qemu/target/riscv/insn_trans/trans_rvv.c.inc

3812 lines
133 KiB
PHP
Raw Normal View History

/*
*
* Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "tcg/tcg-op-gvec.h"
#include "tcg/tcg-gvec-desc.h"
#include "internals.h"
static inline bool is_overlapped(const int8_t astart, int8_t asize,
const int8_t bstart, int8_t bsize)
{
const int8_t aend = astart + asize;
const int8_t bend = bstart + bsize;
return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize;
}
static bool require_rvv(DisasContext *s)
{
return s->mstatus_vs != 0;
}
static bool require_rvf(DisasContext *s)
{
if (s->mstatus_fs == 0) {
return false;
}
switch (s->sew) {
case MO_16:
case MO_32:
return has_ext(s, RVF);
case MO_64:
return has_ext(s, RVD);
default:
return false;
}
}
static bool require_scale_rvf(DisasContext *s)
{
if (s->mstatus_fs == 0) {
return false;
}
switch (s->sew) {
case MO_8:
case MO_16:
return has_ext(s, RVF);
case MO_32:
return has_ext(s, RVD);
default:
return false;
}
}
static bool require_zve32f(DisasContext *s)
{
/* RVV + Zve32f = RVV. */
if (has_ext(s, RVV)) {
return true;
}
/* Zve32f doesn't support FP64. (Section 18.2) */
return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true;
}
static bool require_scale_zve32f(DisasContext *s)
{
/* RVV + Zve32f = RVV. */
if (has_ext(s, RVV)) {
return true;
}
/* Zve32f doesn't support FP64. (Section 18.2) */
return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true;
}
static bool require_zve64f(DisasContext *s)
{
/* RVV + Zve64f = RVV. */
if (has_ext(s, RVV)) {
return true;
}
/* Zve64f doesn't support FP64. (Section 18.2) */
return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true;
}
static bool require_scale_zve64f(DisasContext *s)
{
/* RVV + Zve64f = RVV. */
if (has_ext(s, RVV)) {
return true;
}
/* Zve64f doesn't support FP64. (Section 18.2) */
return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true;
}
/* Destination vector register group cannot overlap source mask register. */
static bool require_vm(int vm, int vd)
{
return (vm != 0 || vd != 0);
}
static bool require_nf(int vd, int nf, int lmul)
{
int size = nf << MAX(lmul, 0);
return size <= 8 && vd + size <= 32;
}
/*
* Vector register should aligned with the passed-in LMUL (EMUL).
* If LMUL < 0, i.e. fractional LMUL, any vector register is allowed.
*/
static bool require_align(const int8_t val, const int8_t lmul)
{
return lmul <= 0 || extract32(val, 0, lmul) == 0;
}
/*
* A destination vector register group can overlap a source vector
* register group only if one of the following holds:
* 1. The destination EEW equals the source EEW.
* 2. The destination EEW is smaller than the source EEW and the overlap
* is in the lowest-numbered part of the source register group.
* 3. The destination EEW is greater than the source EEW, the source EMUL
* is at least 1, and the overlap is in the highest-numbered part of
* the destination register group.
* (Section 5.2)
*
* This function returns true if one of the following holds:
* * Destination vector register group does not overlap a source vector
* register group.
* * Rule 3 met.
* For rule 1, overlap is allowed so this function doesn't need to be called.
* For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before
* calling this function.
*/
static bool require_noover(const int8_t dst, const int8_t dst_lmul,
const int8_t src, const int8_t src_lmul)
{
int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul;
int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul;
/* Destination EEW is greater than the source EEW, check rule 3. */
if (dst_size > src_size) {
if (dst < src &&
src_lmul >= 0 &&
is_overlapped(dst, dst_size, src, src_size) &&
!is_overlapped(dst, dst_size, src + src_size, src_size)) {
return true;
}
}
return !is_overlapped(dst, dst_size, src, src_size);
}
static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2)
{
TCGv s1, dst;
if (!require_rvv(s) ||
!(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f ||
s->cfg_ptr->ext_zve64f)) {
return false;
}
dst = dest_gpr(s, rd);
if (rd == 0 && rs1 == 0) {
s1 = tcg_temp_new();
tcg_gen_mov_tl(s1, cpu_vl);
} else if (rs1 == 0) {
/* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */
s1 = tcg_constant_tl(RV_VLEN_MAX);
} else {
s1 = get_gpr(s, rs1, EXT_ZERO);
}
gen_helper_vsetvl(dst, cpu_env, s1, s2);
gen_set_gpr(s, rd, dst);
mark_vs_dirty(s);
gen_set_pc_imm(s, s->pc_succ_insn);
tcg_gen_lookup_and_goto_ptr();
s->base.is_jmp = DISAS_NORETURN;
if (rd == 0 && rs1 == 0) {
tcg_temp_free(s1);
}
return true;
}
static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2)
{
TCGv dst;
if (!require_rvv(s) ||
!(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f ||
s->cfg_ptr->ext_zve64f)) {
return false;
}
dst = dest_gpr(s, rd);
gen_helper_vsetvl(dst, cpu_env, s1, s2);
gen_set_gpr(s, rd, dst);
mark_vs_dirty(s);
gen_set_pc_imm(s, s->pc_succ_insn);
tcg_gen_lookup_and_goto_ptr();
s->base.is_jmp = DISAS_NORETURN;
return true;
}
static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a)
{
TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO);
return do_vsetvl(s, a->rd, a->rs1, s2);
}
static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a)
{
TCGv s2 = tcg_constant_tl(a->zimm);
return do_vsetvl(s, a->rd, a->rs1, s2);
}
static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a)
{
TCGv s1 = tcg_const_tl(a->rs1);
TCGv s2 = tcg_const_tl(a->zimm);
return do_vsetivli(s, a->rd, s1, s2);
}
/* vector register offset from env */
static uint32_t vreg_ofs(DisasContext *s, int reg)
{
return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8;
}
/* check functions */
/*
* Vector unit-stride, strided, unit-stride segment, strided segment
* store check function.
*
* Rules to be checked here:
* 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3)
* 2. Destination vector register number is multiples of EMUL.
* (Section 3.4.2, 7.3)
* 3. The EMUL setting must be such that EMUL * NFIELDS 8. (Section 7.8)
* 4. Vector register numbers accessed by the segment load or store
* cannot increment past 31. (Section 7.8)
*/
static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew)
{
int8_t emul = eew - s->sew + s->lmul;
return (emul >= -3 && emul <= 3) &&
require_align(vd, emul) &&
require_nf(vd, nf, emul);
}
/*
* Vector unit-stride, strided, unit-stride segment, strided segment
* load check function.
*
* Rules to be checked here:
* 1. All rules applies to store instructions are applies
* to load instructions.
* 2. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
*/
static bool vext_check_load(DisasContext *s, int vd, int nf, int vm,
uint8_t eew)
{
return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd);
}
/*
* Vector indexed, indexed segment store check function.
*
* Rules to be checked here:
* 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3)
* 2. Index vector register number is multiples of EMUL.
* (Section 3.4.2, 7.3)
* 3. Destination vector register number is multiples of LMUL.
* (Section 3.4.2, 7.3)
* 4. The EMUL setting must be such that EMUL * NFIELDS 8. (Section 7.8)
* 5. Vector register numbers accessed by the segment load or store
* cannot increment past 31. (Section 7.8)
*/
static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf,
uint8_t eew)
{
int8_t emul = eew - s->sew + s->lmul;
bool ret = (emul >= -3 && emul <= 3) &&
require_align(vs2, emul) &&
require_align(vd, s->lmul) &&
require_nf(vd, nf, s->lmul);
/*
* All Zve* extensions support all vector load and store instructions,
* except Zve64* extensions do not support EEW=64 for index values
* when XLEN=32. (Section 18.2)
*/
if (get_xl(s) == MXL_RV32) {
ret &= (!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? eew != MO_64 : true);
}
return ret;
}
/*
* Vector indexed, indexed segment load check function.
*
* Rules to be checked here:
* 1. All rules applies to store instructions are applies
* to load instructions.
* 2. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
* 3. Destination vector register cannot overlap a source vector
* register (vs2) group.
* (Section 5.2)
* 4. Destination vector register groups cannot overlap
* the source vector register (vs2) group for
* indexed segment load instructions. (Section 7.8.3)
*/
static bool vext_check_ld_index(DisasContext *s, int vd, int vs2,
int nf, int vm, uint8_t eew)
{
int8_t seg_vd;
int8_t emul = eew - s->sew + s->lmul;
bool ret = vext_check_st_index(s, vd, vs2, nf, eew) &&
require_vm(vm, vd);
/* Each segment register group has to follow overlap rules. */
for (int i = 0; i < nf; ++i) {
seg_vd = vd + (1 << MAX(s->lmul, 0)) * i;
if (eew > s->sew) {
if (seg_vd != vs2) {
ret &= require_noover(seg_vd, s->lmul, vs2, emul);
}
} else if (eew < s->sew) {
ret &= require_noover(seg_vd, s->lmul, vs2, emul);
}
/*
* Destination vector register groups cannot overlap
* the source vector register (vs2) group for
* indexed segment load instructions.
