qemu/target/arm/internals.h

1059 lines
33 KiB
C
Raw Normal View History

/*
* QEMU ARM CPU -- internal functions and types
*
* Copyright (c) 2014 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*
* This header defines functions, types, etc which need to be shared
* between different source files within target/arm/ but which are
* private to it and not required by the rest of QEMU.
*/
#ifndef TARGET_ARM_INTERNALS_H
#define TARGET_ARM_INTERNALS_H
#include "hw/registerfields.h"
/* register banks for CPU modes */
#define BANK_USRSYS 0
#define BANK_SVC 1
#define BANK_ABT 2
#define BANK_UND 3
#define BANK_IRQ 4
#define BANK_FIQ 5
#define BANK_HYP 6
#define BANK_MON 7
static inline bool excp_is_internal(int excp)
{
/* Return true if this exception number represents a QEMU-internal
* exception that will not be passed to the guest.
*/
return excp == EXCP_INTERRUPT
|| excp == EXCP_HLT
|| excp == EXCP_DEBUG
|| excp == EXCP_HALTED
|| excp == EXCP_EXCEPTION_EXIT
|| excp == EXCP_KERNEL_TRAP
|| excp == EXCP_SEMIHOST;
}
/* Scale factor for generic timers, ie number of ns per tick.
* This gives a 62.5MHz timer.
*/
#define GTIMER_SCALE 16
/* Bit definitions for the v7M CONTROL register */
FIELD(V7M_CONTROL, NPRIV, 0, 1)
FIELD(V7M_CONTROL, SPSEL, 1, 1)
FIELD(V7M_CONTROL, FPCA, 2, 1)
FIELD(V7M_CONTROL, SFPA, 3, 1)
/* Bit definitions for v7M exception return payload */
FIELD(V7M_EXCRET, ES, 0, 1)
FIELD(V7M_EXCRET, RES0, 1, 1)
FIELD(V7M_EXCRET, SPSEL, 2, 1)
FIELD(V7M_EXCRET, MODE, 3, 1)
FIELD(V7M_EXCRET, FTYPE, 4, 1)
FIELD(V7M_EXCRET, DCRS, 5, 1)
FIELD(V7M_EXCRET, S, 6, 1)
FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
/* Minimum value which is a magic number for exception return */
#define EXC_RETURN_MIN_MAGIC 0xff000000
/* Minimum number which is a magic number for function or exception return
* when using v8M security extension
*/
#define FNC_RETURN_MIN_MAGIC 0xfefffffe
target/arm: Implement security attribute lookups for memory accesses Implement the security attribute lookups for memory accesses in the get_phys_addr() functions, causing these to generate various kinds of SecureFault for bad accesses. The major subtlety in this code relates to handling of the case when the security attributes the SAU assigns to the address don't match the current security state of the CPU. In the ARM ARM pseudocode for validating instruction accesses, the security attributes of the address determine whether the Secure or NonSecure MPU state is used. At face value, handling this would require us to encode the relevant bits of state into mmu_idx for both S and NS at once, which would result in our needing 16 mmu indexes. Fortunately we don't actually need to do this because a mismatch between address attributes and CPU state means either: * some kind of fault (usually a SecureFault, but in theory perhaps a UserFault for unaligned access to Device memory) * execution of the SG instruction in NS state from a Secure & NonSecure code region The purpose of SG is simply to flip the CPU into Secure state, so we can handle it by emulating execution of that instruction directly in arm_v7m_cpu_do_interrupt(), which means we can treat all the mismatch cases as "throw an exception" and we don't need to encode the state of the other MPU bank into our mmu_idx values. This commit doesn't include the actual emulation of SG; it also doesn't include implementation of the IDAU, which is a per-board way to specify hard-coded memory attributes for addresses, which override the CPU-internal SAU if they specify a more secure setting than the SAU is programmed to. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 1506092407-26985-15-git-send-email-peter.maydell@linaro.org
2017-10-06 18:46:49 +03:00
/* We use a few fake FSR values for internal purposes in M profile.
