qemu/target/xtensa/op_helper.c

1063 lines
31 KiB
C
Raw Normal View History

/*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/address-spaces.h"
#include "qemu/timer.h"
#include "fpu/softfloat.h"
#ifndef CONFIG_USER_ONLY
void xtensa_cpu_do_unaligned_access(CPUState *cs,
vaddr addr, MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
!xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
icount: fix cpu_restore_state_from_tb for non-tb-exit cases In icount mode, instructions that access io memory spaces in the middle of the translation block invoke TB recompilation. After recompilation, such instructions become last in the TB and are allowed to access io memory spaces. When the code includes instruction like i386 'xchg eax, 0xffffd080' which accesses APIC, QEMU goes into an infinite loop of the recompilation. This instruction includes two memory accesses - one read and one write. After the first access, APIC calls cpu_report_tpr_access, which restores the CPU state to get the current eip. But cpu_restore_state_from_tb resets the cpu->can_do_io flag which makes the second memory access invalid. Therefore the second memory access causes a recompilation of the block. Then these operations repeat again and again. This patch moves resetting cpu->can_do_io flag from cpu_restore_state_from_tb to cpu_loop_exit* functions. It also adds a parameter for cpu_restore_state which controls restoring icount. There is no need to restore icount when we only query CPU state without breaking the TB. Restoring it in such cases leads to the incorrect flow of the virtual time. In most cases new parameter is true (icount should be recalculated). But there are two cases in i386 and openrisc when the CPU state is only queried without the need to break the TB. This patch fixes both of these cases. Signed-off-by: Pavel Dovgalyuk <Pavel.Dovgaluk@ispras.ru> Message-Id: <20180409091320.12504.35329.stgit@pasha-VirtualBox> [rth: Make can_do_io setting unconditional; move from cpu_exec; make cpu_loop_exit_{noexc,restore} call cpu_loop_exit.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2018-04-09 12:13:20 +03:00
cpu_restore_state(CPU(cpu), retaddr, true);
HELPER(exception_cause_vaddr)(env,
env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
}
}
void tlb_fill(CPUState *cs, target_ulong vaddr, int size,
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
uint32_t paddr;
uint32_t page_size;
unsigned access;
int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
&paddr, &page_size, &access);
qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
__func__, vaddr, access_type, mmu_idx, paddr, ret);
if (ret == 0) {
tlb_set_page(cs,
vaddr & TARGET_PAGE_MASK,
paddr & TARGET_PAGE_MASK,
access, mmu_idx, page_size);
} else {
icount: fix cpu_restore_state_from_tb for non-tb-exit cases In icount mode, instructions that access io memory spaces in the middle of the translation block invoke TB recompilation. After recompilation, such instructions become last in the TB and are allowed to access io memory spaces. When the code includes instruction like i386 'xchg eax, 0xffffd080' which accesses APIC, QEMU goes into an infinite loop of the recompilation. This instruction includes two memory accesses - one read and one write. After the first access, APIC calls cpu_report_tpr_access, which restores the CPU state to get the current eip. But cpu_restore_state_from_tb resets the cpu->can_do_io flag which makes the second memory access invalid. Therefore the second memory access causes a recompilation of the block. Then these operations repeat again and again. This patch moves resetting cpu->can_do_io flag from cpu_restore_state_from_tb to cpu_loop_exit* functions. It also adds a parameter for cpu_restore_state which controls restoring icount. There is no need to restore icount when we only query CPU state without breaking the TB. Restoring it in such cases leads to the incorrect flow of the virtual time. In most cases new parameter is true (icount should be recalculated). But there are two cases in i386 and openrisc when the CPU state is only queried without the need to break the TB. This patch fixes both of these cases. Signed-off-by: Pavel Dovgalyuk <Pavel.Dovgaluk@ispras.ru> Message-Id: <20180409091320.12504.35329.stgit@pasha-VirtualBox> [rth: Make can_do_io setting unconditional; move from cpu_exec; make cpu_loop_exit_{noexc,restore} call cpu_loop_exit.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2018-04-09 12:13:20 +03:00
cpu_restore_state(cs, retaddr, true);
HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
}
}
void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
bool is_write, bool is_exec, int opaque,
unsigned size)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
HELPER(exception_cause_vaddr)(env, env->pc,
is_exec ?
