qemu/hw/ppc/e500.c

1087 lines
35 KiB
C
Raw Normal View History

/*
* QEMU PowerPC e500-based platforms
*
* Copyright (C) 2009 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, <yu.liu@freescale.com>
*
* This file is derived from hw/ppc440_bamboo.c,
* the copyright for that material belongs to the original owners.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "config.h"
#include "qemu-common.h"
#include "e500.h"
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
#include "e500-ccsr.h"
#include "net/net.h"
#include "qemu/config-file.h"
#include "hw/hw.h"
#include "hw/char/serial.h"
#include "hw/pci/pci.h"
#include "hw/boards.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "sysemu/device_tree.h"
#include "hw/ppc/openpic.h"
#include "hw/ppc/ppc.h"
#include "hw/loader.h"
#include "elf.h"
#include "hw/sysbus.h"
#include "exec/address-spaces.h"
#include "qemu/host-utils.h"
#include "hw/pci-host/ppce500.h"
#include "qemu/error-report.h"
#include "hw/platform-bus.h"
#include "hw/net/fsl_etsec/etsec.h"
#define EPAPR_MAGIC (0x45504150)
#define BINARY_DEVICE_TREE_FILE "mpc8544ds.dtb"
#define DTC_LOAD_PAD 0x1800000
#define DTC_PAD_MASK 0xFFFFF
#define DTB_MAX_SIZE (8 * 1024 * 1024)
#define INITRD_LOAD_PAD 0x2000000
#define INITRD_PAD_MASK 0xFFFFFF
#define RAM_SIZES_ALIGN (64UL << 20)
/* TODO: parameterize */
#define MPC8544_CCSRBAR_SIZE 0x00100000ULL
#define MPC8544_MPIC_REGS_OFFSET 0x40000ULL
#define MPC8544_MSI_REGS_OFFSET 0x41600ULL
#define MPC8544_SERIAL0_REGS_OFFSET 0x4500ULL
#define MPC8544_SERIAL1_REGS_OFFSET 0x4600ULL
#define MPC8544_PCI_REGS_OFFSET 0x8000ULL
#define MPC8544_PCI_REGS_SIZE 0x1000ULL
#define MPC8544_UTIL_OFFSET 0xe0000ULL
#define MPC8XXX_GPIO_OFFSET 0x000FF000ULL
#define MPC8XXX_GPIO_IRQ 47
struct boot_info
{
uint32_t dt_base;
uint32_t dt_size;
uint32_t entry;
};
static uint32_t *pci_map_create(void *fdt, uint32_t mpic, int first_slot,
int nr_slots, int *len)
{
int i = 0;
int slot;
int pci_irq;
int host_irq;
int last_slot = first_slot + nr_slots;
uint32_t *pci_map;
*len = nr_slots * 4 * 7 * sizeof(uint32_t);
pci_map = g_malloc(*len);
for (slot = first_slot; slot < last_slot; slot++) {
for (pci_irq = 0; pci_irq < 4; pci_irq++) {
pci_map[i++] = cpu_to_be32(slot << 11);
pci_map[i++] = cpu_to_be32(0x0);
pci_map[i++] = cpu_to_be32(0x0);
pci_map[i++] = cpu_to_be32(pci_irq + 1);
pci_map[i++] = cpu_to_be32(mpic);
host_irq = ppce500_pci_map_irq_slot(slot, pci_irq);
pci_map[i++] = cpu_to_be32(host_irq + 1);
pci_map[i++] = cpu_to_be32(0x1);
}
}
assert((i * sizeof(uint32_t)) == *len);
return pci_map;
}
static void dt_serial_create(void *fdt, unsigned long long offset,
const char *soc, const char *mpic,
const char *alias, int idx, bool defcon)
{
char ser[128];
snprintf(ser, sizeof(ser), "%s/serial@%llx", soc, offset);
qemu_fdt_add_subnode(fdt, ser);
qemu_fdt_setprop_string(fdt, ser, "device_type", "serial");
qemu_fdt_setprop_string(fdt, ser, "compatible", "ns16550");
qemu_fdt_setprop_cells(fdt, ser, "reg", offset, 0x100);
qemu_fdt_setprop_cell(fdt, ser, "cell-index", idx);
qemu_fdt_setprop_cell(fdt, ser, "clock-frequency", 0);
qemu_fdt_setprop_cells(fdt, ser, "interrupts", 42, 2);
qemu_fdt_setprop_phandle(fdt, ser, "interrupt-parent", mpic);
qemu_fdt_setprop_string(fdt, "/aliases", alias, ser);
if (defcon) {
qemu_fdt_setprop_string(fdt, "/chosen", "linux,stdout-path", ser);
}
}
static void create_dt_mpc8xxx_gpio(void *fdt, const char *soc, const char *mpic)
{
hwaddr mmio0 = MPC8XXX_GPIO_OFFSET;
int irq0 = MPC8XXX_GPIO_IRQ;
gchar *node = g_strdup_printf("%s/gpio@%"PRIx64, soc, mmio0);
gchar *poweroff = g_strdup_printf("%s/power-off", soc);
int gpio_ph;
qemu_fdt_add_subnode(fdt, node);
qemu_fdt_setprop_string(fdt, node, "compatible", "fsl,qoriq-gpio");
qemu_fdt_setprop_cells(fdt, node, "reg", mmio0, 0x1000);
qemu_fdt_setprop_cells(fdt, node, "interrupts", irq0, 0x2);
qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, node, "#gpio-cells", 2);
qemu_fdt_setprop(fdt, node, "gpio-controller", NULL, 0);
gpio_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cell(fdt, node, "phandle", gpio_ph);
qemu_fdt_setprop_cell(fdt, node, "linux,phandle", gpio_ph);
/* Power Off Pin */
qemu_fdt_add_subnode(fdt, poweroff);
qemu_fdt_setprop_string(fdt, poweroff, "compatible", "gpio-poweroff");
qemu_fdt_setprop_cells(fdt, poweroff, "gpios", gpio_ph, 0, 0);
g_free(node);
g_free(poweroff);
}
typedef struct PlatformDevtreeData {
void *fdt;