*/
if (nf > 1) {
ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0),
vs2, 1 << MAX(emul, 0));
}
}
return ret;
}
static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm)
{
return require_vm(vm, vd) &&
require_align(vd, s->lmul) &&
require_align(vs, s->lmul);
}
/*
* Check function for vector instruction with format:
* single-width result and single-width sources (SEW = SEW op SEW)
*
* Rules to be checked here:
* 1. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
* 2. Destination vector register number is multiples of LMUL.
* (Section 3.4.2)
* 3. Source (vs2, vs1) vector register number are multiples of LMUL.
* (Section 3.4.2)
*/
static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm)
{
return vext_check_ss(s, vd, vs2, vm) &&
require_align(vs1, s->lmul);
}
static bool vext_check_ms(DisasContext *s, int vd, int vs)
{
bool ret = require_align(vs, s->lmul);
if (vd != vs) {
ret &= require_noover(vd, 0, vs, s->lmul);
}
return ret;
}
/*
* Check function for maskable vector instruction with format:
* single-width result and single-width sources (SEW = SEW op SEW)
*
* Rules to be checked here:
* 1. Source (vs2, vs1) vector register number are multiples of LMUL.
* (Section 3.4.2)
* 2. Destination vector register cannot overlap a source vector
* register (vs2, vs1) group.
* (Section 5.2)
* 3. The destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0),
* unless the destination vector register is being written
* with a mask value (e.g., comparisons) or the scalar result
* of a reduction. (Section 5.3)
*/
static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2)
{
bool ret = vext_check_ms(s, vd, vs2) &&
require_align(vs1, s->lmul);
if (vd != vs1) {
ret &= require_noover(vd, 0, vs1, s->lmul);
}
return ret;
}
/*
* Common check function for vector widening instructions
* of double-width result (2*SEW).
*
* Rules to be checked here:
* 1. The largest vector register group used by an instruction
* can not be greater than 8 vector registers (Section 5.2):
* => LMUL < 8.
* => SEW < 64.
* 2. Double-width SEW cannot greater than ELEN.
* 3. Destination vector register number is multiples of 2 * LMUL.
* (Section 3.4.2)
* 4. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
*/
static bool vext_wide_check_common(DisasContext *s, int vd, int vm)
{
return (s->lmul <= 2) &&
(s->sew < MO_64) &&
((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) &&
require_align(vd, s->lmul + 1) &&
require_vm(vm, vd);
}
/*
* Common check function for vector narrowing instructions
* of single-width result (SEW) and double-width source (2*SEW).
*
* Rules to be checked here:
* 1. The largest vector register group used by an instruction
* can not be greater than 8 vector registers (Section 5.2):
* => LMUL < 8.
* => SEW < 64.
* 2. Double-width SEW cannot greater than ELEN.
* 3. Source vector register number is multiples of 2 * LMUL.
* (Section 3.4.2)
* 4. Destination vector register number is multiples of LMUL.
* (Section 3.4.2)
* 5. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
*/
static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2,
int vm)
{
return (s->lmul <= 2) &&
(s->sew < MO_64) &&
((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) &&
require_align(vs2, s->lmul + 1) &&
require_align(vd, s->lmul) &&
require_vm(vm, vd);
}
static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm)
{
return vext_wide_check_common(s, vd, vm) &&
require_align(vs, s->lmul) &&
require_noover(vd, s->lmul + 1, vs, s->lmul);
}
static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm)
{
return vext_wide_check_common(s, vd, vm) &&
require_align(vs, s->lmul + 1);
}
/*
* Check function for vector instruction with format:
* double-width result and single-width sources (2*SEW = SEW op SEW)
*
* Rules to be checked here:
* 1. All rules in defined in widen common rules are applied.
* 2. Source (vs2, vs1) vector register number are multiples of LMUL.
* (Section 3.4.2)
* 3. Destination vector register cannot overlap a source vector
* register (vs2, vs1) group.
* (Section 5.2)
*/
static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm)
{
return vext_check_ds(s, vd, vs2, vm) &&
require_align(vs1, s->lmul) &&
require_noover(vd, s->lmul + 1, vs1, s->lmul);
}
/*
* Check function for vector instruction with format:
* double-width result and double-width source1 and single-width
* source2 (2*SEW = 2*SEW op SEW)
*
* Rules to be checked here:
* 1. All rules in defined in widen common rules are applied.
* 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL.
* (Section 3.4.2)
* 3. Source 2 (vs1) vector register number is multiples of LMUL.
* (Section 3.4.2)
* 4. Destination vector register cannot overlap a source vector
* register (vs1) group.
* (Section 5.2)
*/
static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm)
{
return vext_check_ds(s, vd, vs1, vm) &&
require_align(vs2, s->lmul + 1);
}
static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm)
{
bool ret = vext_narrow_check_common(s, vd, vs, vm);
if (vd != vs) {
ret &= require_noover(vd, s->lmul, vs, s->lmul + 1);
}
return ret;
}
/*
* Check function for vector instruction with format:
* single-width result and double-width source 1 and single-width
* source 2 (SEW = 2*SEW op SEW)
*
* Rules to be checked here:
* 1. All rules in defined in narrow common rules are applied.
* 2. Destination vector register cannot overlap a source vector
* register (vs2) group.
* (Section 5.2)
* 3. Source 2 (vs1) vector register number is multiples of LMUL.
* (Section 3.4.2)
*/
static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm)
{
return vext_check_sd(s, vd, vs2, vm) &&
require_align(vs1, s->lmul);
}
/*
* Check function for vector reduction instructions.
*
* Rules to be checked here:
* 1. Source 1 (vs2) vector register number is multiples of LMUL.
* (Section 3.4.2)
*/
static bool vext_check_reduction(DisasContext *s, int vs2)
{
return require_align(vs2, s->lmul) && (s->vstart == 0);
}
/*
* Check function for vector slide instructions.
*
* Rules to be checked here:
* 1. Source 1 (vs2) vector register number is multiples of LMUL.
* (Section 3.4.2)
* 2. Destination vector register number is multiples of LMUL.
* (Section 3.4.2)
* 3. Destination vector register group for a masked vector
* instruction cannot overlap the source mask register (v0).
* (Section 5.3)
* 4. The destination vector register group for vslideup, vslide1up,
* vfslide1up, cannot overlap the source vector register (vs2) group.
* (Section 5.2, 16.3.1, 16.3.3)
*/
static bool vext_check_slide(DisasContext *s, int vd, int vs2,
int vm, bool is_over)
{
bool ret = require_align(vs2, s->lmul) &&
require_align(vd, s->lmul) &&
require_vm(vm, vd);
if (is_over) {
ret &= (vd != vs2);
}
return ret;
}
/*
* In cpu_get_tb_cpu_state(), set VILL if RVV was not present.
* So RVV is also be checked in this function.
*/
static bool vext_check_isa_ill(DisasContext *s)
{
return !s->vill;
}
/* common translation macro */
#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \
{ \
if (CHECK(s, a, EEW)) { \
return OP(s, a, EEW); \
} \
return false; \
}
static uint8_t vext_get_emul(DisasContext *s, uint8_t eew)
{
int8_t emul = eew - s->sew + s->lmul;
return emul < 0 ? 0 : emul;
}
/*
*** unit stride load and store
*/
typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv,
TCGv_env, TCGv_i32);
static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data,
gen_helper_ldst_us *fn, DisasContext *s,
bool is_store)
{
TCGv_ptr dest, mask;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE);
/*
* As simd_desc supports at most 2048 bytes, and in this implementation,
* the max vector group length is 4096 bytes. So split it into two parts.
*
* The first part is vlen in bytes, encoded in maxsz of simd_desc.
* The second part is lmul, encoded in data of simd_desc.
*/
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
if (!is_store) {
mark_vs_dirty(s);
}
gen_set_label(over);
return true;
}
static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[2][4] = {
/* masked unit stride load */
{ gen_helper_vle8_v_mask, gen_helper_vle16_v_mask,
gen_helper_vle32_v_mask, gen_helper_vle64_v_mask },
/* unmasked unit stride load */
{ gen_helper_vle8_v, gen_helper_vle16_v,
gen_helper_vle32_v, gen_helper_vle64_v }
};
fn = fns[a->vm][eew];
if (fn == NULL) {
return false;
}
/*
* Vector load/store instructions have the EEW encoded
* directly in the instructions. The maximum vector size is
* calculated with EMUL rather than LMUL.