INSTR_PIF_ADDR_ERROR_CAUSE :
LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
is_exec ? addr : cs->mem_io_vaddr);
}
static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
{
uint32_t paddr;
uint32_t page_size;
unsigned access;
int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
&paddr, &page_size, &access);
if (ret == 0) {
tb_invalidate_phys_addr(&address_space_memory, paddr,
MEMTXATTRS_UNSPECIFIED);
}
}
#else
static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
{
tb_invalidate_phys_addr(vaddr);
}
#endif
void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
{
CPUState *cs = CPU(xtensa_env_get_cpu(env));
cs->exception_index = excp;
if (excp == EXCP_YIELD) {
env->yield_needed = 0;
}
if (excp == EXCP_DEBUG) {
env->exception_taken = 0;
}
cpu_loop_exit(cs);
}
void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
{
uint32_t vector;
env->pc = pc;
if (env->sregs[PS] & PS_EXCM) {
if (env->config->ndepc) {
env->sregs[DEPC] = pc;
} else {
env->sregs[EPC1] = pc;
}
vector = EXC_DOUBLE;
} else {
env->sregs[EPC1] = pc;
vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
}
env->sregs[EXCCAUSE] = cause;
env->sregs[PS] |= PS_EXCM;
HELPER(exception)(env, vector);
}
void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
uint32_t pc, uint32_t cause, uint32_t vaddr)
{
env->sregs[EXCVADDR] = vaddr;
HELPER(exception_cause)(env, pc, cause);
}
void debug_exception_env(CPUXtensaState *env, uint32_t cause)
{
if (xtensa_get_cintlevel(env) < env->config->debug_level) {
HELPER(debug_exception)(env, env->pc, cause);
}
}
void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
{
unsigned level = env->config->debug_level;
env->pc = pc;
env->sregs[DEBUGCAUSE] = cause;
env->sregs[EPC1 + level - 1] = pc;
env->sregs[EPS2 + level - 2] = env->sregs[PS];
env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
(level << PS_INTLEVEL_SHIFT);
HELPER(exception)(env, EXC_DEBUG);
}
static void copy_window_from_phys(CPUXtensaState *env,
uint32_t window, uint32_t phys, uint32_t n)
{
assert(phys < env->config->nareg);
if (phys + n <= env->config->nareg) {
memcpy(env->regs + window, env->phys_regs + phys,
n * sizeof(uint32_t));
} else {
uint32_t n1 = env->config->nareg - phys;
memcpy(env->regs + window, env->phys_regs + phys,
n1 * sizeof(uint32_t));
memcpy(env->regs + window + n1, env->phys_regs,
(n - n1) * sizeof(uint32_t));
}
}
static void copy_phys_from_window(CPUXtensaState *env,
uint32_t phys, uint32_t window, uint32_t n)
{
assert(phys < env->config->nareg);
if (phys + n <= env->config->nareg) {
memcpy(env->phys_regs + phys, env->regs + window,
n * sizeof(uint32_t));
} else {
uint32_t n1 = env->config->nareg - phys;
memcpy(env->phys_regs + phys, env->regs + window,
n1 * sizeof(uint32_t));
memcpy(env->phys_regs, env->regs + window + n1,
(n - n1) * sizeof(uint32_t));
}
}
static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
{
return a & (env->config->nareg / 4 - 1);
}
static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
{
return 1 << windowbase_bound(a, env);
}
void xtensa_sync_window_from_phys(CPUXtensaState *env)
{
copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
}
void xtensa_sync_phys_from_window(CPUXtensaState *env)
{
copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
}
static void xtensa_rotate_window_abs(CPUXtensaState *env, uint32_t position)
{
xtensa_sync_phys_from_window(env);
env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
xtensa_sync_window_from_phys(env);
}
void xtensa_rotate_window(CPUXtensaState *env, uint32_t delta)
{
xtensa_rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
}
void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
{
xtensa_rotate_window_abs(env, v);
}
void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
{
int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
pc, env->sregs[PS]);
HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
} else {
uint32_t windowstart = xtensa_replicate_windowstart(env) >>
(env->sregs[WINDOW_BASE] + 1);
if (windowstart & ((1 << callinc) - 1)) {
HELPER(window_check)(env, pc, callinc);
}
env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - imm;
xtensa_rotate_window(env, callinc);
env->sregs[WINDOW_START] |=
windowstart_bit(env->sregs[WINDOW_BASE], env);
}
}
void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