const char *mpic;
int irq_start;
const char *node;
PlatformBusDevice *pbus;
} PlatformDevtreeData;
static int create_devtree_etsec(SysBusDevice *sbdev, PlatformDevtreeData *data)
{
eTSEC *etsec = ETSEC_COMMON(sbdev);
PlatformBusDevice *pbus = data->pbus;
hwaddr mmio0 = platform_bus_get_mmio_addr(pbus, sbdev, 0);
int irq0 = platform_bus_get_irqn(pbus, sbdev, 0);
int irq1 = platform_bus_get_irqn(pbus, sbdev, 1);
int irq2 = platform_bus_get_irqn(pbus, sbdev, 2);
gchar *node = g_strdup_printf("/platform/ethernet@%"PRIx64, mmio0);
gchar *group = g_strdup_printf("%s/queue-group", node);
void *fdt = data->fdt;
assert((int64_t)mmio0 >= 0);
assert(irq0 >= 0);
assert(irq1 >= 0);
assert(irq2 >= 0);
qemu_fdt_add_subnode(fdt, node);
qemu_fdt_setprop_string(fdt, node, "device_type", "network");
qemu_fdt_setprop_string(fdt, node, "compatible", "fsl,etsec2");
qemu_fdt_setprop_string(fdt, node, "model", "eTSEC");
qemu_fdt_setprop(fdt, node, "local-mac-address", etsec->conf.macaddr.a, 6);
qemu_fdt_setprop_cells(fdt, node, "fixed-link", 0, 1, 1000, 0, 0);
qemu_fdt_add_subnode(fdt, group);
qemu_fdt_setprop_cells(fdt, group, "reg", mmio0, 0x1000);
qemu_fdt_setprop_cells(fdt, group, "interrupts",
data->irq_start + irq0, 0x2,
data->irq_start + irq1, 0x2,
data->irq_start + irq2, 0x2);
g_free(node);
g_free(group);
return 0;
}
static int sysbus_device_create_devtree(SysBusDevice *sbdev, void *opaque)
{
PlatformDevtreeData *data = opaque;
bool matched = false;
if (object_dynamic_cast(OBJECT(sbdev), TYPE_ETSEC_COMMON)) {
create_devtree_etsec(sbdev, data);
matched = true;
}
if (!matched) {
error_report("Device %s is not supported by this machine yet.",
qdev_fw_name(DEVICE(sbdev)));
exit(1);
}
return 0;
}
static void platform_bus_create_devtree(PPCE500Params *params, void *fdt,
const char *mpic)
{
gchar *node = g_strdup_printf("/platform@%"PRIx64, params->platform_bus_base);
const char platcomp[] = "qemu,platform\0simple-bus";
uint64_t addr = params->platform_bus_base;
uint64_t size = params->platform_bus_size;
int irq_start = params->platform_bus_first_irq;
PlatformBusDevice *pbus;
DeviceState *dev;
/* Create a /platform node that we can put all devices into */
qemu_fdt_add_subnode(fdt, node);
qemu_fdt_setprop(fdt, node, "compatible", platcomp, sizeof(platcomp));
/* Our platform bus region is less than 32bit big, so 1 cell is enough for
address and size */
qemu_fdt_setprop_cells(fdt, node, "#size-cells", 1);
qemu_fdt_setprop_cells(fdt, node, "#address-cells", 1);
qemu_fdt_setprop_cells(fdt, node, "ranges", 0, addr >> 32, addr, size);
qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", mpic);
dev = qdev_find_recursive(sysbus_get_default(), TYPE_PLATFORM_BUS_DEVICE);
pbus = PLATFORM_BUS_DEVICE(dev);
/* We can only create dt nodes for dynamic devices when they're ready */
if (pbus->done_gathering) {
PlatformDevtreeData data = {
.fdt = fdt,
.mpic = mpic,
.irq_start = irq_start,
.node = node,
.pbus = pbus,
};
/* Loop through all dynamic sysbus devices and create nodes for them */
foreach_dynamic_sysbus_device(sysbus_device_create_devtree, &data);
}
g_free(node);
}
static int ppce500_load_device_tree(MachineState *machine,
PPCE500Params *params,
hwaddr addr,
hwaddr initrd_base,
hwaddr initrd_size,
hwaddr kernel_base,
hwaddr kernel_size,
bool dry_run)
{
CPUPPCState *env = first_cpu->env_ptr;
int ret = -1;
uint64_t mem_reg_property[] = { 0, cpu_to_be64(machine->ram_size) };
int fdt_size;
void *fdt;
uint8_t hypercall[16];
uint32_t clock_freq = 400000000;
uint32_t tb_freq = 400000000;
int i;
char compatible_sb[] = "fsl,mpc8544-immr\0simple-bus";
char soc[128];
char mpic[128];
uint32_t mpic_ph;
uint32_t msi_ph;
char gutil[128];
char pci[128];
char msi[128];
uint32_t *pci_map = NULL;
int len;
uint32_t pci_ranges[14] =
{
0x2000000, 0x0, params->pci_mmio_bus_base,
params->pci_mmio_base >> 32, params->pci_mmio_base,
0x0, 0x20000000,
0x1000000, 0x0, 0x0,
params->pci_pio_base >> 32, params->pci_pio_base,
0x0, 0x10000,
};
QemuOpts *machine_opts = qemu_get_machine_opts();
const char *dtb_file = qemu_opt_get(machine_opts, "dtb");
const char *toplevel_compat = qemu_opt_get(machine_opts, "dt_compatible");
if (dtb_file) {
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, dtb_file);
if (!filename) {
goto out;
}
fdt = load_device_tree(filename, &fdt_size);
if (!fdt) {
goto out;
}
goto done;
}
fdt = create_device_tree(&fdt_size);
if (fdt == NULL) {
goto out;
}