* M profile cores don't have A/R format FSRs, but currently our
* get_phys_addr() code assumes A/R profile and reports failures via
* an A/R format FSR value. We then translate that into the proper
* M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
* Mostly the FSR values we use for this are those defined for v7PMSA,
* since we share some of that codepath. A few kinds of fault are
* only for M profile and have no A/R equivalent, though, so we have
* to pick a value from the reserved range (which we never otherwise
* generate) to use for these.
* These values will never be visible to the guest.
*/
#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
/**
* raise_exception: Raise the specified exception.
* Raise a guest exception with the specified value, syndrome register
* and target exception level. This should be called from helper functions,
* and never returns because we will longjump back up to the CPU main loop.
*/
void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el);
/*
* Similarly, but also use unwinding to restore cpu state.
*/
void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el,
uintptr_t ra);
/*
* For AArch64, map a given EL to an index in the banked_spsr array.
* Note that this mapping and the AArch32 mapping defined in bank_number()
* must agree such that the AArch64<->AArch32 SPSRs have the architecturally
* mandated mapping between each other.
*/
static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
{
static const unsigned int map[4] = {
[1] = BANK_SVC, /* EL1. */
[2] = BANK_HYP, /* EL2. */
[3] = BANK_MON, /* EL3. */
};
assert(el >= 1 && el <= 3);
return map[el];
}
/* Map CPU modes onto saved register banks. */
static inline int bank_number(int mode)
{
switch (mode) {
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_SYS:
return BANK_USRSYS;
case ARM_CPU_MODE_SVC:
return BANK_SVC;
case ARM_CPU_MODE_ABT:
return BANK_ABT;
case ARM_CPU_MODE_UND:
return BANK_UND;
case ARM_CPU_MODE_IRQ:
return BANK_IRQ;
case ARM_CPU_MODE_FIQ:
return BANK_FIQ;
case ARM_CPU_MODE_HYP:
return BANK_HYP;
case ARM_CPU_MODE_MON:
return BANK_MON;
}
g_assert_not_reached();
}
/**
* r14_bank_number: Map CPU mode onto register bank for r14
*
* Given an AArch32 CPU mode, return the index into the saved register
* banks to use for the R14 (LR) in that mode. This is the same as
* bank_number(), except for the special case of Hyp mode, where
* R14 is shared with USR and SYS, unlike its R13 and SPSR.
* This should be used as the index into env->banked_r14[], and
* bank_number() used for the index into env->banked_r13[] and
* env->banked_spsr[].
*/
static inline int r14_bank_number(int mode)
{
return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
}
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
void arm_translate_init(void);
enum arm_fprounding {
FPROUNDING_TIEEVEN,
FPROUNDING_POSINF,
FPROUNDING_NEGINF,
FPROUNDING_ZERO,
FPROUNDING_TIEAWAY,
FPROUNDING_ODD
};
int arm_rmode_to_sf(int rmode);
static inline void aarch64_save_sp(CPUARMState *env, int el)
{
if (env->pstate & PSTATE_SP) {
env->sp_el[el] = env->xregs[31];
} else {
env->sp_el[0] = env->xregs[31];
}
}
static inline void aarch64_restore_sp(CPUARMState *env, int el)
{
if (env->pstate & PSTATE_SP) {
env->xregs[31] = env->sp_el[el];
} else {
env->xregs[31] = env->sp_el[0];
}
}
static inline void update_spsel(CPUARMState *env, uint32_t imm)
{
unsigned int cur_el = arm_current_el(env);
/* Update PSTATE SPSel bit; this requires us to update the
* working stack pointer in xregs[31].
*/
if (!((imm ^ env->pstate) & PSTATE_SP)) {
return;
}
aarch64_save_sp(env, cur_el);
env->pstate = deposit32(env->pstate, 0, 1, imm);
/* We rely on illegal updates to SPsel from EL0 to get trapped
* at translation time.
*/
assert(cur_el >= 1 && cur_el <= 3);
aarch64_restore_sp(env, cur_el);
}
/*
* arm_pamax
* @cpu: ARMCPU
*
* Returns the implementation defined bit-width of physical addresses.
* The ARMv8 reference manuals refer to this as PAMax().