{
uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
uint32_t windowstart = xtensa_replicate_windowstart(env) >>
(env->sregs[WINDOW_BASE] + 1);
uint32_t n = ctz32(windowstart) + 1;
assert(n <= w);
xtensa_rotate_window(env, n);
env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
(windowbase << PS_OWB_SHIFT) | PS_EXCM;
env->sregs[EPC1] = env->pc = pc;
switch (ctz32(windowstart >> n)) {
case 0:
HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
break;
case 1:
HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
break;
default:
HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
break;
}
}
uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
{
int n = (env->regs[0] >> 30) & 0x3;
int m = 0;
uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
uint32_t windowstart = env->sregs[WINDOW_START];
uint32_t ret_pc = 0;
if (windowstart & windowstart_bit(windowbase - 1, env)) {
m = 1;
} else if (windowstart & windowstart_bit(windowbase - 2, env)) {
m = 2;
} else if (windowstart & windowstart_bit(windowbase - 3, env)) {
m = 3;
}
if (n == 0 || (m != 0 && m != n) ||
((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
"PS = %08x, m = %d, n = %d\n",
pc, env->sregs[PS], m, n);
HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
} else {
int owb = windowbase;
ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
xtensa_rotate_window(env, -n);
if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
} else {
/* window underflow */
env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
(windowbase << PS_OWB_SHIFT) | PS_EXCM;
env->sregs[EPC1] = env->pc = pc;
if (n == 1) {
HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
} else if (n == 2) {
HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
} else if (n == 3) {
HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
}
}
}
return ret_pc;
}
void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
{
xtensa_rotate_window(env, imm4);
}
void xtensa_restore_owb(CPUXtensaState *env)
{
xtensa_rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
}
void HELPER(restore_owb)(CPUXtensaState *env)
{
xtensa_restore_owb(env);
}
void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
{
if ((env->sregs[WINDOW_START] &
(windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
}
}
void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
{
if (env->sregs[LBEG] != v) {
tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
env->sregs[LBEG] = v;
}
}
void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
{
if (env->sregs[LEND] != v) {
tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
env->sregs[LEND] = v;
tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
}
}
void HELPER(dump_state)(CPUXtensaState *env)
{
XtensaCPU *cpu = xtensa_env_get_cpu(env);
cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
}
#ifndef CONFIG_USER_ONLY
void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
{
CPUState *cpu;
env->pc = pc;
env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
(intlevel << PS_INTLEVEL_SHIFT);
qemu_mutex_lock_iothread();
check_interrupts(env);
qemu_mutex_unlock_iothread();
if (env->pending_irq_level) {
cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
return;
}
cpu = CPU(xtensa_env_get_cpu(env));
cpu->halted = 1;
HELPER(exception)(env, EXCP_HLT);
}
void HELPER(update_ccount)(CPUXtensaState *env)
{
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
env->ccount_time = now;
env->sregs[CCOUNT] = env->ccount_base +
(uint32_t)((now - env->time_base) *
env->config->clock_freq_khz / 1000000);
}
void HELPER(wsr_ccount)(CPUXtensaState *env, uint32_t v)
{
int i;
HELPER(update_ccount)(env);
env->ccount_base += v - env->sregs[CCOUNT];
for (i = 0; i < env->config->nccompare; ++i) {
HELPER(update_ccompare)(env, i);
}
}
void HELPER(update_ccompare)(CPUXtensaState *env, uint32_t i)
{
uint64_t dcc;
HELPER(update_ccount)(env);
dcc = (uint64_t)(env->sregs[CCOMPARE + i] - env->sregs[CCOUNT] - 1) + 1;
timer_mod(env->ccompare[i].timer,
env->ccount_time + (dcc * 1000000) / env->config->clock_freq_khz);
env->yield_needed = 1;
}
void HELPER(check_interrupts)(CPUXtensaState *env)
{
qemu_mutex_lock_iothread();
check_interrupts(env);
qemu_mutex_unlock_iothread();
}
void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
{
get_page_addr_code(env, vaddr);
}
/*!
