2014-04-15 22:18:37 +04:00
|
|
|
/*
|
|
|
|
* QEMU ARM CPU -- internal functions and types
|
|
|
|
*
|
|
|
|
* Copyright (c) 2014 Linaro Ltd
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version 2
|
|
|
|
* of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, see
|
|
|
|
* <http://www.gnu.org/licenses/gpl-2.0.html>
|
|
|
|
*
|
|
|
|
* This header defines functions, types, etc which need to be shared
|
2016-10-11 09:56:52 +03:00
|
|
|
* between different source files within target/arm/ but which are
|
2014-04-15 22:18:37 +04:00
|
|
|
* private to it and not required by the rest of QEMU.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef TARGET_ARM_INTERNALS_H
|
|
|
|
#define TARGET_ARM_INTERNALS_H
|
|
|
|
|
2017-01-27 18:20:21 +03:00
|
|
|
#include "hw/registerfields.h"
|
2021-04-16 21:31:02 +03:00
|
|
|
#include "tcg/tcg-gvec-desc.h"
|
2021-02-12 21:48:56 +03:00
|
|
|
#include "syndrome.h"
|
2017-01-27 18:20:21 +03:00
|
|
|
|
2015-11-03 16:49:41 +03:00
|
|
|
/* register banks for CPU modes */
|
|
|
|
#define BANK_USRSYS 0
|
|
|
|
#define BANK_SVC 1
|
|
|
|
#define BANK_ABT 2
|
|
|
|
#define BANK_UND 3
|
|
|
|
#define BANK_IRQ 4
|
|
|
|
#define BANK_FIQ 5
|
|
|
|
#define BANK_HYP 6
|
|
|
|
#define BANK_MON 7
|
|
|
|
|
2014-04-15 22:18:38 +04:00
|
|
|
static inline bool excp_is_internal(int excp)
|
|
|
|
{
|
|
|
|
/* Return true if this exception number represents a QEMU-internal
|
|
|
|
* exception that will not be passed to the guest.
|
|
|
|
*/
|
|
|
|
return excp == EXCP_INTERRUPT
|
|
|
|
|| excp == EXCP_HLT
|
|
|
|
|| excp == EXCP_DEBUG
|
|
|
|
|| excp == EXCP_HALTED
|
|
|
|
|| excp == EXCP_EXCEPTION_EXIT
|
|
|
|
|| excp == EXCP_KERNEL_TRAP
|
2016-06-27 22:02:16 +03:00
|
|
|
|| excp == EXCP_SEMIHOST;
|
2014-04-15 22:18:38 +04:00
|
|
|
}
|
|
|
|
|
2014-04-15 22:18:37 +04:00
|
|
|
/* Scale factor for generic timers, ie number of ns per tick.
|
|
|
|
* This gives a 62.5MHz timer.
|
|
|
|
*/
|
|
|
|
#define GTIMER_SCALE 16
|
|
|
|
|
2017-01-27 18:20:21 +03:00
|
|
|
/* Bit definitions for the v7M CONTROL register */
|
|
|
|
FIELD(V7M_CONTROL, NPRIV, 0, 1)
|
|
|
|
FIELD(V7M_CONTROL, SPSEL, 1, 1)
|
|
|
|
FIELD(V7M_CONTROL, FPCA, 2, 1)
|
2017-10-09 16:48:33 +03:00
|
|
|
FIELD(V7M_CONTROL, SFPA, 3, 1)
|
2017-01-27 18:20:21 +03:00
|
|
|
|
2017-09-14 20:43:17 +03:00
|
|
|
/* Bit definitions for v7M exception return payload */
|
|
|
|
FIELD(V7M_EXCRET, ES, 0, 1)
|
|
|
|
FIELD(V7M_EXCRET, RES0, 1, 1)
|
|
|
|
FIELD(V7M_EXCRET, SPSEL, 2, 1)
|
|
|
|
FIELD(V7M_EXCRET, MODE, 3, 1)
|
|
|
|
FIELD(V7M_EXCRET, FTYPE, 4, 1)
|
|
|
|
FIELD(V7M_EXCRET, DCRS, 5, 1)
|
|
|
|
FIELD(V7M_EXCRET, S, 6, 1)
|
|
|
|
FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
|
|
|
|
|
2017-10-09 16:48:34 +03:00
|
|
|
/* Minimum value which is a magic number for exception return */
|
|
|
|
#define EXC_RETURN_MIN_MAGIC 0xff000000
|
|
|
|
/* Minimum number which is a magic number for function or exception return
|
|
|
|
* when using v8M security extension
|
|
|
|
*/
|
|
|
|
#define FNC_RETURN_MIN_MAGIC 0xfefffffe
|
|
|
|
|
2022-04-27 08:19:26 +03:00
|
|
|
/* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
|
|
|
|
FIELD(DBGWCR, E, 0, 1)
|
|
|
|
FIELD(DBGWCR, PAC, 1, 2)
|
|
|
|
FIELD(DBGWCR, LSC, 3, 2)
|
|
|
|
FIELD(DBGWCR, BAS, 5, 8)
|
|
|
|
FIELD(DBGWCR, HMC, 13, 1)
|
|
|
|
FIELD(DBGWCR, SSC, 14, 2)
|
|
|
|
FIELD(DBGWCR, LBN, 16, 4)
|
|
|
|
FIELD(DBGWCR, WT, 20, 1)
|
|
|
|
FIELD(DBGWCR, MASK, 24, 5)
|
|
|
|
FIELD(DBGWCR, SSCE, 29, 1)
|
|
|
|
|
2017-10-06 18:46:49 +03:00
|
|
|
/* We use a few fake FSR values for internal purposes in M profile.
|
|
|
|
* M profile cores don't have A/R format FSRs, but currently our
|
|
|
|
* get_phys_addr() code assumes A/R profile and reports failures via
|
|
|
|
* an A/R format FSR value. We then translate that into the proper
|
|
|
|
* M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
|
|
|
|
* Mostly the FSR values we use for this are those defined for v7PMSA,
|
|
|
|
* since we share some of that codepath. A few kinds of fault are
|
|
|
|
* only for M profile and have no A/R equivalent, though, so we have
|
|
|
|
* to pick a value from the reserved range (which we never otherwise
|
|
|
|
* generate) to use for these.
|
|
|
|
* These values will never be visible to the guest.
|
|
|
|
*/
|
|
|
|
#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
|
|
|
|
#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
|
|
|
|
|
2018-10-08 16:55:04 +03:00
|
|
|
/**
|
|
|
|
* raise_exception: Raise the specified exception.
|
|
|
|
* Raise a guest exception with the specified value, syndrome register
|
|
|
|
* and target exception level. This should be called from helper functions,
|
|
|
|
* and never returns because we will longjump back up to the CPU main loop.
|
|
|
|
*/
|
2022-04-20 16:26:02 +03:00
|
|
|
G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
|
|
|
|
uint32_t syndrome, uint32_t target_el);
|
2018-10-08 16:55:04 +03:00
|
|
|
|
2019-01-21 13:23:11 +03:00
|
|
|
/*
|
|
|
|
* Similarly, but also use unwinding to restore cpu state.
|
|
|
|
*/
|
2022-04-20 16:26:02 +03:00
|
|
|
G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
|
2019-01-21 13:23:11 +03:00
|
|
|
uint32_t syndrome, uint32_t target_el,
|
|
|
|
uintptr_t ra);
|
|
|
|
|
2014-05-27 20:09:52 +04:00
|
|
|
/*
|
|
|
|
* For AArch64, map a given EL to an index in the banked_spsr array.
|
2015-04-01 19:57:29 +03:00
|
|
|
* Note that this mapping and the AArch32 mapping defined in bank_number()
|
|
|
|
* must agree such that the AArch64<->AArch32 SPSRs have the architecturally
|
|
|
|
* mandated mapping between each other.
|
2014-05-27 20:09:52 +04:00
|
|
|
*/
|
|
|
|
static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
|
|
|
|
{
|
|
|
|
static const unsigned int map[4] = {
|
2015-11-03 16:49:41 +03:00
|
|
|
[1] = BANK_SVC, /* EL1. */
|
|
|
|
[2] = BANK_HYP, /* EL2. */
|
|
|
|
[3] = BANK_MON, /* EL3. */
|
2014-05-27 20:09:52 +04:00
|
|
|
};
|
|
|
|
assert(el >= 1 && el <= 3);
|
|
|
|
return map[el];
|
|
|
|
}
|
|
|
|
|
2016-02-18 17:16:16 +03:00
|
|
|
/* Map CPU modes onto saved register banks. */
|
|
|
|
static inline int bank_number(int mode)
|
|
|
|
{
|
|
|
|
switch (mode) {
|
|
|
|
case ARM_CPU_MODE_USR:
|
|
|
|
case ARM_CPU_MODE_SYS:
|
|
|
|
return BANK_USRSYS;
|
|
|
|
case ARM_CPU_MODE_SVC:
|
|
|
|
return BANK_SVC;
|
|
|
|
case ARM_CPU_MODE_ABT:
|
|
|
|
return BANK_ABT;
|
|
|
|
case ARM_CPU_MODE_UND:
|
|
|
|
return BANK_UND;
|
|
|
|
case ARM_CPU_MODE_IRQ:
|
|
|
|
return BANK_IRQ;
|
|
|
|
case ARM_CPU_MODE_FIQ:
|
|
|
|
return BANK_FIQ;
|
|
|
|
case ARM_CPU_MODE_HYP:
|
|
|
|
return BANK_HYP;
|
|
|
|
case ARM_CPU_MODE_MON:
|
|
|
|
return BANK_MON;
|
|
|
|
}
|
|
|
|
g_assert_not_reached();
|
|
|
|
}
|
|
|
|
|
2018-11-13 13:47:59 +03:00
|
|
|
/**
|
|
|
|
* r14_bank_number: Map CPU mode onto register bank for r14
|
|
|
|
*
|
|
|
|
* Given an AArch32 CPU mode, return the index into the saved register
|
|
|
|
* banks to use for the R14 (LR) in that mode. This is the same as
|
|
|
|
* bank_number(), except for the special case of Hyp mode, where
|
|
|
|
* R14 is shared with USR and SYS, unlike its R13 and SPSR.
|
|
|
|
* This should be used as the index into env->banked_r14[], and
|
|
|
|
* bank_number() used for the index into env->banked_r13[] and
|
|
|
|
* env->banked_spsr[].