*/
static inline unsigned int arm_pamax(ARMCPU *cpu)
{
static const unsigned int pamax_map[] = {
[0] = 32,
[1] = 36,
[2] = 40,
[3] = 42,
[4] = 44,
[5] = 48,
};
unsigned int parange =
FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
/* id_aa64mmfr0 is a read-only register so values outside of the
* supported mappings can be considered an implementation error. */
assert(parange < ARRAY_SIZE(pamax_map));
return pamax_map[parange];
}
/* Return true if extended addresses are enabled.
* This is always the case if our translation regime is 64 bit,
* but depends on TTBCR.EAE for 32 bit.
*/
static inline bool extended_addresses_enabled(CPUARMState *env)
{
TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
return arm_el_is_aa64(env, 1) ||
(arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
}
/* Valid Syndrome Register EC field values */
enum arm_exception_class {
EC_UNCATEGORIZED = 0x00,
EC_WFX_TRAP = 0x01,
EC_CP15RTTRAP = 0x03,
EC_CP15RRTTRAP = 0x04,
EC_CP14RTTRAP = 0x05,
EC_CP14DTTRAP = 0x06,
EC_ADVSIMDFPACCESSTRAP = 0x07,
EC_FPIDTRAP = 0x08,
EC_PACTRAP = 0x09,
EC_CP14RRTTRAP = 0x0c,
EC_BTITRAP = 0x0d,
EC_ILLEGALSTATE = 0x0e,
EC_AA32_SVC = 0x11,
EC_AA32_HVC = 0x12,
EC_AA32_SMC = 0x13,
EC_AA64_SVC = 0x15,
EC_AA64_HVC = 0x16,
EC_AA64_SMC = 0x17,
EC_SYSTEMREGISTERTRAP = 0x18,
EC_SVEACCESSTRAP = 0x19,
EC_INSNABORT = 0x20,
EC_INSNABORT_SAME_EL = 0x21,
EC_PCALIGNMENT = 0x22,
EC_DATAABORT = 0x24,
EC_DATAABORT_SAME_EL = 0x25,
EC_SPALIGNMENT = 0x26,
EC_AA32_FPTRAP = 0x28,
EC_AA64_FPTRAP = 0x2c,
EC_SERROR = 0x2f,
EC_BREAKPOINT = 0x30,
EC_BREAKPOINT_SAME_EL = 0x31,
EC_SOFTWARESTEP = 0x32,
EC_SOFTWARESTEP_SAME_EL = 0x33,
EC_WATCHPOINT = 0x34,
EC_WATCHPOINT_SAME_EL = 0x35,
EC_AA32_BKPT = 0x38,
EC_VECTORCATCH = 0x3a,
EC_AA64_BKPT = 0x3c,
};
#define ARM_EL_EC_SHIFT 26
#define ARM_EL_IL_SHIFT 25
#define ARM_EL_ISV_SHIFT 24
#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
static inline uint32_t syn_get_ec(uint32_t syn)
{
return syn >> ARM_EL_EC_SHIFT;
}
/* Utility functions for constructing various kinds of syndrome value.
* Note that in general we follow the AArch64 syndrome values; in a
* few cases the value in HSR for exceptions taken to AArch32 Hyp
* mode differs slightly, and we fix this up when populating HSR in
* arm_cpu_do_interrupt_aarch32_hyp().
* The exception is FP/SIMD access traps -- these report extra information
* when taking an exception to AArch32. For those we include the extra coproc
* and TA fields, and mask them out when taking the exception to AArch64.