* Check vaddr accessibility/cache attributes and raise an exception if
* specified by the ATOMCTL SR.
*
* Note: local memory exclusion is not implemented
*/
void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
{
uint32_t paddr, page_size, access;
uint32_t atomctl = env->sregs[ATOMCTL];
int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
xtensa_get_cring(env), &paddr, &page_size, &access);
/*
* s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
* see opcode description in the ISA
*/
if (rc == 0 &&
(access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
rc = STORE_PROHIBITED_CAUSE;
}
if (rc) {
HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
}
/*
* When data cache is not configured use ATOMCTL bypass field.
* See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
* under the Conditional Store Option.
*/
if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
access = PAGE_CACHE_BYPASS;
}
switch (access & PAGE_CACHE_MASK) {
case PAGE_CACHE_WB:
atomctl >>= 2;
/* fall through */
case PAGE_CACHE_WT:
atomctl >>= 2;
/* fall through */
case PAGE_CACHE_BYPASS:
if ((atomctl & 0x3) == 0) {
HELPER(exception_cause_vaddr)(env, pc,
LOAD_STORE_ERROR_CAUSE, vaddr);
}
break;
case PAGE_CACHE_ISOLATE:
HELPER(exception_cause_vaddr)(env, pc,
LOAD_STORE_ERROR_CAUSE, vaddr);
break;
default:
break;
}
}
void HELPER(wsr_memctl)(CPUXtensaState *env, uint32_t v)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_ICACHE)) {
if (extract32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN) >
env->config->icache_ways) {
deposit32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN,
env->config->icache_ways);
}
}
if (xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
if (extract32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN) >
env->config->dcache_ways) {
deposit32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN,
env->config->dcache_ways);
}
if (extract32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN) >
env->config->dcache_ways) {
deposit32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN,
env->config->dcache_ways);
}
}
env->sregs[MEMCTL] = v & env->config->memctl_mask;
}
void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
{
XtensaCPU *cpu = xtensa_env_get_cpu(env);
v = (v & 0xffffff00) | 0x1;
if (v != env->sregs[RASID]) {
env->sregs[RASID] = v;
tlb_flush(CPU(cpu));
}
}
static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
switch (way) {
case 4:
return (tlbcfg >> 16) & 0x3;
case 5:
return (tlbcfg >> 20) & 0x1;
case 6:
return (tlbcfg >> 24) & 0x1;
default:
return 0;
}
}
/*!
* Get bit mask for the virtual address bits translated by the TLB way
*/
uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
bool varway56 = dtlb ?
env->config->dtlb.varway56 :
env->config->itlb.varway56;
switch (way) {
case 4:
return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
case 5:
if (varway56) {
return 0xf8000000 << get_page_size(env, dtlb, way);
} else {
return 0xf8000000;
}
case 6:
if (varway56) {
return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
} else {
return 0xf0000000;
}
default:
return 0xfffff000;
}
} else {
return REGION_PAGE_MASK;
}
}
/*!
* Get bit mask for the 'VPN without index' field.
* See ISA, 4.6.5.6, data format for RxTLB0
*/
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
{
if (way < 4) {
bool is32 = (dtlb ?
env->config->dtlb.nrefillentries :
env->config->itlb.nrefillentries) == 32;
return is32 ? 0xffff8000 : 0xffffc000;
} else if (way == 4) {
return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
} else if (way <= 6) {
uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
bool varway56 = dtlb ?
env->config->dtlb.varway56 :
env->config->itlb.varway56;
if (varway56) {
return mask << (way == 5 ? 2 : 3);
} else {
return mask << 1;
}
} else {
return 0xfffff000;
}
}
/*!