*/
uint8_t emul = vext_get_emul(s, eew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_us_trans(a->rd, a->rs1, data, fn, s, false);
}
static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_load(s, a->rd, a->nf, a->vm, eew);
}
GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check)
GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check)
static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[2][4] = {
/* masked unit stride store */
{ gen_helper_vse8_v_mask, gen_helper_vse16_v_mask,
gen_helper_vse32_v_mask, gen_helper_vse64_v_mask },
/* unmasked unit stride store */
{ gen_helper_vse8_v, gen_helper_vse16_v,
gen_helper_vse32_v, gen_helper_vse64_v }
};
fn = fns[a->vm][eew];
if (fn == NULL) {
return false;
}
uint8_t emul = vext_get_emul(s, eew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_us_trans(a->rd, a->rs1, data, fn, s, true);
}
static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_store(s, a->rd, a->nf, eew);
}
GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check)
GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check)
/*
*** unit stride mask load and store
*/
static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_us *fn = gen_helper_vlm_v;
/* EMUL = 1, NFIELDS = 1 */
data = FIELD_DP32(data, VDATA, LMUL, 0);
data = FIELD_DP32(data, VDATA, NF, 1);
return ldst_us_trans(a->rd, a->rs1, data, fn, s, false);
}
static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew)
{
/* EMUL = 1, NFIELDS = 1 */
return require_rvv(s) && vext_check_isa_ill(s);
}
static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_us *fn = gen_helper_vsm_v;
/* EMUL = 1, NFIELDS = 1 */
data = FIELD_DP32(data, VDATA, LMUL, 0);
data = FIELD_DP32(data, VDATA, NF, 1);
return ldst_us_trans(a->rd, a->rs1, data, fn, s, true);
}
static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew)
{
/* EMUL = 1, NFIELDS = 1 */
return require_rvv(s) && vext_check_isa_ill(s);
}
GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check)
GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check)
/*
*** stride load and store
*/
typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv,
TCGv, TCGv_env, TCGv_i32);
static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2,
uint32_t data, gen_helper_ldst_stride *fn,
DisasContext *s, bool is_store)
{
TCGv_ptr dest, mask;
TCGv base, stride;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE);
stride = get_gpr(s, rs2, EXT_NONE);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, stride, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
if (!is_store) {
mark_vs_dirty(s);
}
gen_set_label(over);
return true;
}
static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_stride *fn;
static gen_helper_ldst_stride * const fns[4] = {
gen_helper_vlse8_v, gen_helper_vlse16_v,
gen_helper_vlse32_v, gen_helper_vlse64_v
};
fn = fns[eew];
if (fn == NULL) {
return false;
}
uint8_t emul = vext_get_emul(s, eew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false);
}
static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_load(s, a->rd, a->nf, a->vm, eew);
}
GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check)
GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check)
static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_stride *fn;
static gen_helper_ldst_stride * const fns[4] = {
/* masked stride store */
gen_helper_vsse8_v, gen_helper_vsse16_v,
gen_helper_vsse32_v, gen_helper_vsse64_v
};
uint8_t emul = vext_get_emul(s, eew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
fn = fns[eew];
if (fn == NULL) {
return false;
}
return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true);
}
static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_store(s, a->rd, a->nf, eew);
}
GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check)
GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check)
/*
*** index load and store
*/
typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv,
TCGv_ptr, TCGv_env, TCGv_i32);
static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
uint32_t data, gen_helper_ldst_index *fn,
DisasContext *s, bool is_store)
{
TCGv_ptr dest, mask, index;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
index = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, index, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(index);
if (!is_store) {
mark_vs_dirty(s);
}
gen_set_label(over);
return true;
}
static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_index *fn;
static gen_helper_ldst_index * const fns[4][4] = {
/*
* offset vector register group EEW = 8,
* data vector register group EEW = SEW
*/
{ gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v,
gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v },
/*
* offset vector register group EEW = 16,
* data vector register group EEW = SEW
*/
{ gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v,
gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v },
/*
* offset vector register group EEW = 32,
* data vector register group EEW = SEW
*/
{ gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v,
gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v },
/*
* offset vector register group EEW = 64,
* data vector register group EEW = SEW
*/
{ gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v,
gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v }
};
fn = fns[eew][s->sew];
uint8_t emul = vext_get_emul(s, s->sew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false);
}
static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew);
}
GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check)
GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check)
static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_index *fn;
static gen_helper_ldst_index * const fns[4][4] = {
/*
* offset vector register group EEW = 8,
* data vector register group EEW = SEW
*/
{ gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v,
gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v },
/*
* offset vector register group EEW = 16,
* data vector register group EEW = SEW
*/
{ gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v,
gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v },
/*
* offset vector register group EEW = 32,
* data vector register group EEW = SEW
*/
{ gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v,
gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v },
/*
* offset vector register group EEW = 64,
* data vector register group EEW = SEW
*/
{ gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v,
gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v }
};
fn = fns[eew][s->sew];
uint8_t emul = vext_get_emul(s, s->sew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true);
}
static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_st_index(s, a->rd, a->rs2, a->nf, eew);
}
GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check)
GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check)
/*
*** unit stride fault-only-first load
*/
static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data,
gen_helper_ldst_us *fn, DisasContext *s)
{
TCGv_ptr dest, mask;
TCGv base;
TCGv_i32 desc;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, base, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew)
{
uint32_t data = 0;
gen_helper_ldst_us *fn;
static gen_helper_ldst_us * const fns[4] = {
gen_helper_vle8ff_v, gen_helper_vle16ff_v,
gen_helper_vle32ff_v, gen_helper_vle64ff_v
};
fn = fns[eew];
if (fn == NULL) {
return false;
}
uint8_t emul = vext_get_emul(s, eew);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, emul);
data = FIELD_DP32(data, VDATA, NF, a->nf);
return ldff_trans(a->rd, a->rs1, data, fn, s);
}
GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check)
GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check)
/*
* load and store whole register instructions
*/
typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32);
static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf,
uint32_t width, gen_helper_ldst_whole *fn,
DisasContext *s, bool is_store)
{
uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over);
TCGv_ptr dest;
TCGv base;
TCGv_i32 desc;
uint32_t data = FIELD_DP32(0, VDATA, NF, nf);
dest = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
base = get_gpr(s, rs1, EXT_NONE);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
fn(dest, base, cpu_env, desc);
tcg_temp_free_ptr(dest);
if (!is_store) {
mark_vs_dirty(s);
}
gen_set_label(over);
return true;
}
/*
* load and store whole register instructions ignore vtype and vl setting.
* Thus, we don't need to check vill bit. (Section 7.9)
*/
#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \
static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \
{ \
if (require_rvv(s) && \
QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \
return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \
gen_helper_##NAME, s, IS_STORE); \
} \
return false; \
}
GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false)
GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false)
GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false)
GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false)
GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false)
GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false)
GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false)
GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false)
GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false)
GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false)
GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false)
GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false)
GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false)
GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false)
GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false)
GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false)
/*
* The vector whole register store instructions are encoded similar to
* unmasked unit-stride store of elements with EEW=8.
*/
GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true)
GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true)
GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true)
GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true)
/*
*** Vector Integer Arithmetic Instructions
*/
/*
* MAXSZ returns the maximum vector size can be operated in bytes,
* which is used in GVEC IR when vl_eq_vlmax flag is set to true
* to accerlate vector operation.