/* Manipulate device tree in memory. */
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 2);
qemu_fdt_add_subnode(fdt, "/memory");
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
qemu_fdt_setprop(fdt, "/memory", "reg", mem_reg_property,
sizeof(mem_reg_property));
qemu_fdt_add_subnode(fdt, "/chosen");
if (initrd_size) {
ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
initrd_base);
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
}
ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
(initrd_base + initrd_size));
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
}
}
if (kernel_base != -1ULL) {
qemu_fdt_setprop_cells(fdt, "/chosen", "qemu,boot-kernel",
kernel_base >> 32, kernel_base,
kernel_size >> 32, kernel_size);
}
ret = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
machine->kernel_cmdline);
if (ret < 0)
fprintf(stderr, "couldn't set /chosen/bootargs\n");
if (kvm_enabled()) {
/* Read out host's frequencies */
clock_freq = kvmppc_get_clockfreq();
tb_freq = kvmppc_get_tbfreq();
/* indicate KVM hypercall interface */
qemu_fdt_add_subnode(fdt, "/hypervisor");
qemu_fdt_setprop_string(fdt, "/hypervisor", "compatible",
"linux,kvm");
kvmppc_get_hypercall(env, hypercall, sizeof(hypercall));
qemu_fdt_setprop(fdt, "/hypervisor", "hcall-instructions",
hypercall, sizeof(hypercall));
/* if KVM supports the idle hcall, set property indicating this */
if (kvmppc_get_hasidle(env)) {
qemu_fdt_setprop(fdt, "/hypervisor", "has-idle", NULL, 0);
}
}
/* Create CPU nodes */
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0);
/* We need to generate the cpu nodes in reverse order, so Linux can pick
the first node as boot node and be happy */
for (i = smp_cpus - 1; i >= 0; i--) {
CPUState *cpu;
PowerPCCPU *pcpu;
char cpu_name[128];
uint64_t cpu_release_addr = params->spin_base + (i * 0x20);
cpu = qemu_get_cpu(i);
if (cpu == NULL) {
continue;
}
env = cpu->env_ptr;
pcpu = POWERPC_CPU(cpu);
snprintf(cpu_name, sizeof(cpu_name), "/cpus/PowerPC,8544@%x",
ppc_get_vcpu_dt_id(pcpu));
qemu_fdt_add_subnode(fdt, cpu_name);
qemu_fdt_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq);
qemu_fdt_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq);
qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
ppc_get_vcpu_dt_id(pcpu));
qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-line-size",
env->dcache_line_size);
qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-line-size",
env->icache_line_size);
qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000);
qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000);
qemu_fdt_setprop_cell(fdt, cpu_name, "bus-frequency", 0);
if (cpu->cpu_index) {
qemu_fdt_setprop_string(fdt, cpu_name, "status", "disabled");
qemu_fdt_setprop_string(fdt, cpu_name, "enable-method",
"spin-table");
qemu_fdt_setprop_u64(fdt, cpu_name, "cpu-release-addr",
cpu_release_addr);
} else {
qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
}
}
qemu_fdt_add_subnode(fdt, "/aliases");
/* XXX These should go into their respective devices' code */
snprintf(soc, sizeof(soc), "/soc@%"PRIx64, params->ccsrbar_base);
qemu_fdt_add_subnode(fdt, soc);
qemu_fdt_setprop_string(fdt, soc, "device_type", "soc");
qemu_fdt_setprop(fdt, soc, "compatible", compatible_sb,
sizeof(compatible_sb));
qemu_fdt_setprop_cell(fdt, soc, "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, soc, "#size-cells", 1);
qemu_fdt_setprop_cells(fdt, soc, "ranges", 0x0,
params->ccsrbar_base >> 32, params->ccsrbar_base,
MPC8544_CCSRBAR_SIZE);
/* XXX should contain a reasonable value */
qemu_fdt_setprop_cell(fdt, soc, "bus-frequency", 0);
snprintf(mpic, sizeof(mpic), "%s/pic@%llx", soc, MPC8544_MPIC_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, mpic);
qemu_fdt_setprop_string(fdt, mpic, "device_type", "open-pic");
qemu_fdt_setprop_string(fdt, mpic, "compatible", "fsl,mpic");
qemu_fdt_setprop_cells(fdt, mpic, "reg", MPC8544_MPIC_REGS_OFFSET,
0x40000);
qemu_fdt_setprop_cell(fdt, mpic, "#address-cells", 0);
qemu_fdt_setprop_cell(fdt, mpic, "#interrupt-cells", 2);
mpic_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cell(fdt, mpic, "phandle", mpic_ph);
qemu_fdt_setprop_cell(fdt, mpic, "linux,phandle", mpic_ph);
qemu_fdt_setprop(fdt, mpic, "interrupt-controller", NULL, 0);
/*
* We have to generate ser1 first, because Linux takes the first
* device it finds in the dt as serial output device. And we generate
* devices in reverse order to the dt.