|
|
|
|
*/
|
|
|
|
static inline int r14_bank_number(int mode)
|
|
|
|
{
|
|
|
|
return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
|
|
|
|
}
|
|
|
|
|
2014-04-15 22:18:37 +04:00
|
|
|
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
|
|
|
|
void arm_translate_init(void);
|
|
|
|
|
2022-11-29 23:41:46 +03:00
|
|
|
void arm_restore_state_to_opc(CPUState *cs,
|
|
|
|
const TranslationBlock *tb,
|
|
|
|
const uint64_t *data);
|
|
|
|
|
2021-02-04 19:39:23 +03:00
|
|
|
#ifdef CONFIG_TCG
|
2021-02-13 16:03:12 +03:00
|
|
|
void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
|
2021-02-04 19:39:23 +03:00
|
|
|
#endif /* CONFIG_TCG */
|
|
|
|
|
2023-02-25 23:48:08 +03:00
|
|
|
typedef enum ARMFPRounding {
|
2014-04-15 22:18:37 +04:00
|
|
|
FPROUNDING_TIEEVEN,
|
|
|
|
FPROUNDING_POSINF,
|
|
|
|
FPROUNDING_NEGINF,
|
|
|
|
FPROUNDING_ZERO,
|
|
|
|
FPROUNDING_TIEAWAY,
|
|
|
|
FPROUNDING_ODD
|
2023-02-25 23:48:08 +03:00
|
|
|
} ARMFPRounding;
|
2014-04-15 22:18:37 +04:00
|
|
|
|
2023-02-25 23:48:08 +03:00
|
|
|
extern const FloatRoundMode arm_rmode_to_sf_map[6];
|
|
|
|
|
|
|
|
static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
|
|
|
|
{
|
|
|
|
assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
|
|
|
|
return arm_rmode_to_sf_map[rmode];
|
|
|
|
}
|
2014-04-15 22:18:37 +04:00
|
|
|
|
2014-08-04 17:41:54 +04:00
|
|
|
static inline void aarch64_save_sp(CPUARMState *env, int el)
|
|
|
|
{
|
|
|
|
if (env->pstate & PSTATE_SP) {
|
|
|
|
env->sp_el[el] = env->xregs[31];
|
|
|
|
} else {
|
|
|
|
env->sp_el[0] = env->xregs[31];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void aarch64_restore_sp(CPUARMState *env, int el)
|
|
|
|
{
|
|
|
|
if (env->pstate & PSTATE_SP) {
|
|
|
|
env->xregs[31] = env->sp_el[el];
|
|
|
|
} else {
|
|
|
|
env->xregs[31] = env->sp_el[0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-15 22:18:43 +04:00
|
|
|
static inline void update_spsel(CPUARMState *env, uint32_t imm)
|
|
|
|
{
|
2014-10-24 15:19:14 +04:00
|
|
|
unsigned int cur_el = arm_current_el(env);
|
2014-04-15 22:18:43 +04:00
|
|
|
/* Update PSTATE SPSel bit; this requires us to update the
|
|
|
|
* working stack pointer in xregs[31].
|
|
|
|
*/
|
|
|
|
if (!((imm ^ env->pstate) & PSTATE_SP)) {
|
|
|
|
return;
|
|
|
|
}
|
2014-08-04 17:41:54 +04:00
|
|
|
aarch64_save_sp(env, cur_el);
|
2014-04-15 22:18:43 +04:00
|
|
|
env->pstate = deposit32(env->pstate, 0, 1, imm);
|
|
|
|
|
2014-05-27 20:09:54 +04:00
|
|
|
/* We rely on illegal updates to SPsel from EL0 to get trapped
|
|
|
|
* at translation time.
|
2014-04-15 22:18:43 +04:00
|
|
|
*/
|
2014-05-27 20:09:54 +04:00
|
|
|
assert(cur_el >= 1 && cur_el <= 3);
|
2014-08-04 17:41:54 +04:00
|
|
|
aarch64_restore_sp(env, cur_el);
|
2014-04-15 22:18:43 +04:00
|
|
|
}
|
|
|
|
|
2015-10-26 16:02:00 +03:00
|
|
|
/*
|
|
|
|
* arm_pamax
|
|
|
|
* @cpu: ARMCPU
|
|
|
|
*
|
|
|
|
* Returns the implementation defined bit-width of physical addresses.
|
|
|
|
* The ARMv8 reference manuals refer to this as PAMax().
|
|
|
|
*/
|
2022-03-02 00:59:44 +03:00
|
|
|
unsigned int arm_pamax(ARMCPU *cpu);
|
2015-10-26 16:02:00 +03:00
|
|
|
|
2014-09-12 17:06:49 +04:00
|
|
|
/* Return true if extended addresses are enabled.
|
|
|
|
* This is always the case if our translation regime is 64 bit,
|
|
|
|
* but depends on TTBCR.EAE for 32 bit.
|
|
|
|
*/
|
|
|
|
static inline bool extended_addresses_enabled(CPUARMState *env)
|
|
|
|
{
|
2022-07-14 16:23:02 +03:00
|
|
|
uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
|
2022-12-06 13:25:01 +03:00
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA) &&
|
|
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
|
|
return true;
|
|
|
|
}
|
2014-12-11 15:07:51 +03:00
|
|
|
return arm_el_is_aa64(env, 1) ||
|
2022-07-14 16:23:02 +03:00
|
|
|
(arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
|
2014-09-12 17:06:49 +04:00
|
|
|
}
|
|
|
|
|
2014-09-12 17:06:49 +04:00
|
|
|
/* Update a QEMU watchpoint based on the information the guest has set in the
|
|
|
|
* DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
|
|
|
|
*/
|
|
|
|
void hw_watchpoint_update(ARMCPU *cpu, int n);
|
|
|
|
/* Update the QEMU watchpoints for every guest watchpoint. This does a
|
|
|
|
* complete delete-and-reinstate of the QEMU watchpoint list and so is
|
|
|
|
* suitable for use after migration or on reset.
|
|
|
|
*/
|
|
|
|
void hw_watchpoint_update_all(ARMCPU *cpu);
|
2014-09-29 21:48:46 +04:00
|
|
|
/* Update a QEMU breakpoint based on the information the guest has set in the
|
|
|
|
* DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
|
|
|
|
*/
|
|
|
|
void hw_breakpoint_update(ARMCPU *cpu, int n);
|
|
|
|
/* Update the QEMU breakpoints for every guest breakpoint. This does a
|
|
|
|
* complete delete-and-reinstate of the QEMU breakpoint list and so is
|
|
|
|
* suitable for use after migration or on reset.
|
|
|
|
*/
|
|
|
|
void hw_breakpoint_update_all(ARMCPU *cpu);
|
2014-09-12 17:06:49 +04:00
|
|
|
|
2021-07-19 21:19:26 +03:00
|
|
|
/* Callback function for checking if a breakpoint should trigger. */
|
|
|
|
bool arm_debug_check_breakpoint(CPUState *cs);
|
|
|
|
|
2016-02-11 14:17:32 +03:00
|
|
|
/* Callback function for checking if a watchpoint should trigger. */
|
|
|
|
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
|
|
|
|
|
2017-02-07 21:29:59 +03:00
|
|
|
/* Adjust addresses (in BE32 mode) before testing against watchpoint
|
|
|
|
* addresses.
|
|
|
|
*/
|
|
|
|
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
|
|
|
|
|
2014-09-12 17:06:49 +04:00
|
|
|
/* Callback function for when a watchpoint or breakpoint triggers. */
|
|
|
|
void arm_debug_excp_handler(CPUState *cs);
|
|
|
|
|
2019-07-01 19:26:22 +03:00
|
|
|
#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
|
2014-10-24 15:19:13 +04:00
|
|
|
static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
2019-07-01 19:26:22 +03:00
|
|
|
static inline void arm_handle_psci_call(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
g_assert_not_reached();
|
|
|
|
}
|
2014-10-24 15:19:13 +04:00
|
|
|
#else
|
|
|
|
/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
|
|
|
|
bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
|
|
|
|
/* Actually handle a PSCI call */
|
|
|
|
void arm_handle_psci_call(ARMCPU *cpu);
|
|
|
|
#endif
|
|
|
|
|
2017-09-14 20:43:16 +03:00
|
|
|
/**
|
|
|
|
* arm_clear_exclusive: clear the exclusive monitor
|
|
|
|
* @env: CPU env
|
|
|
|
* Clear the CPU's exclusive monitor, like the guest CLREX instruction.
|
|
|
|
*/
|
|
|
|
static inline void arm_clear_exclusive(CPUARMState *env)
|
|
|
|
{
|
|
|
|
env->exclusive_addr = -1;
|
|
|
|
}
|
|
|
|
|
2017-12-13 20:59:24 +03:00
|
|
|
/**
|
|
|
|
* ARMFaultType: type of an ARM MMU fault
|
|
|
|
* This corresponds to the v8A pseudocode's Fault enumeration,
|
|
|
|
* with extensions for QEMU internal conditions.
|
|
|
|
*/
|
|
|
|
typedef enum ARMFaultType {
|
|
|
|
ARMFault_None,
|
|
|
|
ARMFault_AccessFlag,
|
|
|
|
ARMFault_Alignment,
|
|
|
|
ARMFault_Background,
|
|
|
|
ARMFault_Domain,
|
|
|
|
ARMFault_Permission,
|
|
|
|
ARMFault_Translation,
|
|
|
|
ARMFault_AddressSize,
|
|
|
|
ARMFault_SyncExternal,
|
|
|
|
ARMFault_SyncExternalOnWalk,
|
|
|
|
ARMFault_SyncParity,
|
|
|
|
ARMFault_SyncParityOnWalk,
|
|
|
|
ARMFault_AsyncParity,
|
|
|
|
ARMFault_AsyncExternal,
|
|
|
|
ARMFault_Debug,
|
|
|
|
ARMFault_TLBConflict,
|
2022-10-24 08:18:43 +03:00
|
|
|
ARMFault_UnsuppAtomicUpdate,
|
2017-12-13 20:59:24 +03:00
|
|
|
ARMFault_Lockdown,
|
|
|
|
ARMFault_Exclusive,
|
|
|
|
ARMFault_ICacheMaint,
|
|
|
|
ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
|
|
|
|
ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
|
2023-06-23 13:15:48 +03:00
|
|
|
ARMFault_GPCFOnWalk,
|
|
|
|
ARMFault_GPCFOnOutput,
|
2017-12-13 20:59:24 +03:00
|
|
|
} ARMFaultType;
|
|
|
|
|
2023-06-23 13:15:48 +03:00
|
|
|
typedef enum ARMGPCF {
|
|
|
|
GPCF_None,
|
|
|
|
GPCF_AddressSize,
|
|
|
|
GPCF_Walk,
|
|
|
|
GPCF_EABT,
|
|
|
|
GPCF_Fail,
|
|
|
|
} ARMGPCF;
|
|
|
|
|
2015-10-26 16:02:03 +03:00
|
|
|
/**
|
|
|
|
* ARMMMUFaultInfo: Information describing an ARM MMU Fault
|
2017-12-13 20:59:24 +03:00
|
|
|
* @type: Type of fault
|
2023-06-23 13:15:48 +03:00
|
|
|
* @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
|
2017-12-13 20:59:24 +03:00
|
|
|
* @level: Table walk level (for translation, access flag and permission faults)
|
|
|
|
* @domain: Domain of the fault address (for non-LPAE CPUs only)
|
2015-10-26 16:02:03 +03:00
|
|
|
* @s2addr: Address that caused a fault at stage 2
|
2023-06-23 13:15:48 +03:00
|
|
|
* @paddr: physical address that caused a fault for gpc
|
|
|
|
* @paddr_space: physical address space that caused a fault for gpc
|
2015-10-26 16:02:03 +03:00
|
|
|
* @stage2: True if we faulted at stage 2
|
|
|
|
* @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
|
2021-01-12 13:45:07 +03:00
|
|
|
* @s1ns: True if we faulted on a non-secure IPA while in secure state
|
2017-09-04 17:21:55 +03:00
|
|
|
* @ea: True if we should set the EA (external abort type) bit in syndrome
|
2015-10-26 16:02:03 +03:00
|
|
|
*/
|
|
|
|
typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
|
|
|
|
struct ARMMMUFaultInfo {
|
2017-12-13 20:59:24 +03:00
|
|
|
ARMFaultType type;
|
2023-06-23 13:15:48 +03:00
|
|
|
ARMGPCF gpcf;
|
2015-10-26 16:02:03 +03:00
|
|
|
target_ulong s2addr;
|
2023-06-23 13:15:48 +03:00
|
|
|
target_ulong paddr;
|
|
|
|
ARMSecuritySpace paddr_space;
|
2017-12-13 20:59:24 +03:00
|
|
|
int level;
|
|
|
|
int domain;
|
2015-10-26 16:02:03 +03:00
|
|
|
bool stage2;
|
|
|
|
bool s1ptw;
|
2021-01-12 13:45:07 +03:00
|
|
|
bool s1ns;
|
2017-09-04 17:21:55 +03:00
|
|
|
bool ea;
|
2015-10-26 16:02:03 +03:00
|
|
|
};
|
|
|
|
|
2017-12-13 20:59:24 +03:00
|
|
|
/**
|
|
|
|
* arm_fi_to_sfsc: Convert fault info struct to short-format FSC
|
|
|
|
* Compare pseudocode EncodeSDFSC(), though unlike that function
|
|
|
|
* we set up a whole FSR-format code including domain field and
|
|
|
|
* putting the high bit of the FSC into bit 10.