*/
static inline uint32_t MAXSZ(DisasContext *s)
{
int scale = s->lmul - 3;
return s->cfg_ptr->vlen >> -scale;
}
static bool opivv_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm);
}
typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
static inline bool
do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn,
gen_helper_gvec_4_ptr *fn)
{
TCGLabel *over = gen_new_label();
if (!opivv_check(s, a)) {
return false;
}
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
if (a->vm && s->vl_eq_vlmax) {
gvec_fn(s->sew, vreg_ofs(s, a->rd),
vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1),
MAXSZ(s), MAXSZ(s));
} else {
uint32_t data = 0;
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
}
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
/* OPIVV with GVEC IR */
#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVV_GVEC_TRANS(vadd_vv, add)
GEN_OPIVV_GVEC_TRANS(vsub_vv, sub)
typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr,
TCGv_env, TCGv_i32);
static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm,
gen_helper_opivx *fn, DisasContext *s)
{
TCGv_ptr dest, src2, mask;
TCGv src1;
TCGv_i32 desc;
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
src1 = get_gpr(s, rs1, EXT_SIGN);
data = FIELD_DP32(data, VDATA, VM, vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, src1, src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
static bool opivx_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ss(s, a->rd, a->rs2, a->vm);
}
typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64,
uint32_t, uint32_t);
static inline bool
do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn,
gen_helper_opivx *fn)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
TCGv_i64 src1 = tcg_temp_new_i64();
tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN));
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
src1, MAXSZ(s), MAXSZ(s));
tcg_temp_free_i64(src1);
mark_vs_dirty(s);
return true;
}
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
/* OPIVX with GVEC IR */
#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVX_GVEC_TRANS(vadd_vx, adds)
GEN_OPIVX_GVEC_TRANS(vsub_vx, subs)
static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_vec_sub8_i64(d, b, a);
}
static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
{
tcg_gen_vec_sub16_i64(d, b, a);
}
static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2)
{
tcg_gen_sub_i32(ret, arg2, arg1);
}
static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2)
{
tcg_gen_sub_i64(ret, arg2, arg1);
}
static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b)
{
tcg_gen_sub_vec(vece, r, b, a);
}
static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs,
TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
{
static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 };
static const GVecGen2s rsub_op[4] = {
{ .fni8 = gen_vec_rsub8_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs8,
.opt_opc = vecop_list,
.vece = MO_8 },
{ .fni8 = gen_vec_rsub16_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs16,
.opt_opc = vecop_list,
.vece = MO_16 },
{ .fni4 = gen_rsub_i32,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs32,
.opt_opc = vecop_list,
.vece = MO_32 },
{ .fni8 = gen_rsub_i64,
.fniv = gen_rsub_vec,
.fno = gen_helper_vec_rsubs64,
.opt_opc = vecop_list,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
tcg_debug_assert(vece <= MO_64);
tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]);
}
GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs)
typedef enum {
IMM_ZX, /* Zero-extended */
IMM_SX, /* Sign-extended */
IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */
IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */
} imm_mode_t;
static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode)
{
switch (imm_mode) {
case IMM_ZX:
return extract64(imm, 0, 5);
case IMM_SX:
return sextract64(imm, 0, 5);
case IMM_TRUNC_SEW:
return extract64(imm, 0, s->sew + 3);
case IMM_TRUNC_2SEW:
return extract64(imm, 0, s->sew + 4);
default:
g_assert_not_reached();
}
}
static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm,
gen_helper_opivx *fn, DisasContext *s,
imm_mode_t imm_mode)
{
TCGv_ptr dest, src2, mask;
TCGv src1;
TCGv_i32 desc;
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode));
data = FIELD_DP32(data, VDATA, VM, vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
fn(dest, mask, src1, src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
uint32_t, uint32_t);
static inline bool
do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn,
gen_helper_opivx *fn, imm_mode_t imm_mode)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s));
mark_vs_dirty(s);
return true;
}
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode);
}
/* OPIVI with GVEC IR */
#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \
}; \
return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \
fns[s->sew], IMM_MODE); \
}
GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi)
static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs,
int64_t c, uint32_t oprsz, uint32_t maxsz)
{
TCGv_i64 tmp = tcg_constant_i64(c);
tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz);
}
GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi)
/* Vector Widening Integer Add/Subtract */
/* OPIVV with WIDEN */
static bool opivv_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm);
}
static bool do_opivv_widen(DisasContext *s, arg_rmrr *a,
gen_helper_gvec_4_ptr *fn,
bool (*checkfn)(DisasContext *, arg_rmrr *))
{
if (checkfn(s, a)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1),
vreg_ofs(s, a->rs2),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8,
data, fn);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opivv_widen(s, a, fns[s->sew], CHECK); \
}
GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check)
/* OPIVX with WIDEN */
static bool opivx_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ds(s, a->rd, a->rs2, a->vm);
}
static bool do_opivx_widen(DisasContext *s, arg_rmrr *a,
gen_helper_opivx *fn)
{
if (opivx_widen_check(s, a)) {
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
return false;
}
#define GEN_OPIVX_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opivx_widen(s, a, fns[s->sew]); \
}
GEN_OPIVX_WIDEN_TRANS(vwaddu_vx)
GEN_OPIVX_WIDEN_TRANS(vwadd_vx)
GEN_OPIVX_WIDEN_TRANS(vwsubu_vx)
GEN_OPIVX_WIDEN_TRANS(vwsub_vx)
/* WIDEN OPIVV with WIDEN */
static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm);
}
static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a,
gen_helper_gvec_4_ptr *fn)
{
if (opiwv_widen_check(s, a)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1),
vreg_ofs(s, a->rs2),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
#define GEN_OPIWV_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opiwv_widen(s, a, fns[s->sew]); \
}
GEN_OPIWV_WIDEN_TRANS(vwaddu_wv)
GEN_OPIWV_WIDEN_TRANS(vwadd_wv)
GEN_OPIWV_WIDEN_TRANS(vwsubu_wv)
GEN_OPIWV_WIDEN_TRANS(vwsub_wv)
/* WIDEN OPIVX with WIDEN */
static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_dd(s, a->rd, a->rs2, a->vm);
}
static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a,
gen_helper_opivx *fn)
{
if (opiwx_widen_check(s, a)) {
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
return false;
}
#define GEN_OPIWX_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w \
}; \
return do_opiwx_widen(s, a, fns[s->sew]); \
}
GEN_OPIWX_WIDEN_TRANS(vwaddu_wx)
GEN_OPIWX_WIDEN_TRANS(vwadd_wx)
GEN_OPIWX_WIDEN_TRANS(vwsubu_wx)
GEN_OPIWX_WIDEN_TRANS(vwsub_wx)
/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
/* OPIVV without GVEC IR */
#define GEN_OPIVV_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
/*
* For vadc and vsbc, an illegal instruction exception is raised if the
* destination vector register is v0 and LMUL > 1. (Section 11.4)
*/
static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
(a->rd != 0) &&
vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm);
}
GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check)
GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check)
/*
* For vmadc and vmsbc, an illegal instruction exception is raised if the
* destination vector register overlaps a source vector register group.
*/
static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_mss(s, a->rd, a->rs1, a->rs2);
}
GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check)
GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check)
static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
(a->rd != 0) &&
vext_check_ss(s, a->rd, a->rs2, a->vm);
}
/* OPIVX without GVEC IR */
#define GEN_OPIVX_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
\
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\
} \
return false; \
}
GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check)
GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check)
static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ms(s, a->rd, a->rs2);
}
GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check)
GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check)
/* OPIVI without GVEC IR */
#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \
}; \
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \
fns[s->sew], s, IMM_MODE); \
} \
return false; \
}
GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check)
GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check)
/* Vector Bitwise Logical Instructions */
GEN_OPIVV_GVEC_TRANS(vand_vv, and)
GEN_OPIVV_GVEC_TRANS(vor_vv, or)
GEN_OPIVV_GVEC_TRANS(vxor_vv, xor)
GEN_OPIVX_GVEC_TRANS(vand_vx, ands)
GEN_OPIVX_GVEC_TRANS(vor_vx, ors)
GEN_OPIVX_GVEC_TRANS(vxor_vx, xors)
GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi)
GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori)
GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori)
/* Vector Single-Width Bit Shift Instructions */
GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv)
GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv)
GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv)
typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32,
uint32_t, uint32_t);
static inline bool
do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn,
gen_helper_opivx *fn)
{
if (!opivx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
TCGv_i32 src1 = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE));
tcg_gen_extract_i32(src1, src1, 0, s->sew + 3);
gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2),
src1, MAXSZ(s), MAXSZ(s));
tcg_temp_free_i32(src1);
mark_vs_dirty(s);
return true;
}
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s);
}
#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
static gen_helper_opivx * const fns[4] = { \
gen_helper_##NAME##_b, gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, gen_helper_##NAME##_d, \
}; \
\
return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \
}
GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls)
GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs)
GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars)
GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli)
GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri)
GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari)
/* Vector Narrowing Integer Right Shift Instructions */
static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm);
}
/* OPIVV with NARROW */
#define GEN_OPIWV_NARROW_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opiwv_narrow_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPIWV_NARROW_TRANS(vnsra_wv)
GEN_OPIWV_NARROW_TRANS(vnsrl_wv)
static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_sd(s, a->rd, a->rs2, a->vm);
}
/* OPIVX with NARROW */
#define GEN_OPIWX_NARROW_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opiwx_narrow_check(s, a)) { \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
}; \
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\
} \
return false; \
}
GEN_OPIWX_NARROW_TRANS(vnsra_wx)
GEN_OPIWX_NARROW_TRANS(vnsrl_wx)
/* OPIWI with NARROW */
#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opiwx_narrow_check(s, a)) { \
static gen_helper_opivx * const fns[3] = { \
gen_helper_##OPIVX##_b, \
gen_helper_##OPIVX##_h, \
gen_helper_##OPIVX##_w, \
}; \
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \
fns[s->sew], s, IMM_MODE); \
} \
return false; \
}
GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx)
GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx)
/* Vector Integer Comparison Instructions */
/*
* For all comparison instructions, an illegal instruction exception is raised
* if the destination vector register overlaps a source vector register group
* and LMUL > 1.