*/
if (serial_hds[1]) {
dt_serial_create(fdt, MPC8544_SERIAL1_REGS_OFFSET,
soc, mpic, "serial1", 1, false);
}
if (serial_hds[0]) {
dt_serial_create(fdt, MPC8544_SERIAL0_REGS_OFFSET,
soc, mpic, "serial0", 0, true);
}
snprintf(gutil, sizeof(gutil), "%s/global-utilities@%llx", soc,
MPC8544_UTIL_OFFSET);
qemu_fdt_add_subnode(fdt, gutil);
qemu_fdt_setprop_string(fdt, gutil, "compatible", "fsl,mpc8544-guts");
qemu_fdt_setprop_cells(fdt, gutil, "reg", MPC8544_UTIL_OFFSET, 0x1000);
qemu_fdt_setprop(fdt, gutil, "fsl,has-rstcr", NULL, 0);
snprintf(msi, sizeof(msi), "/%s/msi@%llx", soc, MPC8544_MSI_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, msi);
qemu_fdt_setprop_string(fdt, msi, "compatible", "fsl,mpic-msi");
qemu_fdt_setprop_cells(fdt, msi, "reg", MPC8544_MSI_REGS_OFFSET, 0x200);
msi_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cells(fdt, msi, "msi-available-ranges", 0x0, 0x100);
qemu_fdt_setprop_phandle(fdt, msi, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, msi, "interrupts",
0xe0, 0x0,
0xe1, 0x0,
0xe2, 0x0,
0xe3, 0x0,
0xe4, 0x0,
0xe5, 0x0,
0xe6, 0x0,
0xe7, 0x0);
qemu_fdt_setprop_cell(fdt, msi, "phandle", msi_ph);
qemu_fdt_setprop_cell(fdt, msi, "linux,phandle", msi_ph);
snprintf(pci, sizeof(pci), "/pci@%llx",
params->ccsrbar_base + MPC8544_PCI_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, pci);
qemu_fdt_setprop_cell(fdt, pci, "cell-index", 0);
qemu_fdt_setprop_string(fdt, pci, "compatible", "fsl,mpc8540-pci");
qemu_fdt_setprop_string(fdt, pci, "device_type", "pci");
qemu_fdt_setprop_cells(fdt, pci, "interrupt-map-mask", 0xf800, 0x0,
0x0, 0x7);
pci_map = pci_map_create(fdt, qemu_fdt_get_phandle(fdt, mpic),
params->pci_first_slot, params->pci_nr_slots,
&len);
qemu_fdt_setprop(fdt, pci, "interrupt-map", pci_map, len);
qemu_fdt_setprop_phandle(fdt, pci, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, pci, "interrupts", 24, 2);
qemu_fdt_setprop_cells(fdt, pci, "bus-range", 0, 255);
for (i = 0; i < 14; i++) {
pci_ranges[i] = cpu_to_be32(pci_ranges[i]);
}
qemu_fdt_setprop_cell(fdt, pci, "fsl,msi", msi_ph);
qemu_fdt_setprop(fdt, pci, "ranges", pci_ranges, sizeof(pci_ranges));
qemu_fdt_setprop_cells(fdt, pci, "reg",
(params->ccsrbar_base + MPC8544_PCI_REGS_OFFSET) >> 32,
(params->ccsrbar_base + MPC8544_PCI_REGS_OFFSET),
0, 0x1000);
qemu_fdt_setprop_cell(fdt, pci, "clock-frequency", 66666666);
qemu_fdt_setprop_cell(fdt, pci, "#interrupt-cells", 1);
qemu_fdt_setprop_cell(fdt, pci, "#size-cells", 2);
qemu_fdt_setprop_cell(fdt, pci, "#address-cells", 3);
qemu_fdt_setprop_string(fdt, "/aliases", "pci0", pci);
if (params->has_mpc8xxx_gpio) {
create_dt_mpc8xxx_gpio(fdt, soc, mpic);
}
if (params->has_platform_bus) {
platform_bus_create_devtree(params, fdt, mpic);
}
params->fixup_devtree(params, fdt);
if (toplevel_compat) {
qemu_fdt_setprop(fdt, "/", "compatible", toplevel_compat,
strlen(toplevel_compat) + 1);
}
done:
if (!dry_run) {
qemu_fdt_dumpdtb(fdt, fdt_size);
cpu_physical_memory_write(addr, fdt, fdt_size);
}
ret = fdt_size;
out:
g_free(pci_map);
return ret;
}
typedef struct DeviceTreeParams {
MachineState *machine;
PPCE500Params params;
hwaddr addr;
hwaddr initrd_base;
hwaddr initrd_size;
hwaddr kernel_base;
hwaddr kernel_size;
Notifier notifier;
} DeviceTreeParams;
static void ppce500_reset_device_tree(void *opaque)
{
DeviceTreeParams *p = opaque;
ppce500_load_device_tree(p->machine, &p->params, p->addr, p->initrd_base,
p->initrd_size, p->kernel_base, p->kernel_size,
false);
}
static void ppce500_init_notify(Notifier *notifier, void *data)
{
DeviceTreeParams *p = container_of(notifier, DeviceTreeParams, notifier);
ppce500_reset_device_tree(p);
}
static int ppce500_prep_device_tree(MachineState *machine,
PPCE500Params *params,
hwaddr addr,
hwaddr initrd_base,
hwaddr initrd_size,
hwaddr kernel_base,
hwaddr kernel_size)
{
DeviceTreeParams *p = g_new(DeviceTreeParams, 1);
p->machine = machine;
p->params = *params;
p->addr = addr;
p->initrd_base = initrd_base;
p->initrd_size = initrd_size;
p->kernel_base = kernel_base;
p->kernel_size = kernel_size;
qemu_register_reset(ppce500_reset_device_tree, p);
p->notifier.notify = ppce500_init_notify;
qemu_add_machine_init_done_notifier(&p->notifier);
/* Issue the device tree loader once, so that we get the size of the blob */
return ppce500_load_device_tree(machine, params, addr, initrd_base,
initrd_size, kernel_base, kernel_size,
true);
}
/* Create -kernel TLB entries for BookE. */
static inline hwaddr booke206_page_size_to_tlb(uint64_t size)
{
return 63 - clz64(size >> 10);
}
static int booke206_initial_map_tsize(CPUPPCState *env)
{
struct boot_info *bi = env->load_info;
hwaddr dt_end;
int ps;
/* Our initial TLB entry needs to cover everything from 0 to