|
|
|
|
*/
|
|
|
|
static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
|
|
|
|
{
|
|
|
|
uint32_t fsc;
|
|
|
|
|
|
|
|
switch (fi->type) {
|
|
|
|
case ARMFault_None:
|
|
|
|
return 0;
|
|
|
|
case ARMFault_AccessFlag:
|
|
|
|
fsc = fi->level == 1 ? 0x3 : 0x6;
|
|
|
|
break;
|
|
|
|
case ARMFault_Alignment:
|
|
|
|
fsc = 0x1;
|
|
|
|
break;
|
|
|
|
case ARMFault_Permission:
|
|
|
|
fsc = fi->level == 1 ? 0xd : 0xf;
|
|
|
|
break;
|
|
|
|
case ARMFault_Domain:
|
|
|
|
fsc = fi->level == 1 ? 0x9 : 0xb;
|
|
|
|
break;
|
|
|
|
case ARMFault_Translation:
|
|
|
|
fsc = fi->level == 1 ? 0x5 : 0x7;
|
|
|
|
break;
|
|
|
|
case ARMFault_SyncExternal:
|
|
|
|
fsc = 0x8 | (fi->ea << 12);
|
|
|
|
break;
|
|
|
|
case ARMFault_SyncExternalOnWalk:
|
|
|
|
fsc = fi->level == 1 ? 0xc : 0xe;
|
|
|
|
fsc |= (fi->ea << 12);
|
|
|
|
break;
|
|
|
|
case ARMFault_SyncParity:
|
|
|
|
fsc = 0x409;
|
|
|
|
break;
|
|
|
|
case ARMFault_SyncParityOnWalk:
|
|
|
|
fsc = fi->level == 1 ? 0x40c : 0x40e;
|
|
|
|
break;
|
|
|
|
case ARMFault_AsyncParity:
|
|
|
|
fsc = 0x408;
|
|
|
|
break;
|
|
|
|
case ARMFault_AsyncExternal:
|
|
|
|
fsc = 0x406 | (fi->ea << 12);
|
|
|
|
break;
|
|
|
|
case ARMFault_Debug:
|
|
|
|
fsc = 0x2;
|
|
|
|
break;
|
|
|
|
case ARMFault_TLBConflict:
|
|
|
|
fsc = 0x400;
|
|
|
|
break;
|
|
|
|
case ARMFault_Lockdown:
|
|
|
|
fsc = 0x404;
|
|
|
|
break;
|
|
|
|
case ARMFault_Exclusive:
|
|
|
|
fsc = 0x405;
|
|
|
|
break;
|
|
|
|
case ARMFault_ICacheMaint:
|
|
|
|
fsc = 0x4;
|
|
|
|
break;
|
|
|
|
case ARMFault_Background:
|
|
|
|
fsc = 0x0;
|
|
|
|
break;
|
|
|
|
case ARMFault_QEMU_NSCExec:
|
|
|
|
fsc = M_FAKE_FSR_NSC_EXEC;
|
|
|
|
break;
|
|
|
|
case ARMFault_QEMU_SFault:
|
|
|
|
fsc = M_FAKE_FSR_SFAULT;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
/* Other faults can't occur in a context that requires a
|
|
|
|
* short-format status code.
|
|
|
|
*/
|
|
|
|
g_assert_not_reached();
|
|
|
|
}
|
|
|
|
|
|
|
|
fsc |= (fi->domain << 4);
|
|
|
|
return fsc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* arm_fi_to_lfsc: Convert fault info struct to long-format FSC
|
|
|
|
* Compare pseudocode EncodeLDFSC(), though unlike that function
|
|
|
|
* we fill in also the LPAE bit 9 of a DFSR format.
|
|
|
|
*/
|
|
|
|
static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
|
|
|
|
{
|
|
|
|
uint32_t fsc;
|
|
|
|
|
|
|
|
switch (fi->type) {
|
|
|
|
case ARMFault_None:
|
|
|
|
return 0;
|
|
|
|
case ARMFault_AddressSize:
|
2022-03-02 00:59:51 +03:00
|
|
|
assert(fi->level >= -1 && fi->level <= 3);
|
|
|
|
if (fi->level < 0) {
|
|
|
|
fsc = 0b101001;
|
|
|
|
} else {
|
|
|
|
fsc = fi->level;
|
|
|
|
}
|
2017-12-13 20:59:24 +03:00
|
|
|
break;
|
|
|
|
case ARMFault_AccessFlag:
|
2022-03-02 00:59:51 +03:00
|
|
|
assert(fi->level >= 0 && fi->level <= 3);
|
|
|
|
fsc = 0b001000 | fi->level;
|
2017-12-13 20:59:24 +03:00
|
|
|
break;
|
|
|
|
case ARMFault_Permission:
|
2022-03-02 00:59:51 +03:00
|
|
|
assert(fi->level >= 0 && fi->level <= 3);
|
|
|
|
fsc = 0b001100 | fi->level;
|
2017-12-13 20:59:24 +03:00
|
|
|
break;
|
|
|
|
case ARMFault_Translation:
|
2022-03-02 00:59:51 +03:00
|
|
|
assert(fi->level >= -1 && fi->level <= 3);
|
|
|
|
if (fi->level < 0) {
|
|
|
|
fsc = 0b101011;
|
|
|
|
} else {
|
|
|
|
fsc = 0b000100 | fi->level;
|
|
|
|
}
|
2017-12-13 20:59:24 +03:00
|
|
|
break;
|
|
|
|
case ARMFault_SyncExternal:
|
|
|
|
fsc = 0x10 | (fi->ea << 12);
|
|
|
|
break;
|
|
|
|
case ARMFault_SyncExternalOnWalk:
|
2022-03-02 00:59:51 +03:00
|
|
|
assert(fi->level >= -1 && fi->level <= 3);
|
|
|
|
if (fi->level < 0) {
|
|
|
|
fsc = 0b010011;
|
|
|
|
} else {
|
|
|
|
fsc = 0b010100 | fi->level;
|
|
|
|
}
|
|
|
|
fsc |= fi->ea << 12;
|
2017-12-13 20:59:24 +03:00
|
|
|
break;
|
|
|
|
case ARMFault_SyncParity:
|
|
|
|
fsc = 0x18;
|
|
|
|
break;
|
|
|
|
case ARMFault_SyncParityOnWalk:
|
2022-03-02 00:59:51 +03:00
|
|
|
assert(fi->level >= -1 && fi->level <= 3);
|
|
|
|
if (fi->level < 0) {
|
|
|
|
fsc = 0b011011;
|
|
|
|
} else {
|
|
|
|
fsc = 0b011100 | fi->level;
|
|
|
|
}
|
2017-12-13 20:59:24 +03:00
|
|
|
break;
|
|
|
|
case ARMFault_AsyncParity:
|
|
|
|
fsc = 0x19;
|
|
|
|
break;
|
|
|
|
case ARMFault_AsyncExternal:
|
|
|
|
fsc = 0x11 | (fi->ea << 12);
|
|
|
|
break;
|
|
|
|
case ARMFault_Alignment:
|
|
|
|
fsc = 0x21;
|
|
|
|
break;
|
|
|
|
case ARMFault_Debug:
|
|
|
|
fsc = 0x22;
|
|
|
|
break;
|
|
|
|
case ARMFault_TLBConflict:
|
|
|
|
fsc = 0x30;
|
|
|
|
break;
|
2022-10-24 08:18:43 +03:00
|
|
|
case ARMFault_UnsuppAtomicUpdate:
|
|
|
|
fsc = 0x31;
|
|
|
|
break;
|
2017-12-13 20:59:24 +03:00
|
|
|
case ARMFault_Lockdown:
|
|
|
|
fsc = 0x34;
|
|
|
|
break;
|
|
|
|
case ARMFault_Exclusive:
|
|
|
|
fsc = 0x35;
|
|
|
|
break;
|
2023-06-23 13:15:48 +03:00
|
|
|
case ARMFault_GPCFOnWalk:
|
|
|
|
assert(fi->level >= -1 && fi->level <= 3);
|
|
|
|
if (fi->level < 0) {
|
|
|
|
fsc = 0b100011;
|
|
|
|
} else {
|
|
|
|
fsc = 0b100100 | fi->level;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case ARMFault_GPCFOnOutput:
|
|
|
|
fsc = 0b101000;
|
|
|
|
break;
|
2017-12-13 20:59:24 +03:00
|
|
|
default:
|
|
|
|
/* Other faults can't occur in a context that requires a
|
|
|
|
* long-format status code.
|
|
|
|
*/
|
|
|
|
g_assert_not_reached();
|
|
|
|
}
|
|
|
|
|
|
|
|
fsc |= 1 << 9;
|
|
|
|
return fsc;
|
|
|
|
}
|
|
|
|
|
2018-01-16 16:28:11 +03:00
|
|
|
static inline bool arm_extabort_type(MemTxResult result)
|
|
|
|
{
|
|
|
|
/* The EA bit in syndromes and fault status registers is an
|
|
|
|
* IMPDEF classification of external aborts. ARM implementations
|
|
|
|
* usually use this to indicate AXI bus Decode error (0) or
|
|
|
|
* Slave error (1); in QEMU we follow that.