*/
static inline uint32_t syn_uncategorized(void)
{
return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
}
static inline uint32_t syn_aa64_svc(uint32_t imm16)
{
return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
}
static inline uint32_t syn_aa64_hvc(uint32_t imm16)
{
return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
}
static inline uint32_t syn_aa64_smc(uint32_t imm16)
{
return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
}
static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
{
return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
| (is_16bit ? 0 : ARM_EL_IL);
}
static inline uint32_t syn_aa32_hvc(uint32_t imm16)
{
return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
}
static inline uint32_t syn_aa32_smc(void)
{
return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
}
static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
{
return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
}
static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
{
return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
| (is_16bit ? 0 : ARM_EL_IL);
}
static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
int crn, int crm, int rt,
int isread)
{
return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
| (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
| (crm << 1) | isread;
}
static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
int crn, int crm, int rt, int isread,
bool is_16bit)
{
return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
| (is_16bit ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
| (crn << 10) | (rt << 5) | (crm << 1) | isread;
}
static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
int crn, int crm, int rt, int isread,
bool is_16bit)
{
return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
| (is_16bit ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
| (crn << 10) | (rt << 5) | (crm << 1) | isread;
}
static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
int rt, int rt2, int isread,
bool is_16bit)
{
return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
| (is_16bit ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20) | (opc1 << 16)
| (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
}
static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
int rt, int rt2, int isread,
bool is_16bit)
{
return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
| (is_16bit ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20) | (opc1 << 16)
| (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
}
static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
{
/* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
| (is_16bit ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20) | 0xa;
}
static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
{
/* AArch32 SIMD trap: TA == 1 coproc == 0 */
return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
| (is_16bit ? 0 : ARM_EL_IL)
| (cv << 24) | (cond << 20) | (1 << 5);
}
static inline uint32_t syn_sve_access_trap(void)
{
return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
}
static inline uint32_t syn_pactrap(void)
{
return EC_PACTRAP << ARM_EL_EC_SHIFT;
}
static inline uint32_t syn_btitrap(int btype)
{
return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype;
}
static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
{
return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
}
static inline uint32_t syn_data_abort_no_iss(int same_el,
int ea, int cm, int s1ptw,
int wnr, int fsc)
{
return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| ARM_EL_IL
| (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
}
static inline uint32_t syn_data_abort_with_iss(int same_el,
int sas, int sse, int srt,
int sf, int ar,
int ea, int cm, int s1ptw,
int wnr, int fsc,
bool is_16bit)
{
return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| (is_16bit ? 0 : ARM_EL_IL)
| ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
| (sf << 15) | (ar << 14)
| (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
}
static inline uint32_t syn_swstep(int same_el, int isv, int ex)
{
return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
}
static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
{
return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
}
static inline uint32_t syn_breakpoint(int same_el)
{
return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
| ARM_EL_IL | 0x22;
}
static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
{
return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
(is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
(cv << 24) | (cond << 20) | ti;
}
/* Update a QEMU watchpoint based on the information the guest has set in the
* DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
*/
void hw_watchpoint_update(ARMCPU *cpu, int n);
/* Update the QEMU watchpoints for every guest watchpoint. This does a
* complete delete-and-reinstate of the QEMU watchpoint list and so is
* suitable for use after migration or on reset.
*/
void hw_watchpoint_update_all(ARMCPU *cpu);
/* Update a QEMU breakpoint based on the information the guest has set in the
* DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
*/
void hw_breakpoint_update(ARMCPU *cpu, int n);
/* Update the QEMU breakpoints for every guest breakpoint. This does a
* complete delete-and-reinstate of the QEMU breakpoint list and so is
* suitable for use after migration or on reset.
*/
void hw_breakpoint_update_all(ARMCPU *cpu);
/* Callback function for checking if a watchpoint should trigger. */
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
/* Adjust addresses (in BE32 mode) before testing against watchpoint
* addresses.
*/
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
/* Callback function for when a watchpoint or breakpoint triggers. */
void arm_debug_excp_handler(CPUState *cs);
#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
{
return false;
}
static inline void arm_handle_psci_call(ARMCPU *cpu)
{
g_assert_not_reached();
}
#else
/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
/* Actually handle a PSCI call */
void arm_handle_psci_call(ARMCPU *cpu);
#endif
/**
* arm_clear_exclusive: clear the exclusive monitor
* @env: CPU env
* Clear the CPU's exclusive monitor, like the guest CLREX instruction.
*/
static inline void arm_clear_exclusive(CPUARMState *env)
{
env->exclusive_addr = -1;
}
/**
* ARMFaultType: type of an ARM MMU fault
* This corresponds to the v8A pseudocode's Fault enumeration,
* with extensions for QEMU internal conditions.