the device tree top */
dt_end = bi->dt_base + bi->dt_size;
ps = booke206_page_size_to_tlb(dt_end) + 1;
if (ps & 1) {
/* e500v2 can only do even TLB size bits */
ps++;
}
return ps;
}
static uint64_t mmubooke_initial_mapsize(CPUPPCState *env)
{
int tsize;
tsize = booke206_initial_map_tsize(env);
return (1ULL << 10 << tsize);
}
static void mmubooke_create_initial_mapping(CPUPPCState *env)
{
ppcmas_tlb_t *tlb = booke206_get_tlbm(env, 1, 0, 0);
hwaddr size;
int ps;
ps = booke206_initial_map_tsize(env);
size = (ps << MAS1_TSIZE_SHIFT);
tlb->mas1 = MAS1_VALID | size;
tlb->mas2 = 0;
tlb->mas7_3 = 0;
tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX;
env->tlb_dirty = true;
}
static void ppce500_cpu_reset_sec(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
cpu_reset(cs);
/* Secondary CPU starts in halted state for now. Needs to change when
implementing non-kernel boot. */
cs->halted = 1;
cs->exception_index = EXCP_HLT;
}
static void ppce500_cpu_reset(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
struct boot_info *bi = env->load_info;
cpu_reset(cs);
/* Set initial guest state. */
cs->halted = 0;
env->gpr[1] = (16<<20) - 8;
env->gpr[3] = bi->dt_base;
env->gpr[4] = 0;
env->gpr[5] = 0;
env->gpr[6] = EPAPR_MAGIC;
env->gpr[7] = mmubooke_initial_mapsize(env);
env->gpr[8] = 0;
env->gpr[9] = 0;
env->nip = bi->entry;
mmubooke_create_initial_mapping(env);
}
static DeviceState *ppce500_init_mpic_qemu(PPCE500Params *params,
qemu_irq **irqs)
{
DeviceState *dev;
SysBusDevice *s;
int i, j, k;
dev = qdev_create(NULL, TYPE_OPENPIC);
qdev_prop_set_uint32(dev, "model", params->mpic_version);
qdev_prop_set_uint32(dev, "nb_cpus", smp_cpus);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
k = 0;
for (i = 0; i < smp_cpus; i++) {
for (j = 0; j < OPENPIC_OUTPUT_NB; j++) {
sysbus_connect_irq(s, k++, irqs[i][j]);
}
}
return dev;
}
static DeviceState *ppce500_init_mpic_kvm(PPCE500Params *params,
qemu_irq **irqs)
{
DeviceState *dev;
CPUState *cs;
int r;
dev = qdev_create(NULL, TYPE_KVM_OPENPIC);
qdev_prop_set_uint32(dev, "model", params->mpic_version);
r = qdev_init(dev);
if (r) {
return NULL;
}
CPU_FOREACH(cs) {
if (kvm_openpic_connect_vcpu(dev, cs)) {
fprintf(stderr, "%s: failed to connect vcpu to irqchip\n",
__func__);
abort();
}
}
return dev;
}
static qemu_irq *ppce500_init_mpic(PPCE500Params *params, MemoryRegion *ccsr,
qemu_irq **irqs)
{
qemu_irq *mpic;
DeviceState *dev = NULL;
SysBusDevice *s;
int i;
mpic = g_new0(qemu_irq, 256);
if (kvm_enabled()) {
Fix -machine options accel, kernel_irqchip, kvm_shadow_mem Multiple -machine options with the same ID are merged. All but the one without an ID are to be silently ignored. In most places, we query these options with a null ID. This is correct. In some places, we instead query whatever options come first in the list. This is wrong. When the -machine processed first happens to have an ID, options are taken from that ID, and the ones specified without ID are silently ignored. Example: $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine id=foo -machine accel=kvm,usb=on $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine id=foo,accel=kvm,usb=on -machine accel=xen $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine accel=xen -machine id=foo,accel=kvm,usb=on $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine accel=kvm,usb=on QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: enabled (qemu) info usb (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine id=foo -machine accel=kvm,usb=on QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: disabled (qemu) info usb (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine id=foo,accel=kvm,usb=on -machine accel=xen QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: enabled (qemu) info usb USB support not enabled (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine accel=xen -machine id=foo,accel=kvm,usb=on xc: error: Could not obtain handle on privileged command interface (2 = No such file or directory): Internal error xen be core: can't open xen interface failed to initialize Xen: Operation not permitted Option usb is queried correctly, and the one without an ID wins, regardless of option order. Option accel is queried incorrectly, and which one wins depends on option order and ID. Affected options are accel (and its sugared forms -enable-kvm and -no-kvm), kernel_irqchip, kvm_shadow_mem. Additionally, option kernel_irqchip is normally on by default, except it's off when no -machine options are given. Bug can't bite, because kernel_irqchip is used only when KVM is enabled, KVM is off by default, and enabling always creates -machine options. Downstreams that enable KVM by default do get bitten, though. Use qemu_get_machine_opts() to fix these bugs. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-id: 1372943363-24081-5-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-04 17:09:20 +04:00
