsystem_reset();

View File

@ -726,6 +726,7 @@ static inline bool tcg_op_buf_full(void)
/* pool based memory allocation */
/* tb_lock must be held for tcg_malloc_internal. */
void *tcg_malloc_internal(TCGContext *s, int size);
void tcg_pool_reset(TCGContext *s);
@ -733,6 +734,7 @@ void tb_lock(void);
void tb_unlock(void);
void tb_lock_reset(void);
/* Called with tb_lock held. */
static inline void *tcg_malloc(int size)
{
TCGContext *s = &tcg_ctx;

View File

@ -31,6 +31,7 @@
#include "tcg.h"
#if defined(CONFIG_USER_ONLY)
#include "qemu.h"
#include "exec/exec-all.h"
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
#include <sys/param.h>
#if __FreeBSD_version >= 700104
@ -56,16 +57,39 @@
#include "qemu/timer.h"
#include "exec/log.h"
//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
/* #define DEBUG_TB_INVALIDATE */
/* #define DEBUG_TB_FLUSH */
/* #define DEBUG_LOCKING */
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK
/* #define DEBUG_TB_CHECK */
#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation. */
#undef DEBUG_TB_CHECK
#endif
/* Access to the various translations structures need to be serialised via locks
* for consistency. This is automatic for SoftMMU based system
* emulation due to its single threaded nature. In user-mode emulation
* access to the memory related structures are protected with the
* mmap_lock.
*/
#ifdef DEBUG_LOCKING
#define DEBUG_MEM_LOCKS 1
#else
#define DEBUG_MEM_LOCKS 0
#endif
#ifdef CONFIG_SOFTMMU
#define assert_memory_lock() do { /* nothing */ } while (0)
#else
#define assert_memory_lock() do { \
if (DEBUG_MEM_LOCKS) { \
g_assert(have_mmap_lock()); \
} \
} while (0)
#endif
#define SMC_BITMAP_USE_THRESHOLD 10
typedef struct PageDesc {
@ -173,6 +197,23 @@ void tb_lock_reset(void)
#endif
}
#ifdef DEBUG_LOCKING
#define DEBUG_TB_LOCKS 1
#else
#define DEBUG_TB_LOCKS 0
#endif
#ifdef CONFIG_SOFTMMU
#define assert_tb_lock() do { /* nothing */ } while (0)
#else
#define assert_tb_lock() do { \
if (DEBUG_TB_LOCKS) { \
g_assert(have_tb_lock); \
} \
} while (0)
#endif
static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
void cpu_gen_init(void)
@ -267,7 +308,9 @@ static int encode_search(TranslationBlock *tb, uint8_t *block)
return p - block;
}
/* The cpu state corresponding to 'searched_pc' is restored. */
/* The cpu state corresponding to 'searched_pc' is restored.
* Called with tb_lock held.
*/
static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
uintptr_t searched_pc)
{
@ -320,7 +363,9 @@ static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
{
TranslationBlock *tb;
bool r = false;
tb_lock();
tb = tb_find_pc(retaddr);
if (tb) {
cpu_restore_state_from_tb(cpu, tb, retaddr);
@ -329,9 +374,11 @@ bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
tb_phys_invalidate(tb, -1);
tb_free(tb);
}
return true;
r = true;
}
return false;
tb_unlock();
return r;
}
void page_size_init(void)
@ -421,6 +468,7 @@ static void page_init(void)
}
/* If alloc=1:
* Called with tb_lock held for system emulation.
* Called with mmap_lock held for user-mode emulation.
*/
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
@ -429,6 +477,10 @@ static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
void **lp;
int i;
if (alloc) {
assert_memory_lock();
}
/* Level 1. Always allocated. */
lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
@ -785,12 +837,18 @@ bool tcg_enabled(void)
return tcg_ctx.code_gen_buffer != NULL;
}
/* Allocate a new translation block. Flush the translation buffer if
too many translation blocks or too much generated code. */
/*
* Allocate a new translation block. Flush the translation buffer if
* too many translation blocks or too much generated code.
*
* Called with tb_lock held.