*/
typedef enum ARMFaultType {
ARMFault_None,
ARMFault_AccessFlag,
ARMFault_Alignment,
ARMFault_Background,
ARMFault_Domain,
ARMFault_Permission,
ARMFault_Translation,
ARMFault_AddressSize,
ARMFault_SyncExternal,
ARMFault_SyncExternalOnWalk,
ARMFault_SyncParity,
ARMFault_SyncParityOnWalk,
ARMFault_AsyncParity,
ARMFault_AsyncExternal,
ARMFault_Debug,
ARMFault_TLBConflict,
ARMFault_Lockdown,
ARMFault_Exclusive,
ARMFault_ICacheMaint,
ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
} ARMFaultType;
/**
* ARMMMUFaultInfo: Information describing an ARM MMU Fault
* @type: Type of fault
* @level: Table walk level (for translation, access flag and permission faults)
* @domain: Domain of the fault address (for non-LPAE CPUs only)
* @s2addr: Address that caused a fault at stage 2
* @stage2: True if we faulted at stage 2
* @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
* @ea: True if we should set the EA (external abort type) bit in syndrome
*/
typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
struct ARMMMUFaultInfo {
ARMFaultType type;
target_ulong s2addr;
int level;
int domain;
bool stage2;
bool s1ptw;
bool ea;
};
/**
* arm_fi_to_sfsc: Convert fault info struct to short-format FSC
* Compare pseudocode EncodeSDFSC(), though unlike that function
* we set up a whole FSR-format code including domain field and
* putting the high bit of the FSC into bit 10.
*/
static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
{
uint32_t fsc;
switch (fi->type) {
case ARMFault_None:
return 0;
case ARMFault_AccessFlag:
fsc = fi->level == 1 ? 0x3 : 0x6;
break;
case ARMFault_Alignment:
fsc = 0x1;
break;
case ARMFault_Permission:
fsc = fi->level == 1 ? 0xd : 0xf;
break;
case ARMFault_Domain:
fsc = fi->level == 1 ? 0x9 : 0xb;
break;
case ARMFault_Translation:
fsc = fi->level == 1 ? 0x5 : 0x7;
break;
case ARMFault_SyncExternal:
fsc = 0x8 | (fi->ea << 12);
break;
case ARMFault_SyncExternalOnWalk:
fsc = fi->level == 1 ? 0xc : 0xe;
fsc |= (fi->ea << 12);
break;
case ARMFault_SyncParity:
fsc = 0x409;
break;
case ARMFault_SyncParityOnWalk:
fsc = fi->level == 1 ? 0x40c : 0x40e;
break;
case ARMFault_AsyncParity:
fsc = 0x408;
break;
case ARMFault_AsyncExternal:
fsc = 0x406 | (fi->ea << 12);
break;
case ARMFault_Debug:
fsc = 0x2;
break;
case ARMFault_TLBConflict:
fsc = 0x400;
break;
case ARMFault_Lockdown:
fsc = 0x404;
break;
case ARMFault_Exclusive:
fsc = 0x405;
break;
case ARMFault_ICacheMaint:
fsc = 0x4;
break;
case ARMFault_Background:
fsc = 0x0;
break;
case ARMFault_QEMU_NSCExec:
fsc = M_FAKE_FSR_NSC_EXEC;
break;
case ARMFault_QEMU_SFault:
fsc = M_FAKE_FSR_SFAULT;
break;
default:
/* Other faults can't occur in a context that requires a
* short-format status code.
*/
g_assert_not_reached();
}
fsc |= (fi->domain << 4);
return fsc;
}
/**
* arm_fi_to_lfsc: Convert fault info struct to long-format FSC
* Compare pseudocode EncodeLDFSC(), though unlike that function
* we fill in also the LPAE bit 9 of a DFSR format.