* Split virtual address into VPN (with index) and entry index
* for the given TLB way
*/
void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
uint32_t *vpn, uint32_t wi, uint32_t *ei)
{
bool varway56 = dtlb ?
env->config->dtlb.varway56 :
env->config->itlb.varway56;
if (!dtlb) {
wi &= 7;
}
if (wi < 4) {
bool is32 = (dtlb ?
env->config->dtlb.nrefillentries :
env->config->itlb.nrefillentries) == 32;
*ei = (v >> 12) & (is32 ? 0x7 : 0x3);
} else {
switch (wi) {
case 4:
{
uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
*ei = (v >> eibase) & 0x3;
}
break;
case 5:
if (varway56) {
uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
*ei = (v >> eibase) & 0x3;
} else {
*ei = (v >> 27) & 0x1;
}
break;
case 6:
if (varway56) {
uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
*ei = (v >> eibase) & 0x7;
} else {
*ei = (v >> 28) & 0x1;
}
break;
default:
*ei = 0;
break;
}
}
*vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
}
/*!
* Split TLB address into TLB way, entry index and VPN (with index).
* See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
*/
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
uint32_t *vpn, uint32_t *wi, uint32_t *ei)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
*wi = v & (dtlb ? 0xf : 0x7);
split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
} else {
*vpn = v & REGION_PAGE_MASK;
*wi = 0;
*ei = (v >> 29) & 0x7;
}
}
static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
uint32_t v, bool dtlb, uint32_t *pwi)
{
uint32_t vpn;
uint32_t wi;
uint32_t ei;
split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
if (pwi) {
*pwi = wi;
}
return xtensa_tlb_get_entry(env, dtlb, wi, ei);
}
uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
uint32_t wi;
const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
} else {
return v & REGION_PAGE_MASK;
}
}
uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
return entry->paddr | entry->attr;
}
void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
uint32_t wi;
xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
if (entry->variable && entry->asid) {
tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
entry->asid = 0;
}
}
}
uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
uint32_t wi;
uint32_t ei;
uint8_t ring;
int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
switch (res) {
case 0:
if (ring >= xtensa_get_ring(env)) {
return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
}
break;
case INST_TLB_MULTI_HIT_CAUSE:
case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
HELPER(exception_cause_vaddr)(env, env->pc, res, v);
break;
}
return 0;
} else {
return (v & REGION_PAGE_MASK) | 0x1;
}
}
void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
xtensa_tlb_entry *entry, bool dtlb,
unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
entry->vaddr = vpn;
entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
entry->attr = pte & 0xf;
}
void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
XtensaCPU *cpu = xtensa_env_get_cpu(env);
CPUState *cs = CPU(cpu);
xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
if (entry->variable) {
if (entry->asid) {
tlb_flush_page(cs, entry->vaddr);
}
xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
tlb_flush_page(cs, entry->vaddr);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
__func__, dtlb, wi, ei);
}
} else {
tlb_flush_page(cs, entry->vaddr);
if (xtensa_option_enabled(env->config,
XTENSA_OPTION_REGION_TRANSLATION)) {
entry->paddr = pte & REGION_PAGE_MASK;
}
entry->attr = pte & 0xf;
}
}
void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
{
uint32_t vpn;
uint32_t wi;
uint32_t ei;
split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
}
void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
{
uint32_t change = v ^ env->sregs[IBREAKENABLE];
unsigned i;
for (i = 0; i < env->config->nibreak; ++i) {
if (change & (1 << i)) {
tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
}
}
env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
}
void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
{
if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
tb_invalidate_virtual_addr(env, v);
}
env->sregs[IBREAKA + i] = v;
}
static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
uint32_t dbreakc)
{
CPUState *cs = CPU(xtensa_env_get_cpu(env));
int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