*/
static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_mss(s, a->rd, a->rs1, a->rs2);
}
GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check)
GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check)
static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ms(s, a->rd, a->rs2);
}
GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check)
GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check)
GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check)
/* Vector Integer Min/Max Instructions */
GEN_OPIVV_GVEC_TRANS(vminu_vv, umin)
GEN_OPIVV_GVEC_TRANS(vmin_vv, smin)
GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax)
GEN_OPIVV_GVEC_TRANS(vmax_vv, smax)
GEN_OPIVX_TRANS(vminu_vx, opivx_check)
GEN_OPIVX_TRANS(vmin_vx, opivx_check)
GEN_OPIVX_TRANS(vmaxu_vx, opivx_check)
GEN_OPIVX_TRANS(vmax_vx, opivx_check)
/* Vector Single-Width Integer Multiply Instructions */
static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a)
{
/*
* All Zve* extensions support all vector integer instructions,
* except that the vmulh integer multiply variants
* that return the high word of the product
* (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx)
* are not included for EEW=64 in Zve64*. (Section 18.2)
*/
return opivv_check(s, a) &&
(!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
}
static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a)
{
/*
* All Zve* extensions support all vector integer instructions,
* except that the vmulh integer multiply variants
* that return the high word of the product
* (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx)
* are not included for EEW=64 in Zve64*. (Section 18.2)
*/
return opivx_check(s, a) &&
(!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
}
GEN_OPIVV_GVEC_TRANS(vmul_vv, mul)
GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check)
GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check)
GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check)
GEN_OPIVX_GVEC_TRANS(vmul_vx, muls)
GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check)
GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check)
GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check)
/* Vector Integer Divide Instructions */
GEN_OPIVV_TRANS(vdivu_vv, opivv_check)
GEN_OPIVV_TRANS(vdiv_vv, opivv_check)
GEN_OPIVV_TRANS(vremu_vv, opivv_check)
GEN_OPIVV_TRANS(vrem_vv, opivv_check)
GEN_OPIVX_TRANS(vdivu_vx, opivx_check)
GEN_OPIVX_TRANS(vdiv_vx, opivx_check)
GEN_OPIVX_TRANS(vremu_vx, opivx_check)
GEN_OPIVX_TRANS(vrem_vx, opivx_check)
/* Vector Widening Integer Multiply Instructions */
GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check)
GEN_OPIVX_WIDEN_TRANS(vwmul_vx)
GEN_OPIVX_WIDEN_TRANS(vwmulu_vx)
GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx)
/* Vector Single-Width Integer Multiply-Add Instructions */
GEN_OPIVV_TRANS(vmacc_vv, opivv_check)
GEN_OPIVV_TRANS(vnmsac_vv, opivv_check)
GEN_OPIVV_TRANS(vmadd_vv, opivv_check)
GEN_OPIVV_TRANS(vnmsub_vv, opivv_check)
GEN_OPIVX_TRANS(vmacc_vx, opivx_check)
GEN_OPIVX_TRANS(vnmsac_vx, opivx_check)
GEN_OPIVX_TRANS(vmadd_vx, opivx_check)
GEN_OPIVX_TRANS(vnmsub_vx, opivx_check)
/* Vector Widening Integer Multiply-Add Instructions */
GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check)
GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx)
GEN_OPIVX_WIDEN_TRANS(vwmacc_vx)
GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx)
GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx)
/* Vector Integer Merge and Move Instructions */
static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
/* vmv.v.v has rs2 = 0 and vm = 1 */
vext_check_sss(s, a->rd, a->rs1, 0, 1)) {
if (s->vl_eq_vlmax) {
tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd),
vreg_ofs(s, a->rs1),
MAXSZ(s), MAXSZ(s));
} else {
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
static gen_helper_gvec_2_ptr * const fns[4] = {
gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h,
gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data,
fns[s->sew]);
gen_set_label(over);
}
mark_vs_dirty(s);
return true;
}
return false;
}
typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32);
static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
/* vmv.v.x has rs2 = 0 and vm = 1 */
vext_check_ss(s, a->rd, 0, 1)) {
TCGv s1;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
s1 = get_gpr(s, a->rs1, EXT_SIGN);
if (s->vl_eq_vlmax) {
tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), s1);
} else {
TCGv_i32 desc;
TCGv_i64 s1_i64 = tcg_temp_new_i64();
TCGv_ptr dest = tcg_temp_new_ptr();
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
static gen_helper_vmv_vx * const fns[4] = {
gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h,
gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d,
};
tcg_gen_ext_tl_i64(s1_i64, s1);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew](dest, s1_i64, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_i64(s1_i64);
}
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
/* vmv.v.i has rs2 = 0 and vm = 1 */
vext_check_ss(s, a->rd, 0, 1)) {
int64_t simm = sextract64(a->rs1, 0, 5);
if (s->vl_eq_vlmax) {
tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), simm);
mark_vs_dirty(s);
} else {
TCGv_i32 desc;
TCGv_i64 s1;
TCGv_ptr dest;
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
static gen_helper_vmv_vx * const fns[4] = {
gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h,
gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
s1 = tcg_constant_i64(simm);
dest = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew](dest, s1, cpu_env, desc);
tcg_temp_free_ptr(dest);
mark_vs_dirty(s);
gen_set_label(over);
}
return true;
}
return false;
}
GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check)
GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check)
GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check)
/*
*** Vector Fixed-Point Arithmetic Instructions
*/
/* Vector Single-Width Saturating Add and Subtract */
GEN_OPIVV_TRANS(vsaddu_vv, opivv_check)
GEN_OPIVV_TRANS(vsadd_vv, opivv_check)
GEN_OPIVV_TRANS(vssubu_vv, opivv_check)
GEN_OPIVV_TRANS(vssub_vv, opivv_check)
GEN_OPIVX_TRANS(vsaddu_vx, opivx_check)
GEN_OPIVX_TRANS(vsadd_vx, opivx_check)
GEN_OPIVX_TRANS(vssubu_vx, opivx_check)
GEN_OPIVX_TRANS(vssub_vx, opivx_check)
GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check)
GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check)
/* Vector Single-Width Averaging Add and Subtract */
GEN_OPIVV_TRANS(vaadd_vv, opivv_check)
GEN_OPIVV_TRANS(vaaddu_vv, opivv_check)
GEN_OPIVV_TRANS(vasub_vv, opivv_check)
GEN_OPIVV_TRANS(vasubu_vv, opivv_check)
GEN_OPIVX_TRANS(vaadd_vx, opivx_check)
GEN_OPIVX_TRANS(vaaddu_vx, opivx_check)
GEN_OPIVX_TRANS(vasub_vx, opivx_check)
GEN_OPIVX_TRANS(vasubu_vx, opivx_check)
/* Vector Single-Width Fractional Multiply with Rounding and Saturation */
static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a)
{
/*
* All Zve* extensions support all vector fixed-point arithmetic
* instructions, except that vsmul.vv and vsmul.vx are not supported
* for EEW=64 in Zve64*. (Section 18.2)
*/
return opivv_check(s, a) &&
(!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
}
static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a)
{
/*
* All Zve* extensions support all vector fixed-point arithmetic
* instructions, except that vsmul.vv and vsmul.vx are not supported
* for EEW=64 in Zve64*. (Section 18.2)
*/
return opivx_check(s, a) &&
(!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
}
GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check)
GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check)
/* Vector Single-Width Scaling Shift Instructions */
GEN_OPIVV_TRANS(vssrl_vv, opivv_check)
GEN_OPIVV_TRANS(vssra_vv, opivv_check)
GEN_OPIVX_TRANS(vssrl_vx, opivx_check)
GEN_OPIVX_TRANS(vssra_vx, opivx_check)
GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check)
GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check)
/* Vector Narrowing Fixed-Point Clip Instructions */
GEN_OPIWV_NARROW_TRANS(vnclipu_wv)
GEN_OPIWV_NARROW_TRANS(vnclip_wv)
GEN_OPIWX_NARROW_TRANS(vnclipu_wx)
GEN_OPIWX_NARROW_TRANS(vnclip_wx)
GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx)
GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx)
/*
*** Vector Float Point Arithmetic Instructions
*/
/*
* As RVF-only cpus always have values NaN-boxed to 64-bits,
* RVF and RVD can be treated equally.
* We don't have to deal with the cases of: SEW > FLEN.
*
* If SEW < FLEN, check whether input fp register is a valid
* NaN-boxed value, in which case the least-significant SEW bits
* of the f regsiter are used, else the canonical NaN value is used.
*/
static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in)
{
switch (s->sew) {
case 1:
gen_check_nanbox_h(out, in);
break;
case 2:
gen_check_nanbox_s(out, in);
break;
case 3:
tcg_gen_mov_i64(out, in);
break;
default:
g_assert_not_reached();
}
}
/* Vector Single-Width Floating-Point Add/Subtract Instructions */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised.