*/
static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
{
uint32_t fsc;
switch (fi->type) {
case ARMFault_None:
return 0;
case ARMFault_AddressSize:
fsc = fi->level & 3;
break;
case ARMFault_AccessFlag:
fsc = (fi->level & 3) | (0x2 << 2);
break;
case ARMFault_Permission:
fsc = (fi->level & 3) | (0x3 << 2);
break;
case ARMFault_Translation:
fsc = (fi->level & 3) | (0x1 << 2);
break;
case ARMFault_SyncExternal:
fsc = 0x10 | (fi->ea << 12);
break;
case ARMFault_SyncExternalOnWalk:
fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
break;
case ARMFault_SyncParity:
fsc = 0x18;
break;
case ARMFault_SyncParityOnWalk:
fsc = (fi->level & 3) | (0x7 << 2);
break;
case ARMFault_AsyncParity:
fsc = 0x19;
break;
case ARMFault_AsyncExternal:
fsc = 0x11 | (fi->ea << 12);
break;
case ARMFault_Alignment:
fsc = 0x21;
break;
case ARMFault_Debug:
fsc = 0x22;
break;
case ARMFault_TLBConflict:
fsc = 0x30;
break;
case ARMFault_Lockdown:
fsc = 0x34;
break;
case ARMFault_Exclusive:
fsc = 0x35;
break;
default:
/* Other faults can't occur in a context that requires a
* long-format status code.
*/
g_assert_not_reached();
}
fsc |= 1 << 9;
return fsc;
}
static inline bool arm_extabort_type(MemTxResult result)
{
/* The EA bit in syndromes and fault status registers is an
* IMPDEF classification of external aborts. ARM implementations
* usually use this to indicate AXI bus Decode error (0) or
* Slave error (1); in QEMU we follow that.
*/
return result != MEMTX_DECODE_ERROR;
}
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
/* Return true if the stage 1 translation regime is using LPAE format page
* tables */
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
/* Raise a data fault alignment exception for the specified virtual address */
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr);
/* arm_cpu_do_transaction_failed: handle a memory system error response
* (eg "no device/memory present at address") by raising an external abort
* exception
*/
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr);
/* Call any registered EL change hooks */
static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
{
ARMELChangeHook *hook, *next;
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
hook->hook(cpu, hook->opaque);
}
}
static inline void arm_call_el_change_hook(ARMCPU *cpu)
{
ARMELChangeHook *hook, *next;
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
hook->hook(cpu, hook->opaque);
}
}
/* Return true if this address translation regime is secure */
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_S12NSE0:
case ARMMMUIdx_S12NSE1:
case ARMMMUIdx_S1NSE0:
case ARMMMUIdx_S1NSE1:
case ARMMMUIdx_S1E2:
case ARMMMUIdx_S2NS:
case ARMMMUIdx_MPrivNegPri:
case ARMMMUIdx_MUserNegPri:
case ARMMMUIdx_MPriv:
case ARMMMUIdx_MUser:
return false;
case ARMMMUIdx_S1E3:
case ARMMMUIdx_S1SE0:
case ARMMMUIdx_S1SE1:
case ARMMMUIdx_MSPrivNegPri:
case ARMMMUIdx_MSUserNegPri:
case ARMMMUIdx_MSPriv:
case ARMMMUIdx_MSUser:
return true;
default:
g_assert_not_reached();
}
}
/* Return the FSR value for a debug exception (watchpoint, hardware
* breakpoint or BKPT insn) targeting the specified exception level.
*/
static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
{
ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
int target_el = arm_debug_target_el(env);
bool using_lpae = false;
if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
using_lpae = true;
} else {
if (arm_feature(env, ARM_FEATURE_LPAE) &&
(env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
using_lpae = true;
}
}
if (using_lpae) {
return arm_fi_to_lfsc(&fi);
} else {
return arm_fi_to_sfsc(&fi);
}
}
/* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
* Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
*/
#define MEMOPIDX_SHIFT 8
/**
* v7m_using_psp: Return true if using process stack pointer
* Return true if the CPU is currently using the process stack
* pointer, or false if it is using the main stack pointer.
*/
static inline bool v7m_using_psp(CPUARMState *env)
{
/* Handler mode always uses the main stack; for thread mode
* the CONTROL.SPSEL bit determines the answer.