|
|
|
|
*/
|
|
|
|
return result != MEMTX_DECODE_ERROR;
|
|
|
|
}
|
|
|
|
|
2021-09-18 04:23:07 +03:00
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
|
|
void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
|
|
|
|
MMUAccessType access_type,
|
|
|
|
bool maperr, uintptr_t ra);
|
2021-07-24 01:22:54 +03:00
|
|
|
void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
|
|
|
|
MMUAccessType access_type, uintptr_t ra);
|
2021-09-18 04:23:07 +03:00
|
|
|
#else
|
2019-04-02 11:12:58 +03:00
|
|
|
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
|
|
|
MMUAccessType access_type, int mmu_idx,
|
|
|
|
bool probe, uintptr_t retaddr);
|
2021-09-18 04:23:07 +03:00
|
|
|
#endif
|
2019-04-02 11:12:58 +03:00
|
|
|
|
2020-02-07 17:04:24 +03:00
|
|
|
static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
|
|
|
|
{
|
|
|
|
return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
|
|
|
|
{
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
|
|
return mmu_idx | ARM_MMU_IDX_M;
|
|
|
|
} else {
|
|
|
|
return mmu_idx | ARM_MMU_IDX_A;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-03-05 19:09:20 +03:00
|
|
|
static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
|
|
|
|
{
|
|
|
|
/* AArch64 is always a-profile. */
|
|
|
|
return mmu_idx | ARM_MMU_IDX_A;
|
|
|
|
}
|
|
|
|
|
2020-02-07 17:04:24 +03:00
|
|
|
int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
|
|
|
|
|
|
|
|
/* Return the MMU index for a v7M CPU in the specified security state */
|
|
|
|
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
|
|
|
|
|
2022-06-08 21:38:48 +03:00
|
|
|
/*
|
|
|
|
* Return true if the stage 1 translation regime is using LPAE
|
|
|
|
* format page tables
|
|
|
|
*/
|
2016-01-15 13:37:42 +03:00
|
|
|
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
|
2015-12-17 16:37:13 +03:00
|
|
|
|
|
|
|
/* Raise a data fault alignment exception for the specified virtual address */
|
2022-04-20 16:26:02 +03:00
|
|
|
G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
|
|
|
MMUAccessType access_type,
|
|
|
|
int mmu_idx, uintptr_t retaddr);
|
2015-12-17 16:37:13 +03:00
|
|
|
|
2022-12-16 14:08:50 +03:00
|
|
|
#ifndef CONFIG_USER_ONLY
|
2017-09-07 15:54:55 +03:00
|
|
|
/* arm_cpu_do_transaction_failed: handle a memory system error response
|
|
|
|
* (eg "no device/memory present at address") by raising an external abort
|
|
|
|
* exception
|
|
|
|
*/
|
|
|
|
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
|
|
|
vaddr addr, unsigned size,
|
|
|
|
MMUAccessType access_type,
|
|
|
|
int mmu_idx, MemTxAttrs attrs,
|
|
|
|
MemTxResult response, uintptr_t retaddr);
|
2022-12-16 14:08:50 +03:00
|
|
|
#endif
|
2017-09-07 15:54:55 +03:00
|
|
|
|
2018-04-26 13:04:39 +03:00
|
|
|
/* Call any registered EL change hooks */
|
2018-04-26 13:04:39 +03:00
|
|
|
static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
ARMELChangeHook *hook, *next;
|
|
|
|
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
|
|
|
|
hook->hook(cpu, hook->opaque);
|
|
|
|
}
|
|
|
|
}
|
2016-06-17 17:23:46 +03:00
|
|
|
static inline void arm_call_el_change_hook(ARMCPU *cpu)
|
|
|
|
{
|
2018-04-26 13:04:39 +03:00
|
|
|
ARMELChangeHook *hook, *next;
|
|
|
|
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
|
|
|
|
hook->hook(cpu, hook->opaque);
|
2016-06-17 17:23:46 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-02-07 17:04:24 +03:00
|
|
|
/* Return true if this address translation regime has two ranges. */
|
|
|
|
static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
|
|
|
|
{
|
|
|
|
switch (mmu_idx) {
|
|
|
|
case ARMMMUIdx_Stage1_E0:
|
|
|
|
case ARMMMUIdx_Stage1_E1:
|
2020-02-08 15:57:58 +03:00
|
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
2020-02-07 17:04:24 +03:00
|
|
|
case ARMMMUIdx_E10_0:
|
|
|
|
case ARMMMUIdx_E10_1:
|
2020-02-08 15:57:58 +03:00
|
|
|
case ARMMMUIdx_E10_1_PAN:
|
2020-02-07 17:04:24 +03:00
|
|
|
case ARMMMUIdx_E20_0:
|
|
|
|
case ARMMMUIdx_E20_2:
|
2020-02-08 15:57:58 +03:00
|
|
|
case ARMMMUIdx_E20_2_PAN:
|
2020-02-07 17:04:24 +03:00
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-02-08 15:58:09 +03:00
|
|
|
static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
|
|
{
|
|
|
|
switch (mmu_idx) {
|
|
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-10-24 08:18:38 +03:00
|
|
|
static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
|
|
|
|
{
|
|
|
|
return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
|
|
|
|
}
|
|
|
|
|
2020-06-26 06:31:19 +03:00
|
|
|
/* Return the exception level which controls this address translation regime */
|
|
|
|
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
|
|
{
|
|
|
|
switch (mmu_idx) {
|
|
|
|
case ARMMMUIdx_E20_0:
|
|
|
|
case ARMMMUIdx_E20_2:
|
|
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
|
|
case ARMMMUIdx_Stage2:
|
2021-01-12 13:45:06 +03:00
|
|
|
case ARMMMUIdx_Stage2_S:
|
2020-06-26 06:31:19 +03:00
|
|
|
case ARMMMUIdx_E2:
|
|
|
|
return 2;
|
2022-10-01 19:22:46 +03:00
|
|
|
case ARMMMUIdx_E3:
|
2020-06-26 06:31:19 +03:00
|
|
|
return 3;
|
2022-10-01 19:22:46 +03:00
|
|
|
case ARMMMUIdx_E10_0:
|
2020-06-26 06:31:19 +03:00
|
|
|
case ARMMMUIdx_Stage1_E0:
|
2022-10-01 19:22:46 +03:00
|
|
|
return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
|
2020-06-26 06:31:19 +03:00
|
|
|
case ARMMMUIdx_Stage1_E1:
|
|
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
|
|
case ARMMMUIdx_E10_1:
|
|
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
|
|
case ARMMMUIdx_MPrivNegPri:
|
|
|
|
case ARMMMUIdx_MUserNegPri:
|
|
|
|
case ARMMMUIdx_MPriv:
|
|
|
|
case ARMMMUIdx_MUser:
|
|
|
|
case ARMMMUIdx_MSPrivNegPri:
|
|
|
|
case ARMMMUIdx_MSUserNegPri:
|
|
|
|
case ARMMMUIdx_MSPriv:
|
|
|
|
case ARMMMUIdx_MSUser:
|
|
|
|
return 1;
|
|
|
|
default:
|
|
|
|
g_assert_not_reached();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-10-21 19:01:31 +03:00
|
|
|
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
|
|
{
|
|
|
|
switch (mmu_idx) {
|
|
|
|
case ARMMMUIdx_E20_0:
|
|
|
|
case ARMMMUIdx_Stage1_E0:
|
|
|
|
case ARMMMUIdx_MUser:
|
|
|
|
case ARMMMUIdx_MSUser:
|
|
|
|
case ARMMMUIdx_MUserNegPri:
|
|
|
|
case ARMMMUIdx_MSUserNegPri:
|
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
case ARMMMUIdx_E10_0:
|
|
|
|
case ARMMMUIdx_E10_1:
|
|
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
|
|
g_assert_not_reached();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-06-08 21:38:48 +03:00
|
|
|
/* Return the SCTLR value which controls this address translation regime */
|
|
|
|
static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
|
|
{
|
|
|
|
return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
|
|
|
|
}
|
|
|
|
|
2022-07-14 16:23:03 +03:00
|
|
|
/*
|
|
|
|
* These are the fields in VTCR_EL2 which affect both the Secure stage 2
|
|
|
|
* and the Non-Secure stage 2 translation regimes (and hence which are
|
|
|
|
* not present in VSTCR_EL2).
|
|
|
|
*/
|
|
|
|
#define VTCR_SHARED_FIELD_MASK \
|
|
|
|
(R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
|
|
|
|
R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
|
|
|
|
R_VTCR_DS_MASK)
|
|
|
|
|
2022-07-14 16:22:59 +03:00
|
|
|
/* Return the value of the TCR controlling this translation regime */
|
|
|
|
static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
|
2020-06-26 06:31:20 +03:00
|
|
|
{
|
|
|
|
if (mmu_idx == ARMMMUIdx_Stage2) {
|
2022-07-14 16:23:01 +03:00
|
|
|
return env->cp15.vtcr_el2;
|
2020-06-26 06:31:20 +03:00
|
|
|
}
|
2021-01-12 13:45:06 +03:00
|
|
|
if (mmu_idx == ARMMMUIdx_Stage2_S) {
|
|
|
|
/*
|
2022-07-14 16:23:03 +03:00
|
|
|
* Secure stage 2 shares fields from VTCR_EL2. We merge those
|
|
|
|
* in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
|
|
|
|
* value so the callers don't need to special case this.
|
|
|
|
*
|
|
|
|
* If a future architecture change defines bits in VSTCR_EL2 that
|
|
|
|
* overlap with these VTCR_EL2 fields we may need to revisit this.
|
2021-01-12 13:45:06 +03:00
|
|
|
*/
|
2022-07-14 16:23:03 +03:00
|
|
|
uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
|
|
|
|
v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
|
|
|
|
return v;
|
2021-01-12 13:45:06 +03:00
|
|
|
}
|
2022-07-14 16:23:02 +03:00
|
|
|
return env->cp15.tcr_el[regime_el(env, mmu_idx)];
|
2022-07-14 16:22:57 +03:00
|
|
|
}
|
|
|
|
|
2023-02-17 23:11:34 +03:00
|
|
|
/* Return true if the translation regime is using LPAE format page tables */
|
|
|
|
static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
|
|
{
|
|
|
|
int el = regime_el(env, mmu_idx);
|
|
|
|
if (el == 2 || arm_el_is_aa64(env, el)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA) &&
|
|
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)
|
|
|
|
&& (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2020-02-14 20:51:05 +03:00
|
|
|
/**
|
|
|
|
* arm_num_brps: Return number of implemented breakpoints.
|
|
|
|
* Note that the ID register BRPS field is "number of bps - 1",
|
|
|
|
* and we return the actual number of breakpoints.