uint32_t mask = dbreakc | ~DBREAKC_MASK;
if (env->cpu_watchpoint[i]) {
cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
}
if (dbreakc & DBREAKC_SB) {
flags |= BP_MEM_WRITE;
}
if (dbreakc & DBREAKC_LB) {
flags |= BP_MEM_READ;
}
/* contiguous mask after inversion is one less than some power of 2 */
if ((~mask + 1) & ~mask) {
qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
/* cut mask after the first zero bit */
mask = 0xffffffff << (32 - clo32(mask));
}
if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
flags, &env->cpu_watchpoint[i])) {
env->cpu_watchpoint[i] = NULL;
qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
dbreaka & mask, ~mask + 1);
}
}
void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
{
uint32_t dbreakc = env->sregs[DBREAKC + i];
if ((dbreakc & DBREAKC_SB_LB) &&
env->sregs[DBREAKA + i] != v) {
set_dbreak(env, i, v, dbreakc);
}
env->sregs[DBREAKA + i] = v;
}
void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
{
if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
if (v & DBREAKC_SB_LB) {
set_dbreak(env, i, env->sregs[DBREAKA + i], v);
} else {
if (env->cpu_watchpoint[i]) {
CPUState *cs = CPU(xtensa_env_get_cpu(env));
cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
env->cpu_watchpoint[i] = NULL;
}
}
}
env->sregs[DBREAKC + i] = v;
}
#endif
void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
{
static const int rounding_mode[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down,
};
env->uregs[FCR] = v & 0xfffff07f;
set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
}
float32 HELPER(abs_s)(float32 v)
{
return float32_abs(v);
}
float32 HELPER(neg_s)(float32 v)
{
return float32_chs(v);
}
float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
{
return float32_add(a, b, &env->fp_status);
}
float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
{
return float32_sub(a, b, &env->fp_status);
}
float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
{
return float32_mul(a, b, &env->fp_status);
}
float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
return float32_muladd(b, c, a, 0,
&env->fp_status);
}
float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
return float32_muladd(b, c, a, float_muladd_negate_product,
&env->fp_status);
}
uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
float_status fp_status = {0};
set_float_rounding_mode(rounding_mode, &fp_status);
return float32_to_int32(
float32_scalbn(v, scale, &fp_status), &fp_status);
}
uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
float_status fp_status = {0};
float32 res;
set_float_rounding_mode(rounding_mode, &fp_status);
res = float32_scalbn(v, scale, &fp_status);
if (float32_is_neg(v) && !float32_is_any_nan(v)) {
return float32_to_int32(res, &fp_status);
} else {
return float32_to_uint32(res, &fp_status);
}
}
float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
return float32_scalbn(int32_to_float32(v, &env->fp_status),
(int32_t)scale, &env->fp_status);
}
float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
return float32_scalbn(uint32_to_float32(v, &env->fp_status),
(int32_t)scale, &env->fp_status);
}
static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
{
if (v) {
env->sregs[BR] |= br;
} else {
env->sregs[BR] &= ~br;
}
}
void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
}
void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
}
void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
int v = float32_compare_quiet(a, b, &env->fp_status);
set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
}
void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
}
void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
int v = float32_compare_quiet(a, b, &env->fp_status);
set_br(env, v == float_relation_less || v == float_relation_unordered, br);
}
void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
}
void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
int v = float32_compare_quiet(a, b, &env->fp_status);
set_br(env, v != float_relation_greater, br);
}
uint32_t HELPER(rer)(CPUXtensaState *env, uint32_t addr)
{
#ifndef CONFIG_USER_ONLY
return address_space_ldl(env->address_space_er, addr,
MEMTXATTRS_UNSPECIFIED, NULL);
#else
return 0;
#endif
}
void HELPER(wer)(CPUXtensaState *env, uint32_t data, uint32_t addr)
{
#ifndef CONFIG_USER_ONLY
address_space_stl(env->address_space_er, addr, data,
MEMTXATTRS_UNSPECIFIED, NULL);
#endif
}