QemuOpts *machine_opts = qemu_get_machine_opts();
bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
"kernel_irqchip", true);
Fix -machine options accel, kernel_irqchip, kvm_shadow_mem Multiple -machine options with the same ID are merged. All but the one without an ID are to be silently ignored. In most places, we query these options with a null ID. This is correct. In some places, we instead query whatever options come first in the list. This is wrong. When the -machine processed first happens to have an ID, options are taken from that ID, and the ones specified without ID are silently ignored. Example: $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine id=foo -machine accel=kvm,usb=on $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine id=foo,accel=kvm,usb=on -machine accel=xen $ upstream-qemu -nodefaults -S -display none -monitor stdio -machine accel=xen -machine id=foo,accel=kvm,usb=on $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine accel=kvm,usb=on QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: enabled (qemu) info usb (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine id=foo -machine accel=kvm,usb=on QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: disabled (qemu) info usb (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine id=foo,accel=kvm,usb=on -machine accel=xen QEMU 1.5.50 monitor - type 'help' for more information (qemu) info kvm kvm support: enabled (qemu) info usb USB support not enabled (qemu) q $ qemu-system-x86_64 -nodefaults -S -display none -monitor stdio -machine accel=xen -machine id=foo,accel=kvm,usb=on xc: error: Could not obtain handle on privileged command interface (2 = No such file or directory): Internal error xen be core: can't open xen interface failed to initialize Xen: Operation not permitted Option usb is queried correctly, and the one without an ID wins, regardless of option order. Option accel is queried incorrectly, and which one wins depends on option order and ID. Affected options are accel (and its sugared forms -enable-kvm and -no-kvm), kernel_irqchip, kvm_shadow_mem. Additionally, option kernel_irqchip is normally on by default, except it's off when no -machine options are given. Bug can't bite, because kernel_irqchip is used only when KVM is enabled, KVM is off by default, and enabling always creates -machine options. Downstreams that enable KVM by default do get bitten, though. Use qemu_get_machine_opts() to fix these bugs. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-id: 1372943363-24081-5-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-07-04 17:09:20 +04:00
bool irqchip_required = qemu_opt_get_bool(machine_opts,
"kernel_irqchip", false);
if (irqchip_allowed) {
dev = ppce500_init_mpic_kvm(params, irqs);
}
if (irqchip_required && !dev) {
fprintf(stderr, "%s: irqchip requested but unavailable\n",
__func__);
abort();
}
}
if (!dev) {
dev = ppce500_init_mpic_qemu(params, irqs);
}
for (i = 0; i < 256; i++) {
mpic[i] = qdev_get_gpio_in(dev, i);
}
s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(ccsr, MPC8544_MPIC_REGS_OFFSET,
s->mmio[0].memory);
return mpic;
}
static void ppce500_power_off(void *opaque, int line, int on)
{
if (on) {
qemu_system_shutdown_request();
}
}
void ppce500_init(MachineState *machine, PPCE500Params *params)
{
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
PCIBus *pci_bus;
CPUPPCState *env = NULL;
uint64_t loadaddr;
hwaddr kernel_base = -1LL;
int kernel_size = 0;
hwaddr dt_base = 0;
hwaddr initrd_base = 0;
int initrd_size = 0;
hwaddr cur_base = 0;
char *filename;
hwaddr bios_entry = 0;
target_long bios_size;
struct boot_info *boot_info;
int dt_size;
int i;
/* irq num for pin INTA, INTB, INTC and INTD is 1, 2, 3 and
* 4 respectively */
unsigned int pci_irq_nrs[PCI_NUM_PINS] = {1, 2, 3, 4};
qemu_irq **irqs, *mpic;
DeviceState *dev;
CPUPPCState *firstenv = NULL;
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
MemoryRegion *ccsr_addr_space;
SysBusDevice *s;
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
PPCE500CCSRState *ccsr;
/* Setup CPUs */
if (machine->cpu_model == NULL) {
machine->cpu_model = "e500v2_v30";
}
irqs = g_malloc0(smp_cpus * sizeof(qemu_irq *));
irqs[0] = g_malloc0(smp_cpus * sizeof(qemu_irq) * OPENPIC_OUTPUT_NB);
for (i = 0; i < smp_cpus; i++) {
PowerPCCPU *cpu;
CPUState *cs;
qemu_irq *input;
cpu = cpu_ppc_init(machine->cpu_model);
if (cpu == NULL) {
fprintf(stderr, "Unable to initialize CPU!\n");
exit(1);
}
env = &cpu->env;
cs = CPU(cpu);