|
|
|
|
*/
|
|
|
|
static inline int arm_num_brps(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
|
|
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
|
|
|
|
} else {
|
2020-02-14 20:51:06 +03:00
|
|
|
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
|
2020-02-14 20:51:05 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* arm_num_wrps: Return number of implemented watchpoints.
|
|
|
|
* Note that the ID register WRPS field is "number of wps - 1",
|
|
|
|
* and we return the actual number of watchpoints.
|
|
|
|
*/
|
|
|
|
static inline int arm_num_wrps(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
|
|
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
|
|
|
|
} else {
|
2020-02-14 20:51:06 +03:00
|
|
|
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
|
2020-02-14 20:51:05 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* arm_num_ctx_cmps: Return number of implemented context comparators.
|
|
|
|
* Note that the ID register CTX_CMPS field is "number of cmps - 1",
|
|
|
|
* and we return the actual number of comparators.
|
|
|
|
*/
|
|
|
|
static inline int arm_num_ctx_cmps(ARMCPU *cpu)
|
|
|
|
{
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
|
|
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
|
|
|
|
} else {
|
2020-02-14 20:51:06 +03:00
|
|
|
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
|
2020-02-14 20:51:05 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-10-08 16:55:04 +03:00
|
|
|
/**
|
|
|
|
* v7m_using_psp: Return true if using process stack pointer
|
|
|
|
* Return true if the CPU is currently using the process stack
|
|
|
|
* pointer, or false if it is using the main stack pointer.
|
|
|
|
*/
|
|
|
|
static inline bool v7m_using_psp(CPUARMState *env)
|
|
|
|
{
|
|
|
|
/* Handler mode always uses the main stack; for thread mode
|
|
|
|
* the CONTROL.SPSEL bit determines the answer.
|
|
|
|
* Note that in v7M it is not possible to be in Handler mode with
|
|
|
|
* CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
|
|
|
|
*/
|
|
|
|
return !arm_v7m_is_handler_mode(env) &&
|
|
|
|
env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
|
|
|
|
}
|
|
|
|
|
2018-10-08 16:55:04 +03:00
|
|
|
/**
|
|
|
|
* v7m_sp_limit: Return SP limit for current CPU state
|
|
|
|
* Return the SP limit value for the current CPU security state
|
|
|
|
* and stack pointer.
|
|
|
|
*/
|
|
|
|
static inline uint32_t v7m_sp_limit(CPUARMState *env)
|
|
|
|
{
|
|
|
|
if (v7m_using_psp(env)) {
|
|
|
|
return env->v7m.psplim[env->v7m.secure];
|
|
|
|
} else {
|
|
|
|
return env->v7m.msplim[env->v7m.secure];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-07-01 19:26:22 +03:00
|
|
|
/**
|
|
|
|
* v7m_cpacr_pass:
|
|
|
|
* Return true if the v7M CPACR permits access to the FPU for the specified
|
|
|
|
* security state and privilege level.
|
|
|
|
*/
|
|
|
|
static inline bool v7m_cpacr_pass(CPUARMState *env,
|
|
|
|
bool is_secure, bool is_priv)
|
|
|
|
{
|
|
|
|
switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
|
|
|
|
case 0:
|
|
|
|
case 2: /* UNPREDICTABLE: we treat like 0 */
|
|
|
|
return false;
|
|
|
|
case 1:
|
|
|
|
return is_priv;
|
|
|
|
case 3:
|
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
g_assert_not_reached();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-10-24 09:50:17 +03:00
|
|
|
/**
|
|
|
|
* aarch32_mode_name(): Return name of the AArch32 CPU mode
|
|
|
|
* @psr: Program Status Register indicating CPU mode
|
|
|
|
*
|
|
|
|
* Returns, for debug logging purposes, a printable representation
|
|
|
|
* of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
|
|
|
|
* the low bits of the specified PSR.
|
|
|
|
*/
|
|
|
|
static inline const char *aarch32_mode_name(uint32_t psr)
|
|
|
|
{
|
|
|
|
static const char cpu_mode_names[16][4] = {
|
|
|
|
"usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
|
|
|
|
"???", "???", "hyp", "und", "???", "???", "???", "sys"
|
|
|
|
};
|
|
|
|
|
|
|
|
return cpu_mode_names[psr & 0xf];
|
|
|
|
}
|
|
|
|
|
2018-11-13 13:47:59 +03:00
|
|
|
/**
|
|
|
|
* arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
|
|
|
|
*
|
|
|
|
* Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
|
|
|
|
* a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
|
|
|
|
* Must be called with the iothread lock held.
|
|
|
|
*/
|
|
|
|
void arm_cpu_update_virq(ARMCPU *cpu);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
|
|
|
|
*
|
|
|
|
* Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
|
|
|
|
* a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
|
|
|
|
* Must be called with the iothread lock held.
|
|
|
|
*/
|
|
|
|
void arm_cpu_update_vfiq(ARMCPU *cpu);
|
|
|
|
|
2022-05-06 21:02:33 +03:00
|
|
|
/**
|
|
|
|
* arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
|
|
|
|
*
|
|
|
|
* Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
|
|
|
|
* following a change to the HCR_EL2.VSE bit.
|
|
|
|
*/
|
|
|
|
void arm_cpu_update_vserr(ARMCPU *cpu);
|
|
|
|
|
2019-10-23 18:00:46 +03:00
|
|
|
/**
|
|
|
|
* arm_mmu_idx_el:
|
|
|
|
* @env: The cpu environment
|
|
|
|
* @el: The EL to use.
|
|
|
|
*
|
|
|
|
* Return the full ARMMMUIdx for the translation regime for EL.
|
|
|
|
*/
|
|
|
|
ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
|
|
|
|
|
2019-01-21 13:23:12 +03:00
|
|
|
/**
|
|
|
|
* arm_mmu_idx:
|
|
|
|
* @env: The cpu environment
|
|
|
|
*
|
|
|
|
* Return the full ARMMMUIdx for the current translation regime.
|
|
|
|
*/
|
|
|
|
ARMMMUIdx arm_mmu_idx(CPUARMState *env);
|
|
|
|
|
2019-01-21 13:23:12 +03:00
|
|
|
/**
|
|
|
|
* arm_stage1_mmu_idx:
|
|
|
|
* @env: The cpu environment
|
|
|
|
*
|
|
|
|
* Return the ARMMMUIdx for the stage1 traversal for the current regime.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
2022-06-08 21:38:48 +03:00
|
|
|
static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
|
|
|
|
{
|
|
|
|
return ARMMMUIdx_Stage1_E0;
|
|
|
|
}
|
2019-01-21 13:23:12 +03:00
|
|
|
static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
|
|
|
|
{
|
2020-02-07 17:04:22 +03:00
|
|
|
return ARMMMUIdx_Stage1_E0;
|
2019-01-21 13:23:12 +03:00
|
|
|
}
|
|
|
|
#else
|
2022-06-08 21:38:48 +03:00
|
|
|
ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
|
2019-01-21 13:23:12 +03:00
|
|
|
ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
|
|
|
|
#endif
|
|
|
|
|
2020-02-08 15:57:57 +03:00
|
|
|
/**
|
|
|
|
* arm_mmu_idx_is_stage1_of_2:
|
|
|
|
* @mmu_idx: The ARMMMUIdx to test
|
|
|
|
*
|
|
|
|
* Return true if @mmu_idx is a NOTLB mmu_idx that is the
|
|
|
|
* first stage of a two stage regime.
|
|
|
|
*/
|
|
|
|
static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
|
|
|
|
{
|
|
|
|
switch (mmu_idx) {
|
|
|
|
case ARMMMUIdx_Stage1_E0:
|
|
|
|
case ARMMMUIdx_Stage1_E1:
|
2020-02-08 15:57:58 +03:00
|
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
2020-02-08 15:57:57 +03:00
|
|
|
return true;
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-02-08 15:58:01 +03:00
|
|
|
static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
|
|
|
|
const ARMISARegisters *id)
|
|
|
|
{
|
2020-02-08 15:58:02 +03:00
|
|
|
uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
|
2020-02-08 15:58:01 +03:00
|
|
|
|
|
|
|
if ((features >> ARM_FEATURE_V4T) & 1) {
|
|
|
|
valid |= CPSR_T;
|
|
|
|
}
|
|
|
|
if ((features >> ARM_FEATURE_V5) & 1) {
|
|
|
|
valid |= CPSR_Q; /* V5TE in reality*/
|
|
|
|
}
|
|
|
|
if ((features >> ARM_FEATURE_V6) & 1) {
|
|
|
|
valid |= CPSR_E | CPSR_GE;
|
|
|
|
}
|
|
|
|
if ((features >> ARM_FEATURE_THUMB2) & 1) {
|
|
|
|
valid |= CPSR_IT;
|
|
|
|
}
|
2020-02-14 20:50:56 +03:00
|
|
|
if (isar_feature_aa32_jazelle(id)) {
|
2020-02-08 15:58:02 +03:00
|
|
|
valid |= CPSR_J;
|
|
|
|
}
|
2020-02-08 15:58:07 +03:00
|
|
|
if (isar_feature_aa32_pan(id)) {
|
|
|
|
valid |= CPSR_PAN;
|
|
|
|
}
|
2021-02-08 09:56:57 +03:00
|
|
|
if (isar_feature_aa32_dit(id)) {
|
|
|
|
valid |= CPSR_DIT;
|
|
|
|
}
|
2021-02-17 01:45:41 +03:00
|
|
|
if (isar_feature_aa32_ssbs(id)) {
|
|
|
|
valid |= CPSR_SSBS;
|
|
|
|
}
|
2020-02-08 15:58:01 +03:00
|
|
|
|
|
|
|
return valid;
|
|
|
|
}
|
|
|
|
|
2020-02-08 15:58:06 +03:00
|
|
|
static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
|
|
|
|
{
|
|
|
|
uint32_t valid;
|
|
|
|
|
|
|
|
valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
|
|
|
|
if (isar_feature_aa64_bti(id)) {
|
|
|
|
valid |= PSTATE_BTYPE;
|
|
|
|
}
|
2020-02-08 15:58:07 +03:00
|
|
|
if (isar_feature_aa64_pan(id)) {
|
|
|
|
valid |= PSTATE_PAN;
|
|
|
|
}
|
2020-02-08 15:58:14 +03:00
|
|
|
if (isar_feature_aa64_uao(id)) {
|
|
|
|
valid |= PSTATE_UAO;
|
|
|
|
}
|
2021-02-08 09:56:57 +03:00
|
|
|
if (isar_feature_aa64_dit(id)) {
|
|
|
|
valid |= PSTATE_DIT;
|
|
|
|
}
|
2021-02-17 01:45:41 +03:00
|
|
|
if (isar_feature_aa64_ssbs(id)) {
|
|
|
|
valid |= PSTATE_SSBS;
|
|
|
|
}
|
2020-06-26 06:31:05 +03:00
|
|
|
if (isar_feature_aa64_mte(id)) {
|
|
|
|
valid |= PSTATE_TCO;
|
|
|
|
}
|
2020-02-08 15:58:06 +03:00
|
|
|
|
|
|
|
return valid;
|
|
|
|
}
|
|
|
|
|
2022-10-03 19:23:13 +03:00
|
|
|
/* Granule size (i.e. page size) */
|
|
|
|
typedef enum ARMGranuleSize {
|
|
|
|
/* Same order as TG0 encoding */
|
|
|
|
Gran4K,
|
|
|
|
Gran64K,
|
|
|
|
Gran16K,
|
|
|
|
GranInvalid,
|
|
|
|
} ARMGranuleSize;
|
|
|
|
|
2022-10-03 19:23:14 +03:00
|
|
|
/**
|
|
|
|
* arm_granule_bits: Return address size of the granule in bits
|
|
|
|
*
|
|
|
|
* Return the address size of the granule in bits. This corresponds
|
|
|
|
* to the pseudocode TGxGranuleBits().