*/
static bool opfvv_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) &&
require_zve32f(s) &&
require_zve64f(s);
}
/* OPFVV without GVEC IR */
#define GEN_OPFVV_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[3] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
gen_helper_##NAME##_d, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, RISCV_FRM_DYN); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFVV_TRANS(vfadd_vv, opfvv_check)
GEN_OPFVV_TRANS(vfsub_vv, opfvv_check)
typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr,
TCGv_env, TCGv_i32);
static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
uint32_t data, gen_helper_opfvf *fn, DisasContext *s)
{
TCGv_ptr dest, src2, mask;
TCGv_i32 desc;
TCGv_i64 t1;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
/* NaN-box f[rs1] */
t1 = tcg_temp_new_i64();
do_nanbox(s, t1, cpu_fpr[rs1]);
fn(dest, mask, t1, src2, cpu_env, desc);
tcg_temp_free_ptr(dest);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
tcg_temp_free_i64(t1);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfvf_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
vext_check_ss(s, a->rd, a->rs2, a->vm) &&
require_zve32f(s) &&
require_zve64f(s);
}
/* OPFVF without GVEC IR */
#define GEN_OPFVF_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_opfvf *const fns[3] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
gen_helper_##NAME##_d, \
}; \
gen_set_rm(s, RISCV_FRM_DYN); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
return opfvf_trans(a->rd, a->rs1, a->rs2, data, \
fns[s->sew - 1], s); \
} \
return false; \
}
GEN_OPFVF_TRANS(vfadd_vf, opfvf_check)
GEN_OPFVF_TRANS(vfsub_vf, opfvf_check)
GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check)
/* Vector Widening Floating-Point Add/Subtract Instructions */
static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
vext_check_isa_ill(s) &&
vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
/* OPFVV with WIDEN */
#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (CHECK(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, RISCV_FRM_DYN); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check)
static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
vext_check_isa_ill(s) &&
vext_check_ds(s, a->rd, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
/* OPFVF with WIDEN */
#define GEN_OPFVF_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opfvf_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_opfvf *const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
gen_set_rm(s, RISCV_FRM_DYN); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
return opfvf_trans(a->rd, a->rs1, a->rs2, data, \
fns[s->sew - 1], s); \
} \
return false; \
}
GEN_OPFVF_WIDEN_TRANS(vfwadd_vf)
GEN_OPFVF_WIDEN_TRANS(vfwsub_vf)
static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
vext_check_isa_ill(s) &&
vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
/* WIDEN OPFVV with WIDEN */
#define GEN_OPFWV_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opfwv_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_4_ptr * const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, RISCV_FRM_DYN); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFWV_WIDEN_TRANS(vfwadd_wv)
GEN_OPFWV_WIDEN_TRANS(vfwsub_wv)
static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
vext_check_isa_ill(s) &&
vext_check_dd(s, a->rd, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
/* WIDEN OPFVF with WIDEN */
#define GEN_OPFWF_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
{ \
if (opfwf_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_opfvf *const fns[2] = { \
gen_helper_##NAME##_h, gen_helper_##NAME##_w, \
}; \
gen_set_rm(s, RISCV_FRM_DYN); \
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
return opfvf_trans(a->rd, a->rs1, a->rs2, data, \
fns[s->sew - 1], s); \
} \
return false; \
}
GEN_OPFWF_WIDEN_TRANS(vfwadd_wf)
GEN_OPFWF_WIDEN_TRANS(vfwsub_wf)
/* Vector Single-Width Floating-Point Multiply/Divide Instructions */
GEN_OPFVV_TRANS(vfmul_vv, opfvv_check)
GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check)
GEN_OPFVF_TRANS(vfmul_vf, opfvf_check)
GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check)
GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check)
/* Vector Widening Floating-Point Multiply */
GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check)
GEN_OPFVF_WIDEN_TRANS(vfwmul_vf)
/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check)
GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check)
GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check)
GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check)
/* Vector Widening Floating-Point Fused Multiply-Add Instructions */
GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check)
GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check)
GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf)
GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf)
GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf)
GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf)
/* Vector Floating-Point Square-Root Instruction */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfv_check(DisasContext *s, arg_rmr *a)
{
return require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
/* OPFV instructions ignore vs1 check */
vext_check_ss(s, a->rd, a->rs2, a->vm) &&
require_zve32f(s) &&
require_zve64f(s);
}
static bool do_opfv(DisasContext *s, arg_rmr *a,
gen_helper_gvec_3_ptr *fn,
bool (*checkfn)(DisasContext *, arg_rmr *),
int rm)
{
if (checkfn(s, a)) {
if (rm != RISCV_FRM_DYN) {
gen_set_rm(s, RISCV_FRM_DYN);
}
uint32_t data = 0;
TCGLabel *over = gen_new_label();
gen_set_rm(s, rm);
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs2), cpu_env,
s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
static gen_helper_gvec_3_ptr * const fns[3] = { \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
gen_helper_##NAME##_d \
}; \
return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \
}
GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN)
GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN)
GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN)
/* Vector Floating-Point MIN/MAX Instructions */
GEN_OPFVV_TRANS(vfmin_vv, opfvv_check)
GEN_OPFVV_TRANS(vfmax_vv, opfvv_check)
GEN_OPFVF_TRANS(vfmin_vf, opfvf_check)
GEN_OPFVF_TRANS(vfmax_vf, opfvf_check)
/* Vector Floating-Point Sign-Injection Instructions */
GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check)
GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check)
GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check)
GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check)
GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check)
GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check)
/* Vector Floating-Point Compare Instructions */
static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
vext_check_mss(s, a->rd, a->rs1, a->rs2) &&
require_zve32f(s) &&
require_zve64f(s);
}
GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check)
GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check)
GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check)
GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check)
static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
vext_check_ms(s, a->rd, a->rs2) &&
require_zve32f(s) &&
require_zve64f(s);
}
GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check)
GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check)
/* Vector Floating-Point Classify Instruction */
GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN)
/* Vector Floating-Point Merge Instruction */
GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check)
static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a)
{
if (require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
require_align(a->rd, s->lmul) &&
require_zve32f(s) &&
require_zve64f(s)) {
gen_set_rm(s, RISCV_FRM_DYN);
TCGv_i64 t1;
if (s->vl_eq_vlmax) {
t1 = tcg_temp_new_i64();
/* NaN-box f[rs1] */
do_nanbox(s, t1, cpu_fpr[a->rs1]);
tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), t1);
mark_vs_dirty(s);
} else {
TCGv_ptr dest;
TCGv_i32 desc;
uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul);
static gen_helper_vmv_vx * const fns[3] = {
gen_helper_vmv_v_x_h,
gen_helper_vmv_v_x_w,
gen_helper_vmv_v_x_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
t1 = tcg_temp_new_i64();
/* NaN-box f[rs1] */
do_nanbox(s, t1, cpu_fpr[a->rs1]);
dest = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew - 1](dest, t1, cpu_env, desc);
tcg_temp_free_ptr(dest);
mark_vs_dirty(s);
gen_set_label(over);
}
tcg_temp_free_i64(t1);
return true;
}
return false;
}
/* Single-Width Floating-Point/Integer Type-Convert Instructions */
#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
static gen_helper_gvec_3_ptr * const fns[3] = { \
gen_helper_##HELPER##_h, \
gen_helper_##HELPER##_w, \
gen_helper_##HELPER##_d \
}; \
return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \
}
GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN)
GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN)
GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN)
GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN)
/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */
GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ)
GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ)
/* Widening Floating-Point/Integer Type-Convert Instructions */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfv_widen_check(DisasContext *s, arg_rmr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_ds(s, a->rd, a->rs2, a->vm);
}
static bool opxfv_widen_check(DisasContext *s, arg_rmr *a)
{
return opfv_widen_check(s, a) &&
require_rvf(s) &&
require_zve32f(s) &&
require_zve64f(s);
}
static bool opffv_widen_check(DisasContext *s, arg_rmr *a)
{
return opfv_widen_check(s, a) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (CHECK(s, a)) { \
if (FRM != RISCV_FRM_DYN) { \
gen_set_rm(s, RISCV_FRM_DYN); \
} \
\
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[2] = { \
gen_helper_##HELPER##_h, \
gen_helper_##HELPER##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, FRM); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v,
RISCV_FRM_DYN)
GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v,
RISCV_FRM_DYN)
GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v,
RISCV_FRM_DYN)
/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */
GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v,
RISCV_FRM_RTZ)
GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v,
RISCV_FRM_RTZ)
static bool opfxv_widen_check(DisasContext *s, arg_rmr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
vext_check_isa_ill(s) &&
/* OPFV widening instructions ignore vs1 check */
vext_check_ds(s, a->rd, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
#define GEN_OPFXV_WIDEN_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (opfxv_widen_check(s, a)) { \