*/
static TranslationBlock *tb_alloc(target_ulong pc)
{
TranslationBlock *tb;
assert_tb_lock();
if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
return NULL;
}
@ -801,8 +859,11 @@ static TranslationBlock *tb_alloc(target_ulong pc)
return tb;
}
/* Called with tb_lock held. */
void tb_free(TranslationBlock *tb)
{
assert_tb_lock();
/* In practice this is mostly used for single use temporary TB
Ignore the hard cases and just back up if this TB happens to
be the last one generated. */
@ -856,20 +917,18 @@ static void page_flush_tb(void)
}
/* flush all the translation blocks */
static void do_tb_flush(CPUState *cpu, void *data)
static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
{
unsigned tb_flush_req = (unsigned) (uintptr_t) data;
tb_lock();
/* If it's already been done on request of another CPU,
/* If it is already been done on request of another CPU,
* just retry.
*/
if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_req) {
if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_count.host_int) {
goto done;
}
#if defined(DEBUG_FLUSH)
#if defined(DEBUG_TB_FLUSH)
printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
(unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
@ -906,8 +965,9 @@ done:
void tb_flush(CPUState *cpu)
{
if (tcg_enabled()) {
uintptr_t tb_flush_req = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
async_safe_run_on_cpu(cpu, do_tb_flush, (void *) tb_flush_req);
unsigned tb_flush_count = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
async_safe_run_on_cpu(cpu, do_tb_flush,
RUN_ON_CPU_HOST_INT(tb_flush_count));
}
}
@ -925,6 +985,10 @@ do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
}
}
/* verify that all the pages have correct rights for code
*
* Called with tb_lock held.
*/
static void tb_invalidate_check(target_ulong address)
{
address &= TARGET_PAGE_MASK;
@ -1029,7 +1093,10 @@ static inline void tb_jmp_unlink(TranslationBlock *tb)
}
}
/* invalidate one TB */
/* invalidate one TB
*
* Called with tb_lock held.
*/
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
CPUState *cpu;
@ -1037,6 +1104,8 @@ void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
uint32_t h;
tb_page_addr_t phys_pc;
assert_tb_lock();
atomic_set(&tb->invalid, true);
/* remove the TB from the hash list */
@ -1094,7 +1163,7 @@ static void build_page_bitmap(PageDesc *p)
tb_end = tb_start + tb->size;
if (tb_end > TARGET_PAGE_SIZE) {
tb_end = TARGET_PAGE_SIZE;
}
}
} else {
tb_start = 0;
tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
@ -1117,6 +1186,8 @@ static inline void tb_alloc_page(TranslationBlock *tb,
bool page_already_protected;
#endif
assert_memory_lock();
tb->page_addr[n] = page_addr;
p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
tb->page_next[n] = p->first_tb;
@ -1173,6 +1244,8 @@ static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
{
uint32_t h;
assert_memory_lock();
/* add in the page list */
tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
if (phys_page2 != -1) {
@ -1204,6 +1277,7 @@ TranslationBlock *tb_gen_code(CPUState *cpu,
#ifdef CONFIG_PROFILER
int64_t ti;
#endif
assert_memory_lock();
phys_pc = get_page_addr_code(env, pc);
if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
@ -1328,9 +1402,10 @@ TranslationBlock *tb_gen_code(CPUState *cpu,
* access: the virtual CPU will exit the current TB if code is modified inside
* this TB.
*
* Called with mmap_lock held for user-mode emulation
* Called with mmap_lock held for user-mode emulation, grabs tb_lock
* Called with tb_lock held for system-mode emulation
*/
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end)
{
while (start < end) {
tb_invalidate_phys_page_range(start, end, 0);
@ -1339,6 +1414,21 @@ void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
}
}
#ifdef CONFIG_SOFTMMU
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
{
assert_tb_lock();
tb_invalidate_phys_range_1(start, end);
}
#else
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
{
assert_memory_lock();
tb_lock();
tb_invalidate_phys_range_1(start, end);
tb_unlock();
}
#endif
/*
* Invalidate all TBs which intersect with the target physical address range
* [start;end[. NOTE: start and end must refer to the *same* physical page.