|
|
|
|
*/
|
|
|
|
static inline int arm_granule_bits(ARMGranuleSize gran)
|
|
|
|
{
|
|
|
|
switch (gran) {
|
|
|
|
case Gran64K:
|
|
|
|
return 16;
|
|
|
|
case Gran16K:
|
|
|
|
return 14;
|
|
|
|
case Gran4K:
|
|
|
|
return 12;
|
|
|
|
default:
|
|
|
|
g_assert_not_reached();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-01-21 13:23:12 +03:00
|
|
|
/*
|
|
|
|
* Parameters of a given virtual address, as extracted from the
|
|
|
|
* translation control register (TCR) for a given regime.
|
|
|
|
*/
|
|
|
|
typedef struct ARMVAParameters {
|
|
|
|
unsigned tsz : 8;
|
2022-03-02 00:59:47 +03:00
|
|
|
unsigned ps : 3;
|
2022-03-02 00:59:56 +03:00
|
|
|
unsigned sh : 2;
|
2019-01-21 13:23:12 +03:00
|
|
|
unsigned select : 1;
|
|
|
|
bool tbi : 1;
|
|
|
|
bool epd : 1;
|
|
|
|
bool hpd : 1;
|
2022-03-02 00:59:43 +03:00
|
|
|
bool tsz_oob : 1; /* tsz has been clamped to legal range */
|
2022-03-02 00:59:56 +03:00
|
|
|
bool ds : 1;
|
2022-10-24 08:18:41 +03:00
|
|
|
bool ha : 1;
|
|
|
|
bool hd : 1;
|
2022-10-03 19:23:14 +03:00
|
|
|
ARMGranuleSize gran : 2;
|
2019-01-21 13:23:12 +03:00
|
|
|
} ARMVAParameters;
|
|
|
|
|
target/arm: Correct AArch64.S2MinTxSZ 32-bit EL1 input size check
In check_s2_mmu_setup() we have a check that is attempting to
implement the part of AArch64.S2MinTxSZ that is specific to when EL1
is AArch32:
if !s1aarch64 then
// EL1 is AArch32
min_txsz = Min(min_txsz, 24);
Unfortunately we got this wrong in two ways:
(1) The minimum txsz corresponds to a maximum inputsize, but we got
the sense of the comparison wrong and were faulting for all
inputsizes less than 40 bits
(2) We try to implement this as an extra check that happens after
we've done the same txsz checks we would do for an AArch64 EL1, but
in fact the pseudocode is *loosening* the requirements, so that txsz
values that would fault for an AArch64 EL1 do not fault for AArch32
EL1, because it does Min(old_min, 24), not Max(old_min, 24).
You can see this also in the text of the Arm ARM in table D8-8, which
shows that where the implemented PA size is less than 40 bits an
AArch32 EL1 is still OK with a configured stage2 T0SZ for a 40 bit
IPA, whereas if EL1 is AArch64 then the T0SZ must be big enough to
constrain the IPA to the implemented PA size.
Because of part (2), we can't do this as a separate check, but
have to integrate it into aa64_va_parameters(). Add a new argument
to that function to indicate that EL1 is 32-bit. All the existing
callsites except the one in get_phys_addr_lpae() can pass 'false',
because they are either doing a lookup for a stage 1 regime or
else they don't care about the tsz/tsz_oob fields.
Cc: qemu-stable@nongnu.org
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1627
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230509092059.3176487-1-peter.maydell@linaro.org
2023-05-09 12:20:59 +03:00
|
|
|
/**
|
|
|
|
* aa64_va_parameters: Return parameters for an AArch64 virtual address
|
|
|
|
* @env: CPU
|
|
|
|
* @va: virtual address to look up
|
|
|
|
* @mmu_idx: determines translation regime to use
|
|
|
|
* @data: true if this is a data access
|
|
|
|
* @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
|
|
|
|
* (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
|
|
|
|
*/
|
2019-01-21 13:23:12 +03:00
|
|
|
ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
|
target/arm: Correct AArch64.S2MinTxSZ 32-bit EL1 input size check
In check_s2_mmu_setup() we have a check that is attempting to
implement the part of AArch64.S2MinTxSZ that is specific to when EL1
is AArch32:
if !s1aarch64 then
// EL1 is AArch32
min_txsz = Min(min_txsz, 24);
Unfortunately we got this wrong in two ways:
(1) The minimum txsz corresponds to a maximum inputsize, but we got
the sense of the comparison wrong and were faulting for all
inputsizes less than 40 bits
(2) We try to implement this as an extra check that happens after
we've done the same txsz checks we would do for an AArch64 EL1, but
in fact the pseudocode is *loosening* the requirements, so that txsz
values that would fault for an AArch64 EL1 do not fault for AArch32
EL1, because it does Min(old_min, 24), not Max(old_min, 24).
You can see this also in the text of the Arm ARM in table D8-8, which
shows that where the implemented PA size is less than 40 bits an
AArch32 EL1 is still OK with a configured stage2 T0SZ for a 40 bit
IPA, whereas if EL1 is AArch64 then the T0SZ must be big enough to
constrain the IPA to the implemented PA size.
Because of part (2), we can't do this as a separate check, but
have to integrate it into aa64_va_parameters(). Add a new argument
to that function to indicate that EL1 is 32-bit. All the existing
callsites except the one in get_phys_addr_lpae() can pass 'false',
because they are either doing a lookup for a stage 1 regime or
else they don't care about the tsz/tsz_oob fields.
Cc: qemu-stable@nongnu.org
Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1627
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230509092059.3176487-1-peter.maydell@linaro.org
2023-05-09 12:20:59 +03:00
|
|
|
ARMMMUIdx mmu_idx, bool data,
|
|
|
|
bool el1_is_aa32);
|
2019-01-21 13:23:12 +03:00
|
|
|
|
2022-06-08 21:38:48 +03:00
|
|
|
int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
|
|
|
|
int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
|
2023-02-17 23:11:33 +03:00
|
|
|
int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
|
2022-06-08 21:38:48 +03:00
|
|
|
|
2020-06-26 06:31:06 +03:00
|
|
|
/* Determine if allocation tags are available. */
|
|
|
|
static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
|
|
|
|
uint64_t sctlr)
|
|
|
|
{
|
|
|
|
if (el < 3
|
|
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
|
|
&& !(env->cp15.scr_el3 & SCR_ATA)) {
|
|
|
|
return false;
|
|
|
|
}
|
2022-04-01 17:35:48 +03:00
|
|
|
if (el < 2 && arm_is_el2_enabled(env)) {
|
2020-10-08 19:21:55 +03:00
|
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
|
|
if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
|
|
|
|
return false;
|
|
|
|
}
|
2020-06-26 06:31:06 +03:00
|
|
|
}
|
|
|
|
sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
|
|
|
|
return sctlr != 0;
|
|
|
|
}
|
|
|
|
|
2019-07-01 19:26:20 +03:00
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
|
2019-07-01 19:26:22 +03:00
|
|
|
/* Security attributes for an address, as returned by v8m_security_lookup. */
|
|
|
|
typedef struct V8M_SAttributes {
|
|
|
|
bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
|
|
|
|
bool ns;
|
|
|
|
bool nsc;
|
|
|
|
uint8_t sregion;
|
|
|
|
bool srvalid;
|
|
|
|
uint8_t iregion;
|
|
|
|
bool irvalid;
|
|
|
|
} V8M_SAttributes;
|
|
|
|
|
|
|
|
void v8m_security_lookup(CPUARMState *env, uint32_t address,
|
|
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
2022-08-22 18:26:46 +03:00
|
|
|
bool secure, V8M_SAttributes *sattrs);
|
2019-07-01 19:26:22 +03:00
|
|
|
|
2019-07-01 19:26:20 +03:00
|
|
|
/* Cacheability and shareability attributes for a memory access */
|
|
|
|
typedef struct ARMCacheAttrs {
|
target/arm: Postpone interpretation of stage 2 descriptor attribute bits
In the original Arm v8 two-stage translation, both stage 1 and stage
2 specify memory attributes (memory type, cacheability,
shareability); these are then combined to produce the overall memory
attributes for the whole stage 1+2 access. In QEMU we implement this
by having get_phys_addr() fill in an ARMCacheAttrs struct, and we
convert both the stage 1 and stage 2 attribute bit formats to the
same encoding (an 8-bit attribute value matching the MAIR_EL1 fields,
plus a 2-bit shareability value).
The new FEAT_S2FWB feature allows the guest to enable a different
interpretation of the attribute bits in the stage 2 descriptors.
These bits can now be used to control details of how the stage 1 and
2 attributes should be combined (for instance they can say "always
use the stage 1 attributes" or "ignore the stage 1 attributes and
always be Device memory"). This means we need to pass the raw bit
information for stage 2 down to the function which combines the stage
1 and stage 2 information.
Add a field to ARMCacheAttrs that indicates whether the attrs field
should be interpreted as MAIR format, or as the raw stage 2 attribute
bits from the descriptor, and store the appropriate values when
filling in cacheattrs.
We only need to interpret the attrs field in a few places:
* in do_ats_write(), where we know to expect a MAIR value
(there is no ATS instruction to do a stage-2-only walk)
* in S1_ptw_translate(), where we want to know whether the
combined S1 + S2 attributes indicate Device memory that
should provoke a fault
* in combine_cacheattrs(), which does the S1 + S2 combining
Update those places accordingly.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220505183950.2781801-2-peter.maydell@linaro.org
2022-05-05 21:39:47 +03:00
|
|
|
/*
|
|
|
|
* If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
|
|
|
|
* Otherwise, attrs is the same as the MAIR_EL1 8-bit format
|
|
|
|
*/
|
|
|
|
unsigned int attrs:8;
|
2019-07-01 19:26:20 +03:00
|
|
|
unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
|
target/arm: Postpone interpretation of stage 2 descriptor attribute bits
In the original Arm v8 two-stage translation, both stage 1 and stage
2 specify memory attributes (memory type, cacheability,
shareability); these are then combined to produce the overall memory
attributes for the whole stage 1+2 access. In QEMU we implement this
by having get_phys_addr() fill in an ARMCacheAttrs struct, and we
convert both the stage 1 and stage 2 attribute bit formats to the
same encoding (an 8-bit attribute value matching the MAIR_EL1 fields,
plus a 2-bit shareability value).