* Note that in v7M it is not possible to be in Handler mode with
* CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
*/
return !arm_v7m_is_handler_mode(env) &&
env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
}
/**
* v7m_sp_limit: Return SP limit for current CPU state
* Return the SP limit value for the current CPU security state
* and stack pointer.
*/
static inline uint32_t v7m_sp_limit(CPUARMState *env)
{
if (v7m_using_psp(env)) {
return env->v7m.psplim[env->v7m.secure];
} else {
return env->v7m.msplim[env->v7m.secure];
}
}
/**
* v7m_cpacr_pass:
* Return true if the v7M CPACR permits access to the FPU for the specified
* security state and privilege level.
*/
static inline bool v7m_cpacr_pass(CPUARMState *env,
bool is_secure, bool is_priv)
{
switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
case 0:
case 2: /* UNPREDICTABLE: we treat like 0 */
return false;
case 1:
return is_priv;
case 3:
return true;
default:
g_assert_not_reached();
}
}
/**
* aarch32_mode_name(): Return name of the AArch32 CPU mode
* @psr: Program Status Register indicating CPU mode
*
* Returns, for debug logging purposes, a printable representation
* of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
* the low bits of the specified PSR.
*/
static inline const char *aarch32_mode_name(uint32_t psr)
{
static const char cpu_mode_names[16][4] = {
"usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
"???", "???", "hyp", "und", "???", "???", "???", "sys"
};
return cpu_mode_names[psr & 0xf];
}
/**
* arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
*
* Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
* a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
* Must be called with the iothread lock held.
*/
void arm_cpu_update_virq(ARMCPU *cpu);
/**
* arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
*
* Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
* a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
* Must be called with the iothread lock held.
*/
void arm_cpu_update_vfiq(ARMCPU *cpu);
/**
* arm_mmu_idx_el:
* @env: The cpu environment
* @el: The EL to use.
*
* Return the full ARMMMUIdx for the translation regime for EL.
*/
ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
/**
* arm_mmu_idx:
* @env: The cpu environment
*
* Return the full ARMMMUIdx for the current translation regime.
*/
ARMMMUIdx arm_mmu_idx(CPUARMState *env);
/**
* arm_stage1_mmu_idx:
* @env: The cpu environment
*
* Return the ARMMMUIdx for the stage1 traversal for the current regime.
*/
#ifdef CONFIG_USER_ONLY
static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
{
return ARMMMUIdx_S1NSE0;
}
#else
ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
#endif
/*
* Parameters of a given virtual address, as extracted from the
* translation control register (TCR) for a given regime.
*/
typedef struct ARMVAParameters {
unsigned tsz : 8;
unsigned select : 1;
bool tbi : 1;
bool tbid : 1;
bool epd : 1;
bool hpd : 1;
bool using16k : 1;
bool using64k : 1;
} ARMVAParameters;
ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
ARMMMUIdx mmu_idx);
ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
ARMMMUIdx mmu_idx, bool data);
static inline int exception_target_el(CPUARMState *env)
{
int target_el = MAX(1, arm_current_el(env));
/*
* No such thing as secure EL1 if EL3 is aarch32,
* so update the target EL to EL3 in this case.
*/
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
target_el = 3;
}
return target_el;
}
#ifndef CONFIG_USER_ONLY
/* Security attributes for an address, as returned by v8m_security_lookup. */
typedef struct V8M_SAttributes {
bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
bool ns;
bool nsc;
uint8_t sregion;
bool srvalid;
uint8_t iregion;
bool irvalid;
} V8M_SAttributes;
void v8m_security_lookup(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
V8M_SAttributes *sattrs);
bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *txattrs,
int *prot, bool *is_subpage,
ARMMMUFaultInfo *fi, uint32_t *mregion);
/* Cacheability and shareability attributes for a memory access */
typedef struct ARMCacheAttrs {
unsigned int attrs:8; /* as in the MAIR register encoding */
unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
} ARMCacheAttrs;
bool get_phys_addr(CPUARMState *env, target_ulong address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
target_ulong *page_size,
ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
void arm_log_exception(int idx);
#endif /* !CONFIG_USER_ONLY */
#endif