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[3] = { \
gen_helper_##NAME##_b, \
gen_helper_##NAME##_h, \
gen_helper_##NAME##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, RISCV_FRM_DYN); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v)
GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v)
/* Narrowing Floating-Point/Integer Type-Convert Instructions */
/*
* If the current SEW does not correspond to a supported IEEE floating-point
* type, an illegal instruction exception is raised
*/
static bool opfv_narrow_check(DisasContext *s, arg_rmr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
/* OPFV narrowing instructions ignore vs1 check */
vext_check_sd(s, a->rd, a->rs2, a->vm);
}
static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a)
{
return opfv_narrow_check(s, a) &&
require_rvf(s) &&
(s->sew != MO_64) &&
require_zve32f(s) &&
require_zve64f(s);
}
static bool opffv_narrow_check(DisasContext *s, arg_rmr *a)
{
return opfv_narrow_check(s, a) &&
require_scale_rvf(s) &&
(s->sew != MO_8) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (CHECK(s, a)) { \
if (FRM != RISCV_FRM_DYN) { \
gen_set_rm(s, RISCV_FRM_DYN); \
} \
\
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[2] = { \
gen_helper_##HELPER##_h, \
gen_helper_##HELPER##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, FRM); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w,
RISCV_FRM_DYN)
GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w,
RISCV_FRM_DYN)
GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w,
RISCV_FRM_DYN)
/* Reuse the helper function from vfncvt.f.f.w */
GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w,
RISCV_FRM_ROD)
static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a)
{
return require_rvv(s) &&
require_scale_rvf(s) &&
vext_check_isa_ill(s) &&
/* OPFV narrowing instructions ignore vs1 check */
vext_check_sd(s, a->rd, a->rs2, a->vm) &&
require_scale_zve32f(s) &&
require_scale_zve64f(s);
}
#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (opxfv_narrow_check(s, a)) { \
if (FRM != RISCV_FRM_DYN) { \
gen_set_rm(s, RISCV_FRM_DYN); \
} \
\
uint32_t data = 0; \
static gen_helper_gvec_3_ptr * const fns[3] = { \
gen_helper_##HELPER##_b, \
gen_helper_##HELPER##_h, \
gen_helper_##HELPER##_w, \
}; \
TCGLabel *over = gen_new_label(); \
gen_set_rm(s, FRM); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN)
GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN)
/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */
GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ)
GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ)
/*
*** Vector Reduction Operations
*/
/* Vector Single-Width Integer Reduction Instructions */
static bool reduction_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_reduction(s, a->rs2);
}
GEN_OPIVV_TRANS(vredsum_vs, reduction_check)
GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check)
GEN_OPIVV_TRANS(vredmax_vs, reduction_check)
GEN_OPIVV_TRANS(vredminu_vs, reduction_check)
GEN_OPIVV_TRANS(vredmin_vs, reduction_check)
GEN_OPIVV_TRANS(vredand_vs, reduction_check)
GEN_OPIVV_TRANS(vredor_vs, reduction_check)
GEN_OPIVV_TRANS(vredxor_vs, reduction_check)
/* Vector Widening Integer Reduction Instructions */
static bool reduction_widen_check(DisasContext *s, arg_rmrr *a)
{
return reduction_check(s, a) && (s->sew < MO_64) &&
((s->sew + 1) <= (s->cfg_ptr->elen >> 4));
}
GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check)
GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check)
/* Vector Single-Width Floating-Point Reduction Instructions */
static bool freduction_check(DisasContext *s, arg_rmrr *a)
{
return reduction_check(s, a) &&
require_rvf(s) &&
require_zve32f(s) &&
require_zve64f(s);
}
GEN_OPFVV_TRANS(vfredsum_vs, freduction_check)
GEN_OPFVV_TRANS(vfredmax_vs, freduction_check)
GEN_OPFVV_TRANS(vfredmin_vs, freduction_check)
/* Vector Widening Floating-Point Reduction Instructions */
static bool freduction_widen_check(DisasContext *s, arg_rmrr *a)
{
return reduction_widen_check(s, a) &&
require_scale_rvf(s) &&
(s->sew != MO_8);
}
GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check)
/*
*** Vector Mask Operations
*/
/* Vector Mask-Register Logical Instructions */
#define GEN_MM_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_r *a) \
{ \
if (require_rvv(s) && \
vext_check_isa_ill(s)) { \
uint32_t data = 0; \
gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \
s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, fn); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_MM_TRANS(vmand_mm)
GEN_MM_TRANS(vmnand_mm)
GEN_MM_TRANS(vmandn_mm)
GEN_MM_TRANS(vmxor_mm)
GEN_MM_TRANS(vmor_mm)
GEN_MM_TRANS(vmnor_mm)
GEN_MM_TRANS(vmorn_mm)
GEN_MM_TRANS(vmxnor_mm)
/* Vector count population in mask vcpop */
static bool trans_vcpop_m(DisasContext *s, arg_rmr *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
s->vstart == 0) {
TCGv_ptr src2, mask;
TCGv dst;
TCGv_i32 desc;
uint32_t data = 0;
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
dst = dest_gpr(s, a->rd);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc);
gen_set_gpr(s, a->rd, dst);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
return true;
}
return false;
}
/* vmfirst find-first-set mask bit */
static bool trans_vfirst_m(DisasContext *s, arg_rmr *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
s->vstart == 0) {
TCGv_ptr src2, mask;
TCGv dst;
TCGv_i32 desc;
uint32_t data = 0;
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr();
dst = dest_gpr(s, a->rd);
desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc);
gen_set_gpr(s, a->rd, dst);
tcg_temp_free_ptr(mask);
tcg_temp_free_ptr(src2);
return true;
}
return false;
}
/* vmsbf.m set-before-first mask bit */
/* vmsif.m set-includ-first mask bit */
/* vmsof.m set-only-first mask bit */
#define GEN_M_TRANS(NAME) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (require_rvv(s) && \
vext_check_isa_ill(s) && \
require_vm(a->vm, a->rd) && \
(a->rd != a->rs2) && \
(s->vstart == 0)) { \
uint32_t data = 0; \
gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \
\
data = FIELD_DP32(data, VDATA, VM, a->vm); \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \
vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \
cpu_env, s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, \
data, fn); \
mark_vs_dirty(s); \
gen_set_label(over); \
return true; \
} \
return false; \
}
GEN_M_TRANS(vmsbf_m)
GEN_M_TRANS(vmsif_m)
GEN_M_TRANS(vmsof_m)
/*
* Vector Iota Instruction
*
* 1. The destination register cannot overlap the source register.
* 2. If masked, cannot overlap the mask register ('v0').
* 3. An illegal instruction exception is raised if vstart is non-zero.
*/
static bool trans_viota_m(DisasContext *s, arg_viota_m *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
!is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) &&
require_vm(a->vm, a->rd) &&
require_align(a->rd, s->lmul) &&
(s->vstart == 0)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
static gen_helper_gvec_3_ptr * const fns[4] = {
gen_helper_viota_m_b, gen_helper_viota_m_h,
gen_helper_viota_m_w, gen_helper_viota_m_d,
};
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs2), cpu_env,
s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fns[s->sew]);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
/* Vector Element Index Instruction */
static bool trans_vid_v(DisasContext *s, arg_vid_v *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s) &&
require_align(a->rd, s->lmul) &&
require_vm(a->vm, a->rd)) {
uint32_t data = 0;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, VM, a->vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
static gen_helper_gvec_2_ptr * const fns[4] = {
gen_helper_vid_v_b, gen_helper_vid_v_h,
gen_helper_vid_v_w, gen_helper_vid_v_d,
};
tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8,
data, fns[s->sew]);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
/*
*** Vector Permutation Instructions
*/
static void load_element(TCGv_i64 dest, TCGv_ptr base,
int ofs, int sew, bool sign)
{
switch (sew) {
case MO_8:
if (!sign) {
tcg_gen_ld8u_i64(dest, base, ofs);
} else {
tcg_gen_ld8s_i64(dest, base, ofs);
}
break;
case MO_16:
if (!sign) {
tcg_gen_ld16u_i64(dest, base, ofs);
} else {
tcg_gen_ld16s_i64(dest, base, ofs);
}
break;
case MO_32:
if (!sign) {
tcg_gen_ld32u_i64(dest, base, ofs);
} else {
tcg_gen_ld32s_i64(dest, base, ofs);
}
break;
case MO_64:
tcg_gen_ld_i64(dest, base, ofs);
break;
default:
g_assert_not_reached();
break;
}
}
/* offset of the idx element with base regsiter r */
static uint32_t endian_ofs(DisasContext *s, int r, int idx)
{
#if HOST_BIG_ENDIAN
return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew);
#else
return vreg_ofs(s, r) + (idx << s->sew);
#endif
}
/* adjust the index according to the endian */
static void endian_adjust(TCGv_i32 ofs, int sew)
{
#if HOST_BIG_ENDIAN
tcg_gen_xori_i32(ofs, ofs, 7 >> sew);
#endif
}
/* Load idx >= VLMAX ? 0 : vreg[idx] */
static void vec_element_loadx(DisasContext *s, TCGv_i64 dest,
int vreg, TCGv idx, int vlmax)
{
TCGv_i32 ofs = tcg_temp_new_i32();
TCGv_ptr base = tcg_temp_new_ptr();
TCGv_i64 t_idx = tcg_temp_new_i64();
TCGv_i64 t_vlmax, t_zero;
/*
* Mask the index to the length so that we do
* not produce an out-of-range load.
*/
tcg_gen_trunc_tl_i32(ofs, idx);
tcg_gen_andi_i32(ofs, ofs, vlmax - 1);
/* Convert the index to an offset. */
endian_adjust(ofs, s->sew);
tcg_gen_shli_i32(ofs, ofs, s->sew);
/* Convert the index to a pointer. */
tcg_gen_ext_i32_ptr(base, ofs);
tcg_gen_add_ptr(base, base, cpu_env);
/* Perform the load. */
load_element(dest, base,
vreg_ofs(s, vreg), s->sew, false);
tcg_temp_free_ptr(base);
tcg_temp_free_i32(ofs);
/* Flush out-of-range indexing to zero. */
t_vlmax = tcg_constant_i64(vlmax);
t_zero = tcg_constant_i64(0);
tcg_gen_extu_tl_i64(t_idx, idx);
tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx,
t_vlmax, dest, t_zero);
tcg_temp_free_i64(t_idx);
}
static void vec_element_loadi(DisasContext *s, TCGv_i64 dest,
int vreg, int idx, bool sign)
{
load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign);
}
/* Integer Scalar Move Instruction */
static void store_element(TCGv_i64 val, TCGv_ptr base,
int ofs, int sew)
{
switch (sew) {
case MO_8:
tcg_gen_st8_i64(val, base, ofs);
break;
case MO_16:
tcg_gen_st16_i64(val, base, ofs);
break;
case MO_32:
tcg_gen_st32_i64(val, base, ofs);
break;
case MO_64:
tcg_gen_st_i64(val, base, ofs);
break;
default:
g_assert_not_reached();
break;
}
}
/*
* Store vreg[idx] = val.
* The index must be in range of VLMAX.
*/
static void vec_element_storei(DisasContext *s, int vreg,
int idx, TCGv_i64 val)
{
store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew);
}
/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */
static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s)) {
TCGv_i64 t1;
TCGv dest;
t1 = tcg_temp_new_i64();
dest = tcg_temp_new();
/*
* load vreg and sign-extend to 64 bits,
* then truncate to XLEN bits before storing to gpr.