The new FEAT_S2FWB feature allows the guest to enable a different
interpretation of the attribute bits in the stage 2 descriptors.
These bits can now be used to control details of how the stage 1 and
2 attributes should be combined (for instance they can say "always
use the stage 1 attributes" or "ignore the stage 1 attributes and
always be Device memory"). This means we need to pass the raw bit
information for stage 2 down to the function which combines the stage
1 and stage 2 information.
Add a field to ARMCacheAttrs that indicates whether the attrs field
should be interpreted as MAIR format, or as the raw stage 2 attribute
bits from the descriptor, and store the appropriate values when
filling in cacheattrs.
We only need to interpret the attrs field in a few places:
* in do_ats_write(), where we know to expect a MAIR value
(there is no ATS instruction to do a stage-2-only walk)
* in S1_ptw_translate(), where we want to know whether the
combined S1 + S2 attributes indicate Device memory that
should provoke a fault
* in combine_cacheattrs(), which does the S1 + S2 combining
Update those places accordingly.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220505183950.2781801-2-peter.maydell@linaro.org
2022-05-05 21:39:47 +03:00
|
|
|
bool is_s2_format:1;
|
2022-10-11 06:18:50 +03:00
|
|
|
bool guarded:1; /* guarded bit of the v8-64 PTE */
|
2019-07-01 19:26:20 +03:00
|
|
|
} ARMCacheAttrs;
|
|
|
|
|
2022-08-22 18:26:36 +03:00
|
|
|
/* Fields that are valid upon success. */
|
|
|
|
typedef struct GetPhysAddrResult {
|
2022-10-01 19:22:56 +03:00
|
|
|
CPUTLBEntryFull f;
|
2022-08-22 18:26:36 +03:00
|
|
|
ARMCacheAttrs cacheattrs;
|
|
|
|
} GetPhysAddrResult;
|
|
|
|
|
2022-10-01 19:22:41 +03:00
|
|
|
/**
|
|
|
|
* get_phys_addr_with_secure: get the physical address for a virtual address
|
|
|
|
* @env: CPUARMState
|
|
|
|
* @address: virtual address to get physical address for
|
|
|
|
* @access_type: 0 for read, 1 for write, 2 for execute
|
|
|
|
* @mmu_idx: MMU index indicating required translation regime
|
|
|
|
* @is_secure: security state for the access
|
|
|
|
* @result: set on translation success.
|
|
|
|
* @fi: set to fault info if the translation fails
|
|
|
|
*
|
|
|
|
* Find the physical address corresponding to the given virtual address,
|
|
|
|
* by doing a translation table walk on MMU based systems or using the
|
|
|
|
* MPU state on MPU based systems.
|
|
|
|
*
|
|
|
|
* Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
|
|
|
|
* prot and page_size may not be filled in, and the populated fsr value provides
|
|
|
|
* information on why the translation aborted, in the format of a
|
|
|
|
* DFSR/IFSR fault register, with the following caveats:
|
|
|
|
* * we honour the short vs long DFSR format differences.
|
|
|
|
* * the WnR bit is never set (the caller must do this).
|
|
|
|
* * for PSMAv5 based systems we don't bother to return a full FSR format
|
|
|
|
* value.
|
|
|
|
*/
|
|
|
|
bool get_phys_addr_with_secure(CPUARMState *env, target_ulong address,
|
|
|
|
MMUAccessType access_type,
|
|
|
|
ARMMMUIdx mmu_idx, bool is_secure,
|
|
|
|
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
|
|
|
|
__attribute__((nonnull));
|
|
|
|
|
|
|
|
/**
|
|
|
|
* get_phys_addr: get the physical address for a virtual address
|
|
|
|
* @env: CPUARMState
|
|
|
|
* @address: virtual address to get physical address for
|
|
|
|
* @access_type: 0 for read, 1 for write, 2 for execute
|
|
|
|
* @mmu_idx: MMU index indicating required translation regime
|
|
|
|
* @result: set on translation success.
|
|
|
|
* @fi: set to fault info if the translation fails
|
|
|
|
*
|
|
|
|
* Similarly, but use the security regime of @mmu_idx.
|
|
|
|
*/
|
2019-07-01 19:26:20 +03:00
|
|
|
bool get_phys_addr(CPUARMState *env, target_ulong address,
|
|
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
2022-08-22 18:26:36 +03:00
|
|
|
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
|
2020-06-26 06:31:39 +03:00
|
|
|
__attribute__((nonnull));
|
2019-07-01 19:26:20 +03:00
|
|
|
|
2022-08-22 18:26:44 +03:00
|
|
|
bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
|
|
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
2022-08-22 18:26:47 +03:00
|
|
|
bool is_secure, GetPhysAddrResult *result,
|
|
|
|
ARMMMUFaultInfo *fi, uint32_t *mregion);
|
2022-08-22 18:26:44 +03:00
|
|
|
|
2022-01-22 21:24:31 +03:00
|
|
|
void arm_log_exception(CPUState *cs);
|
2019-07-01 19:26:22 +03:00
|
|
|
|
2019-07-01 19:26:20 +03:00
|
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
|
2020-06-26 06:31:05 +03:00
|
|
|
/*
|
|
|
|
* The log2 of the words in the tag block, for GMID_EL1.BS.
|
|
|
|
* The is the maximum, 256 bytes, which manipulates 64-bits of tags.
|
|
|
|
*/
|
|
|
|
#define GMID_EL1_BS 6
|
|
|
|
|
2021-01-13 09:26:47 +03:00
|
|
|
/*
|
|
|
|
* SVE predicates are 1/8 the size of SVE vectors, and cannot use
|
|
|
|
* the same simd_desc() encoding due to restrictions on size.
|
|
|
|
* Use these instead.
|
|
|
|
*/
|
|
|
|
FIELD(PREDDESC, OPRSZ, 0, 6)
|
|
|
|
FIELD(PREDDESC, ESZ, 6, 2)
|
|
|
|
FIELD(PREDDESC, DATA, 8, 24)
|
|
|
|
|
2020-06-26 06:31:31 +03:00
|
|
|
/*
|
|
|
|
* The SVE simd_data field, for memory ops, contains either
|
|
|
|
* rd (5 bits) or a shift count (2 bits).
|
|
|
|
*/
|
|
|
|
#define SVE_MTEDESC_SHIFT 5
|
|
|
|
|
2020-06-26 06:31:21 +03:00
|
|
|
/* Bits within a descriptor passed to the helper_mte_check* functions. */
|
|
|
|
FIELD(MTEDESC, MIDX, 0, 4)
|
|
|
|
FIELD(MTEDESC, TBI, 4, 2)
|
|
|
|
FIELD(MTEDESC, TCMA, 6, 2)
|
|
|
|
FIELD(MTEDESC, WRITE, 8, 1)
|
2023-06-06 12:19:38 +03:00
|
|
|
FIELD(MTEDESC, ALIGN, 9, 3)
|
|
|
|
FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12) /* size - 1 */
|
2020-06-26 06:31:21 +03:00
|
|
|
|
2021-04-16 21:31:04 +03:00
|
|
|
bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
|
2021-04-16 21:31:03 +03:00
|
|
|
uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
|
2020-06-26 06:31:23 +03:00
|
|
|
|
2020-06-26 06:31:09 +03:00
|
|
|
static inline int allocation_tag_from_addr(uint64_t ptr)
|
|
|
|
{
|
|
|
|
return extract64(ptr, 56, 4);
|
|
|
|
}
|
|
|
|
|
2020-06-26 06:31:07 +03:00
|
|
|
static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
|
|
|
|
{
|
|
|
|
return deposit64(ptr, 56, 4, rtag);
|
|
|
|
}
|
|
|
|
|
2020-06-26 06:31:23 +03:00
|
|
|
/* Return true if tbi bits mean that the access is checked. */
|
|
|
|
static inline bool tbi_check(uint32_t desc, int bit55)
|
|
|
|
{
|
|
|
|
return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return true if tcma bits mean that the access is unchecked. */
|
|
|
|
static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* We had extracted bit55 and ptr_tag for other reasons, so fold
|
|
|
|
* (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
|
|
|
|
*/
|
|
|
|
bool match = ((ptr_tag + bit55) & 0xf) == 0;
|
|
|
|
bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
|
|
|
|
return tcma && match;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For TBI, ideally, we would do nothing. Proper behaviour on fault is
|
|
|
|
* for the tag to be present in the FAR_ELx register. But for user-only
|
|
|
|
* mode, we do not have a TLB with which to implement this, so we must
|
|
|
|
* remove the top byte.
|
|
|
|
*/
|
|
|
|
static inline uint64_t useronly_clean_ptr(uint64_t ptr)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
2021-02-12 21:48:53 +03:00
|
|
|
/* TBI0 is known to be enabled, while TBI1 is disabled. */
|
|
|
|
ptr &= sextract64(ptr, 0, 56);
|
2020-06-26 06:31:23 +03:00
|
|
|
#endif
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
|
|
int64_t clean_ptr = sextract64(ptr, 0, 56);
|
|
|
|
if (tbi_check(desc, clean_ptr < 0)) {
|
|
|
|
ptr = clean_ptr;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
2021-06-17 15:15:45 +03:00
|
|
|
/* Values for M-profile PSR.ECI for MVE insns */
|
|
|
|
enum MVEECIState {
|
|
|
|
ECI_NONE = 0, /* No completed beats */
|
|
|
|
ECI_A0 = 1, /* Completed: A0 */
|
|
|
|
ECI_A0A1 = 2, /* Completed: A0, A1 */
|
|
|
|
/* 3 is reserved */
|
|
|
|
ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
|
|
|
|
ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
|
|
|
|
/* All other values reserved */
|
|
|
|
};
|
|
|
|
|
2021-09-16 18:53:55 +03:00
|
|
|
/* Definitions for the PMU registers */
|
|
|
|
#define PMCRN_MASK 0xf800
|
|
|
|
#define PMCRN_SHIFT 11
|
2022-08-22 16:23:57 +03:00
|
|
|
#define PMCRLP 0x80
|
2021-09-16 18:53:55 +03:00
|
|
|
#define PMCRLC 0x40
|
|
|
|
#define PMCRDP 0x20
|
|
|
|
#define PMCRX 0x10
|
|
|
|
#define PMCRD 0x8
|
|
|
|
#define PMCRC 0x4
|
|
|
|
#define PMCRP 0x2
|
|
|
|
#define PMCRE 0x1
|
|
|
|
/*
|
2022-06-08 21:38:47 +03:00
|
|
|
* Mask of PMCR bits writable by guest (not including WO bits like C, P,
|
2021-09-16 18:53:55 +03:00
|
|
|
* which can be written as 1 to trigger behaviour but which stay RAZ).
|
|
|
|
*/
|
2022-08-22 16:23:57 +03:00
|
|
|
#define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
|
2021-09-16 18:53:55 +03:00
|
|
|
|
|
|
|
#define PMXEVTYPER_P 0x80000000
|
|
|
|
#define PMXEVTYPER_U 0x40000000
|
|
|
|
#define PMXEVTYPER_NSK 0x20000000
|
|
|
|
#define PMXEVTYPER_NSU 0x10000000
|
|
|
|
#define PMXEVTYPER_NSH 0x08000000
|
|
|
|
#define PMXEVTYPER_M 0x04000000
|
|
|
|
#define PMXEVTYPER_MT 0x02000000
|
|
|
|
#define PMXEVTYPER_EVTCOUNT 0x0000ffff
|
|
|
|
#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
|
|
|
|
PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
|
|
|
|
PMXEVTYPER_M | PMXEVTYPER_MT | \
|
|
|
|
PMXEVTYPER_EVTCOUNT)
|
|
|
|
|
|
|
|
#define PMCCFILTR 0xf8000000
|
|
|
|
#define PMCCFILTR_M PMXEVTYPER_M
|
|
|
|
#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
|
|
|
|
|
|
|
|
static inline uint32_t pmu_num_counters(CPUARMState *env)
|
|
|
|
{
|
target/arm: Make number of counters in PMCR follow the CPU
Currently we give all the v7-and-up CPUs a PMU with 4 counters. This
means that we don't provide the 6 counters that are required by the
Arm BSA (Base System Architecture) specification if the CPU supports
the Virtualization extensions.