if (!firstenv) {
firstenv = env;
}
irqs[i] = irqs[0] + (i * OPENPIC_OUTPUT_NB);
input = (qemu_irq *)env->irq_inputs;
irqs[i][OPENPIC_OUTPUT_INT] = input[PPCE500_INPUT_INT];
irqs[i][OPENPIC_OUTPUT_CINT] = input[PPCE500_INPUT_CINT];
env->spr_cb[SPR_BOOKE_PIR].default_value = cs->cpu_index = i;
env->mpic_iack = params->ccsrbar_base +
MPC8544_MPIC_REGS_OFFSET + 0xa0;
ppc_booke_timers_init(cpu, 400000000, PPC_TIMER_E500);
/* Register reset handler */
if (!i) {
/* Primary CPU */
struct boot_info *boot_info;
boot_info = g_malloc0(sizeof(struct boot_info));
qemu_register_reset(ppce500_cpu_reset, cpu);
env->load_info = boot_info;
} else {
/* Secondary CPUs */
qemu_register_reset(ppce500_cpu_reset_sec, cpu);
}
}
env = firstenv;
/* Fixup Memory size on a alignment boundary */
ram_size &= ~(RAM_SIZES_ALIGN - 1);
machine->ram_size = ram_size;
/* Register Memory */
memory_region_allocate_system_memory(ram, NULL, "mpc8544ds.ram", ram_size);
memory_region_add_subregion(address_space_mem, 0, ram);
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
dev = qdev_create(NULL, "e500-ccsr");
object_property_add_child(qdev_get_machine(), "e500-ccsr",
OBJECT(dev), NULL);
qdev_init_nofail(dev);
ccsr = CCSR(dev);
ccsr_addr_space = &ccsr->ccsr_space;
memory_region_add_subregion(address_space_mem, params->ccsrbar_base,
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
ccsr_addr_space);
mpic = ppce500_init_mpic(params, ccsr_addr_space, irqs);
/* Serial */
if (serial_hds[0]) {
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
serial_mm_init(ccsr_addr_space, MPC8544_SERIAL0_REGS_OFFSET,
0, mpic[42], 399193,
serial_hds[0], DEVICE_BIG_ENDIAN);
}
if (serial_hds[1]) {
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
serial_mm_init(ccsr_addr_space, MPC8544_SERIAL1_REGS_OFFSET,
0, mpic[42], 399193,
serial_hds[1], DEVICE_BIG_ENDIAN);
}
/* General Utility device */
dev = qdev_create(NULL, "mpc8544-guts");
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
memory_region_add_subregion(ccsr_addr_space, MPC8544_UTIL_OFFSET,
sysbus_mmio_get_region(s, 0));
/* PCI */
dev = qdev_create(NULL, "e500-pcihost");
qdev_prop_set_uint32(dev, "first_slot", params->pci_first_slot);
qdev_prop_set_uint32(dev, "first_pin_irq", pci_irq_nrs[0]);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
for (i = 0; i < PCI_NUM_PINS; i++) {
sysbus_connect_irq(s, i, mpic[pci_irq_nrs[i]]);
}
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
memory_region_add_subregion(ccsr_addr_space, MPC8544_PCI_REGS_OFFSET,
sysbus_mmio_get_region(s, 0));
pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
if (!pci_bus)
printf("couldn't create PCI controller!\n");
if (pci_bus) {
/* Register network interfaces. */
for (i = 0; i < nb_nics; i++) {
pci_nic_init_nofail(&nd_table[i], pci_bus, "virtio", NULL);
}
}
/* Register spinning region */
sysbus_create_simple("e500-spin", params->spin_base, NULL);
if (cur_base < (32 * 1024 * 1024)) {
/* u-boot occupies memory up to 32MB, so load blobs above */
cur_base = (32 * 1024 * 1024);
}
if (params->has_mpc8xxx_gpio) {
qemu_irq poweroff_irq;
dev = qdev_create(NULL, "mpc8xxx_gpio");
s = SYS_BUS_DEVICE(dev);
qdev_init_nofail(dev);
sysbus_connect_irq(s, 0, mpic[MPC8XXX_GPIO_IRQ]);
memory_region_add_subregion(ccsr_addr_space, MPC8XXX_GPIO_OFFSET,
sysbus_mmio_get_region(s, 0));
/* Power Off GPIO at Pin 0 */
poweroff_irq = qemu_allocate_irq(ppce500_power_off, NULL, 0);
qdev_connect_gpio_out(dev, 0, poweroff_irq);
}
/* Platform Bus Device */
if (params->has_platform_bus) {
dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
dev->id = TYPE_PLATFORM_BUS_DEVICE;
qdev_prop_set_uint32(dev, "num_irqs", params->platform_bus_num_irqs);
qdev_prop_set_uint32(dev, "mmio_size", params->platform_bus_size);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
for (i = 0; i < params->platform_bus_num_irqs; i++) {
int irqn = params->platform_bus_first_irq + i;
sysbus_connect_irq(s, i, mpic[irqn]);
}
memory_region_add_subregion(address_space_mem,
params->platform_bus_base,
sysbus_mmio_get_region(s, 0));
}
/* Load kernel. */
if (machine->kernel_filename) {
kernel_base = cur_base;
kernel_size = load_image_targphys(machine->kernel_filename,
cur_base,
ram_size - cur_base);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
machine->kernel_filename);
exit(1);
}
cur_base += kernel_size;
}
/* Load initrd. */
if (machine->initrd_filename) {
initrd_base = (cur_base + INITRD_LOAD_PAD) & ~INITRD_PAD_MASK;
initrd_size = load_image_targphys(machine->initrd_filename, initrd_base,
ram_size - initrd_base);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
machine->initrd_filename);
exit(1);
}
cur_base = initrd_base + initrd_size;
}
/*
* Smart firmware defaults ahead!