*/
vec_element_loadi(s, t1, a->rs2, 0, true);
tcg_gen_trunc_i64_tl(dest, t1);
gen_set_gpr(s, a->rd, dest);
tcg_temp_free_i64(t1);
tcg_temp_free(dest);
return true;
}
return false;
}
/* vmv.s.x vd, rs1 # vd[0] = rs1 */
static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a)
{
if (require_rvv(s) &&
vext_check_isa_ill(s)) {
/* This instruction ignores LMUL and vector register groups */
TCGv_i64 t1;
TCGv s1;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
t1 = tcg_temp_new_i64();
/*
* load gpr and sign-extend to 64 bits,
* then truncate to SEW bits when storing to vreg.
*/
s1 = get_gpr(s, a->rs1, EXT_NONE);
tcg_gen_ext_tl_i64(t1, s1);
vec_element_storei(s, a->rd, 0, t1);
tcg_temp_free_i64(t1);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
/* Floating-Point Scalar Move Instructions */
static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a)
{
if (require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
require_zve32f(s) &&
require_zve64f(s)) {
gen_set_rm(s, RISCV_FRM_DYN);
unsigned int ofs = (8 << s->sew);
unsigned int len = 64 - ofs;
TCGv_i64 t_nan;
vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false);
/* NaN-box f[rd] as necessary for SEW */
if (len) {
t_nan = tcg_constant_i64(UINT64_MAX);
tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd],
t_nan, ofs, len);
}
mark_fs_dirty(s);
return true;
}
return false;
}
/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */
static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a)
{
if (require_rvv(s) &&
require_rvf(s) &&
vext_check_isa_ill(s) &&
require_zve32f(s) &&
require_zve64f(s)) {
gen_set_rm(s, RISCV_FRM_DYN);
/* The instructions ignore LMUL and vector register group. */
TCGv_i64 t1;
TCGLabel *over = gen_new_label();
/* if vl == 0 or vstart >= vl, skip vector register write back */
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);
/* NaN-box f[rs1] */
t1 = tcg_temp_new_i64();
do_nanbox(s, t1, cpu_fpr[a->rs1]);
vec_element_storei(s, a->rd, 0, t1);
tcg_temp_free_i64(t1);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
/* Vector Slide Instructions */
static bool slideup_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_slide(s, a->rd, a->rs2, a->vm, true);
}
GEN_OPIVX_TRANS(vslideup_vx, slideup_check)
GEN_OPIVX_TRANS(vslide1up_vx, slideup_check)
GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check)
static bool slidedown_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
vext_check_slide(s, a->rd, a->rs2, a->vm, false);
}
GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check)
GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check)
GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check)
/* Vector Floating-Point Slide Instructions */
static bool fslideup_check(DisasContext *s, arg_rmrr *a)
{
return slideup_check(s, a) &&
require_rvf(s) &&
require_zve32f(s) &&
require_zve64f(s);
}
static bool fslidedown_check(DisasContext *s, arg_rmrr *a)
{
return slidedown_check(s, a) &&
require_rvf(s) &&
require_zve32f(s) &&
require_zve64f(s);
}
GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check)
GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check)
/* Vector Register Gather Instruction */
static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
require_align(a->rd, s->lmul) &&
require_align(a->rs1, s->lmul) &&
require_align(a->rs2, s->lmul) &&
(a->rd != a->rs2 && a->rd != a->rs1) &&
require_vm(a->vm, a->rd);
}
static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a)
{
int8_t emul = MO_16 - s->sew + s->lmul;
return require_rvv(s) &&
vext_check_isa_ill(s) &&
(emul >= -3 && emul <= 3) &&
require_align(a->rd, s->lmul) &&
require_align(a->rs1, emul) &&
require_align(a->rs2, s->lmul) &&
(a->rd != a->rs2 && a->rd != a->rs1) &&
!is_overlapped(a->rd, 1 << MAX(s->lmul, 0),
a->rs1, 1 << MAX(emul, 0)) &&
!is_overlapped(a->rd, 1 << MAX(s->lmul, 0),
a->rs2, 1 << MAX(s->lmul, 0)) &&
require_vm(a->vm, a->rd);
}
GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check)
GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check)
static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
require_align(a->rd, s->lmul) &&
require_align(a->rs2, s->lmul) &&
(a->rd != a->rs2) &&
require_vm(a->vm, a->rd);
}
/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a)
{
if (!vrgather_vx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
int scale = s->lmul - (s->sew + 3);
int vlmax = s->cfg_ptr->vlen >> -scale;
TCGv_i64 dest = tcg_temp_new_i64();
if (a->rs1 == 0) {
vec_element_loadi(s, dest, a->rs2, 0, false);
} else {
vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax);
}
tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), dest);
tcg_temp_free_i64(dest);
mark_vs_dirty(s);
} else {
static gen_helper_opivx * const fns[4] = {
gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h,
gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d
};
return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);
}
return true;
}
/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */
static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a)
{
if (!vrgather_vx_check(s, a)) {
return false;
}
if (a->vm && s->vl_eq_vlmax) {
int scale = s->lmul - (s->sew + 3);
int vlmax = s->cfg_ptr->vlen >> -scale;
if (a->rs1 >= vlmax) {
tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), 0);
} else {
tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd),
endian_ofs(s, a->rs2, a->rs1),
MAXSZ(s), MAXSZ(s));
}
mark_vs_dirty(s);
} else {
static gen_helper_opivx * const fns[4] = {
gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h,
gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d
};
return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew],
s, IMM_ZX);
}
return true;
}
/*
* Vector Compress Instruction
*
* The destination vector register group cannot overlap the
* source vector register group or the source mask register.
*/
static bool vcompress_vm_check(DisasContext *s, arg_r *a)
{
return require_rvv(s) &&
vext_check_isa_ill(s) &&
require_align(a->rd, s->lmul) &&
require_align(a->rs2, s->lmul) &&
(a->rd != a->rs2) &&
!is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) &&
(s->vstart == 0);
}
static bool trans_vcompress_vm(DisasContext *s, arg_r *a)
{
if (vcompress_vm_check(s, a)) {
uint32_t data = 0;
static gen_helper_gvec_4_ptr * const fns[4] = {
gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h,
gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d,
};
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2),
cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data,
fns[s->sew]);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
return false;
}
/*
* Whole Vector Register Move Instructions ignore vtype and vl setting.
* Thus, we don't need to check vill bit. (Section 16.6)
*/
#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \
static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \
{ \
if (require_rvv(s) && \
QEMU_IS_ALIGNED(a->rd, LEN) && \
QEMU_IS_ALIGNED(a->rs2, LEN)) { \
uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \
if (s->vstart == 0) { \
/* EEW = 8 */ \
tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \
vreg_ofs(s, a->rs2), maxsz, maxsz); \
mark_vs_dirty(s); \
} else { \
TCGLabel *over = gen_new_label(); \
tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \
tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \
cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \
mark_vs_dirty(s); \
gen_set_label(over); \
} \
return true; \
} \
return false; \
}
GEN_VMV_WHOLE_TRANS(vmv1r_v, 1)
GEN_VMV_WHOLE_TRANS(vmv2r_v, 2)
GEN_VMV_WHOLE_TRANS(vmv4r_v, 4)
GEN_VMV_WHOLE_TRANS(vmv8r_v, 8)
static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div)
{
uint8_t from = (s->sew + 3) - div;
bool ret = require_rvv(s) &&
(from >= 3 && from <= 8) &&
(a->rd != a->rs2) &&
require_align(a->rd, s->lmul) &&
require_align(a->rs2, s->lmul - div) &&
require_vm(a->vm, a->rd) &&
require_noover(a->rd, s->lmul, a->rs2, s->lmul - div);
return ret;
}
static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq)
{
uint32_t data = 0;
gen_helper_gvec_3_ptr *fn;
TCGLabel *over = gen_new_label();
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
static gen_helper_gvec_3_ptr * const fns[6][4] = {
{
NULL, gen_helper_vzext_vf2_h,
gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d
},
{
NULL, NULL,
gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d,
},
{
NULL, NULL,
NULL, gen_helper_vzext_vf8_d
},
{
NULL, gen_helper_vsext_vf2_h,
gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d
},
{
NULL, NULL,
gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d,
},
{
NULL, NULL,
NULL, gen_helper_vsext_vf8_d
}
};
fn = fns[seq][s->sew];
if (fn == NULL) {
return false;
}
data = FIELD_DP32(data, VDATA, VM, a->vm);
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs2), cpu_env,
s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
mark_vs_dirty(s);
gen_set_label(over);
return true;
}
/* Vector Integer Extension */
#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \
static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
{ \
if (int_ext_check(s, a, DIV)) { \
return int_ext_op(s, a, SEQ); \
} \
return false; \
}
GEN_INT_EXT_TRANS(vzext_vf2, 1, 0)
GEN_INT_EXT_TRANS(vzext_vf4, 2, 1)
GEN_INT_EXT_TRANS(vzext_vf8, 3, 2)
GEN_INT_EXT_TRANS(vsext_vf2, 1, 3)
GEN_INT_EXT_TRANS(vsext_vf4, 2, 4)
GEN_INT_EXT_TRANS(vsext_vf8, 3, 5)