Instead of having a single PMCR_NUM_COUNTERS, make each CPU type
specify the PMCR reset value (obtained from the appropriate TRM), and
use the 'N' field of that value to define the number of counters
provided.
This means that we now supply 6 counters instead of 4 for:
Cortex-A9, Cortex-A15, Cortex-A53, Cortex-A57, Cortex-A72,
Cortex-A76, Neoverse-N1, '-cpu max'
This CPU goes from 4 to 8 counters:
A64FX
These CPUs remain with 4 counters:
Cortex-A7, Cortex-A8
This CPU goes down from 4 to 3 counters:
Cortex-R5
Note that because we now use the PMCR reset value of the specific
implementation, we no longer set the LC bit out of reset. This has
an UNKNOWN value out of reset for all cores with any AArch32 support,
so guest software should be setting it anyway if it wants it.
This change was originally landed in commit f7fb73b8cdd3f7 (during
the 6.0 release cycle) but was then reverted by commit
21c2dd77a6aa517 before that release because it did not work with KVM.
This version fixes that by creating the scratch vCPU in
kvm_arm_get_host_cpu_features() with the KVM_ARM_VCPU_PMU_V3 feature
if KVM supports it, and then only asking KVM for the PMCR_EL0 value
if the vCPU has a PMU.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
[PMM: Added the correct value for a64fx]
Message-id: 20220513122852.4063586-1-peter.maydell@linaro.org
2022-05-13 15:28:52 +03:00
|
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
|
|
|
|
return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
|
2021-09-16 18:53:55 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
|
|
|
|
static inline uint64_t pmu_counter_mask(CPUARMState *env)
|
|
|
|
{
|
2022-08-22 16:23:50 +03:00
|
|
|
return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
|
2021-09-16 18:53:55 +03:00
|
|
|
}
|
|
|
|
|
2021-09-21 19:28:59 +03:00
|
|
|
#ifdef TARGET_AARCH64
|
2023-02-28 00:33:18 +03:00
|
|
|
int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
|
2023-02-28 00:33:16 +03:00
|
|
|
int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg);
|
|
|
|
int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg);
|
|
|
|
int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg);
|
|
|
|
int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg);
|
2023-02-28 00:33:26 +03:00
|
|
|
int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg);
|
|
|
|
int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg);
|
2022-06-20 20:51:59 +03:00
|
|
|
void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
|
2022-06-20 20:52:01 +03:00
|
|
|
void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
|
2022-06-20 20:51:59 +03:00
|
|
|
void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
|
|
|
|
void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
|
2023-04-26 21:00:05 +03:00
|
|
|
void aarch64_max_tcg_initfn(Object *obj);
|
|
|
|
void aarch64_add_pauth_properties(Object *obj);
|
|
|
|
void aarch64_add_sve_properties(Object *obj);
|
|
|
|
void aarch64_add_sme_properties(Object *obj);
|
2021-09-21 19:28:59 +03:00
|
|
|
#endif
|
|
|
|
|
2023-02-28 00:33:27 +03:00
|
|
|
/* Read the CONTROL register as the MRS instruction would. */
|
|
|
|
uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
|
|
|
|
|
2023-02-28 00:33:28 +03:00
|
|
|
/*
|
|
|
|
* Return a pointer to the location where we currently store the
|
|
|
|
* stack pointer for the requested security state and thread mode.
|
|
|
|
* This pointer will become invalid if the CPU state is updated
|
|
|
|
* such that the stack pointers are switched around (eg changing
|
|
|
|
* the SPSEL control bit).
|
|
|
|
*/
|
|
|
|
uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
|
|
|
|
bool threadmode, bool spsel);
|
|
|
|
|
2022-06-08 21:38:55 +03:00
|
|
|
bool el_is_in_host(CPUARMState *env, int el);
|
|
|
|
|
2022-05-06 21:02:26 +03:00
|
|
|
void aa32_max_features(ARMCPU *cpu);
|
2022-06-10 16:32:30 +03:00
|
|
|
int exception_target_el(CPUARMState *env);
|
2022-06-10 16:32:30 +03:00
|
|
|
bool arm_singlestep_active(CPUARMState *env);
|
2022-06-10 16:32:31 +03:00
|
|
|
bool arm_generate_debug_exceptions(CPUARMState *env);
|
2022-05-06 21:02:26 +03:00
|
|
|
|
2023-02-28 00:33:25 +03:00
|
|
|
/**
|
|
|
|
* pauth_ptr_mask:
|
2023-04-03 18:12:29 +03:00
|
|
|
* @param: parameters defining the MMU setup
|
2023-02-28 00:33:25 +03:00
|
|
|
*
|
2023-04-03 18:12:29 +03:00
|
|
|
* Return a mask of the address bits that contain the authentication code,
|
|
|
|
* given the MMU config defined by @param.
|
2023-02-28 00:33:25 +03:00
|
|
|
*/
|
2023-04-03 18:12:29 +03:00
|
|
|
static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
|
|
|
|
{
|
|
|
|
int bot_pac_bit = 64 - param.tsz;
|
|
|
|
int top_pac_bit = 64 - 8 * param.tbi;
|
|
|
|
|
|
|
|
return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
|
|
|
|
}
|
2023-02-28 00:33:25 +03:00
|
|
|
|
2022-06-30 22:41:13 +03:00
|
|
|
/* Add the cpreg definitions for debug related system registers */
|
|
|
|
void define_debug_regs(ARMCPU *cpu);
|
|
|
|
|
|
|
|
/* Effective value of MDCR_EL2 */
|
|
|
|
static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
|
|
|
|
{
|
|
|
|
return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
|
|
|
|
}
|
|
|
|
|
2022-06-08 21:38:57 +03:00
|
|
|
/* Powers of 2 for sve_vq_map et al. */
|
|
|
|
#define SVE_VQ_POW2_MAP \
|
|
|
|
((1 << (1 - 1)) | (1 << (2 - 1)) | \
|
|
|
|
(1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
|
|
|
|
|
2023-01-30 21:24:45 +03:00
|
|
|
/*
|
|
|
|
* Return true if it is possible to take a fine-grained-trap to EL2.
|
|
|
|
*/
|
|
|
|
static inline bool arm_fgt_active(CPUARMState *env, int el)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
|
|
|
|
* that can affect EL0, but it is harmless to do the test also for
|
|
|
|
* traps on registers that are only accessible at EL1 because if the test
|
|
|
|
* returns true then we can't be executing at EL1 anyway.
|
|
|
|
* FGT traps only happen when EL2 is enabled and EL1 is AArch64;
|
|
|
|
* traps from AArch32 only happen for the EL0 is AArch32 case.
|
|
|
|
*/
|
|
|
|
return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
|
|
|
|
el < 2 && arm_is_el2_enabled(env) &&
|
|
|
|
arm_el_is_aa64(env, 1) &&
|
|
|
|
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
|
|
|
|
(!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
|
|
|
|
}
|
|
|
|
|
2023-02-17 23:11:33 +03:00
|
|
|
void assert_hflags_rebuild_correctly(CPUARMState *env);
|
2023-06-06 12:19:29 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Although the ARM implementation of hardware assisted debugging
|
|
|
|
* allows for different breakpoints per-core, the current GDB
|
|
|
|
* interface treats them as a global pool of registers (which seems to
|
|
|
|
* be the case for x86, ppc and s390). As a result we store one copy
|
|
|
|
* of registers which is used for all active cores.
|
|
|
|
*
|
|
|
|
* Write access is serialised by virtue of the GDB protocol which
|
|
|
|
* updates things. Read access (i.e. when the values are copied to the
|
|
|
|
* vCPU) is also gated by GDB's run control.
|
|
|
|
*
|
|
|
|
* This is not unreasonable as most of the time debugging kernels you
|
|
|
|
* never know which core will eventually execute your function.
|
|
|
|
*/
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
uint64_t bcr;
|
|
|
|
uint64_t bvr;
|
|
|
|
} HWBreakpoint;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The watchpoint registers can cover more area than the requested
|
|
|
|
* watchpoint so we need to store the additional information
|
|
|
|
* somewhere. We also need to supply a CPUWatchpoint to the GDB stub
|
|
|
|
* when the watchpoint is hit.
|
|
|
|
*/
|
|
|
|
typedef struct {
|
|
|
|
uint64_t wcr;
|
|
|
|
uint64_t wvr;
|
|
|
|
CPUWatchpoint details;
|
|
|
|
} HWWatchpoint;
|
|
|
|
|
|
|
|
/* Maximum and current break/watch point counts */
|
|
|
|
extern int max_hw_bps, max_hw_wps;
|
|
|
|
extern GArray *hw_breakpoints, *hw_watchpoints;
|
|
|
|
|
|
|
|
#define cur_hw_wps (hw_watchpoints->len)
|
|
|
|
#define cur_hw_bps (hw_breakpoints->len)
|
|
|
|
#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
|
|
|
|
#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
|
|
|
|
|
|
|
|
bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
|
|
|
|
int insert_hw_breakpoint(target_ulong pc);
|
|
|
|
int delete_hw_breakpoint(target_ulong pc);
|
|
|
|
|
|
|
|
bool check_watchpoint_in_range(int i, target_ulong addr);
|
|
|
|
CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
|
|
|
|
int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
|
|
|
|
int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
|
2014-04-15 22:18:37 +04:00
|
|
|
#endif
|