@ -1346,7 +1436,8 @@ void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
* access: the virtual CPU will exit the current TB if code is modified inside
* this TB.
*
* Called with mmap_lock held for user-mode emulation
* Called with tb_lock/mmap_lock held for user-mode emulation
* Called with tb_lock held for system-mode emulation
*/
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
int is_cpu_write_access)
@ -1368,6 +1459,9 @@ void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
uint32_t current_flags = 0;
#endif /* TARGET_HAS_PRECISE_SMC */
assert_memory_lock();
assert_tb_lock();
p = page_find(start >> TARGET_PAGE_BITS);
if (!p) {
return;
@ -1443,7 +1537,10 @@ void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
}
#ifdef CONFIG_SOFTMMU
/* len must be <= 8 and start must be a multiple of len */
/* len must be <= 8 and start must be a multiple of len.
* Called via softmmu_template.h when code areas are written to with
* tb_lock held.
*/
void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
{
PageDesc *p;
@ -1457,13 +1554,17 @@ void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
(intptr_t)cpu_single_env->segs[R_CS].base);
}
#endif
assert_memory_lock();
p = page_find(start >> TARGET_PAGE_BITS);
if (!p) {
return;
}
if (!p->code_bitmap &&
++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
/* build code bitmap */
/* build code bitmap. FIXME: writes should be protected by
* tb_lock, reads by tb_lock or RCU.
*/
build_page_bitmap(p);
}
if (p->code_bitmap) {
@ -1502,11 +1603,15 @@ static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
uint32_t current_flags = 0;
#endif
assert_memory_lock();
addr &= TARGET_PAGE_MASK;
p = page_find(addr >> TARGET_PAGE_BITS);
if (!p) {
return false;
}
tb_lock();
tb = p->first_tb;
#ifdef TARGET_HAS_PRECISE_SMC
if (tb && pc != 0) {
@ -1544,9 +1649,13 @@ static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
modifying the memory. It will ensure that it cannot modify
itself */
tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
/* tb_lock will be reset after cpu_loop_exit_noexc longjmps
* back into the cpu_exec loop. */
return true;
}
#endif
tb_unlock();
return false;
}
#endif
@ -1599,11 +1708,14 @@ void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
return;
}
ram_addr = memory_region_get_ram_addr(mr) + addr;
tb_lock();
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
tb_unlock();
rcu_read_unlock();
}
#endif /* !defined(CONFIG_USER_ONLY) */
/* Called with tb_lock held. */
void tb_check_watchpoint(CPUState *cpu)
{
TranslationBlock *tb;
@ -1640,6 +1752,7 @@ void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
target_ulong pc, cs_base;
uint32_t flags;
tb_lock();
tb = tb_find_pc(retaddr);
if (!tb) {
cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
@ -1691,11 +1804,16 @@ void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
/* FIXME: In theory this could raise an exception. In practice
we have already translated the block once so it's probably ok. */
tb_gen_code(cpu, pc, cs_base, flags, cflags);
/* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
the first in the TB) then we end up generating a whole new TB and
repeating the fault, which is horribly inefficient.
Better would be to execute just this insn uncached, or generate a
second new TB. */
* the first in the TB) then we end up generating a whole new TB and
* repeating the fault, which is horribly inefficient.
* Better would be to execute just this insn uncached, or generate a
* second new TB.
*
* cpu_loop_exit_noexc will longjmp back to cpu_exec where the
* tb_lock gets reset.
*/
cpu_loop_exit_noexc(cpu);
}
@ -1759,6 +1877,8 @@ void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
TranslationBlock *tb;
struct qht_stats hst;
tb_lock();
target_code_size = 0;
max_target_code_size = 0;
cross_page = 0;
@ -1820,6 +1940,8 @@ void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
tcg_ctx.tb_ctx.tb_phys_invalidate_count);
cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
tcg_dump_info(f, cpu_fprintf);
tb_unlock();
}
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
@ -1972,6 +2094,7 @@ void page_set_flags(target_ulong start, target_ulong end, int flags)
assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
#endif
assert(start < end);
assert_memory_lock();
start = start & TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);