*
* We follow the following table to select which payload we execute.
*
* -kernel | -bios | payload
* ---------+-------+---------
* N | Y | u-boot
* N | N | u-boot
* Y | Y | u-boot
* Y | N | kernel
*
* This ensures backwards compatibility with how we used to expose
* -kernel to users but allows them to run through u-boot as well.
*/
if (bios_name == NULL) {
if (machine->kernel_filename) {
bios_name = machine->kernel_filename;
} else {
bios_name = "u-boot.e500";
}
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
bios_size = load_elf(filename, NULL, NULL, &bios_entry, &loadaddr, NULL,
1, ELF_MACHINE, 0);
if (bios_size < 0) {
/*
* Hrm. No ELF image? Try a uImage, maybe someone is giving us an
* ePAPR compliant kernel
*/
kernel_size = load_uimage(filename, &bios_entry, &loadaddr, NULL,
NULL, NULL);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load firmware '%s'\n", filename);
exit(1);
}
}
/* Reserve space for dtb */
dt_base = (loadaddr + bios_size + DTC_LOAD_PAD) & ~DTC_PAD_MASK;
dt_size = ppce500_prep_device_tree(machine, params, dt_base,
initrd_base, initrd_size,
kernel_base, kernel_size);
if (dt_size < 0) {
fprintf(stderr, "couldn't load device tree\n");
exit(1);
}
assert(dt_size < DTB_MAX_SIZE);
boot_info = env->load_info;
boot_info->entry = bios_entry;
boot_info->dt_base = dt_base;
boot_info->dt_size = dt_size;
if (kvm_enabled()) {
kvmppc_init();
}
}
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
static int e500_ccsr_initfn(SysBusDevice *dev)
{
PPCE500CCSRState *ccsr;
ccsr = CCSR(dev);
memory_region_init(&ccsr->ccsr_space, OBJECT(ccsr), "e500-ccsr",
Adding BAR0 for e500 PCI controller PCI Root complex have TYPE-1 configuration header while PCI endpoint have type-0 configuration header. The type-1 configuration header have a BAR (BAR0). In Freescale PCI controller BAR0 is used for mapping pci address space to CCSR address space. This can used for 2 purposes: 1) for MSI interrupt generation 2) Allow CCSR registers access when configured as PCI endpoint, which I am not sure is a use case with QEMU-KVM guest. What I observed is that when guest read the size of BAR0 of host controller configuration header (TYPE1 header) then it always reads it as 0. When looking into the QEMU hw/ppce500_pci.c, I do not find the PCI controller device registering BAR0. I do not find any other controller also doing so may they do not use BAR0. There are two issues when BAR0 is not there (which I can think of): 1) There should be BAR0 emulated for PCI Root complex (TYPE1 header) and when reading the size of BAR0, it should give size as per real h/w. 2) Do we need this BAR0 inbound address translation? When BAR0 is of non-zero size then it will be configured for PCI address space to local address(CCSR) space translation on inbound access. The primary use case is for MSI interrupt generation. The device is configured with an address offsets in PCI address space, which will be translated to MSI interrupt generation MPIC registers. Currently I do not understand the MSI interrupt generation mechanism in QEMU and also IIRC we do not use QEMU MSI interrupt mechanism on e500 guest machines. But this BAR0 will be used when using MSI on e500. I can see one more issue, There are ATMUs emulated in hw/ppce500_pci.c, but i do not see these being used for address translation. So far that works because pci address space and local address space are 1:1 mapped. BAR0 inbound translation + ATMU translation will complete the address translation of inbound traffic. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> [agraf: fix double variable assignment w/o read] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-10 08:28:28 +04:00
MPC8544_CCSRBAR_SIZE);
return 0;
}
static void e500_ccsr_class_init(ObjectClass *klass, void *data)
{
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = e500_ccsr_initfn;
}
static const TypeInfo e500_ccsr_info = {
.name = TYPE_CCSR,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PPCE500CCSRState),
.class_init = e500_ccsr_class_init,
};
static void e500_register_types(void)
{
type_register_static(&e500_ccsr_info);
}
type_init(e500_register_types)