qemu/target/arm/translate.h

583 lines
20 KiB
C
Raw Normal View History

#ifndef TARGET_ARM_TRANSLATE_H
#define TARGET_ARM_TRANSLATE_H
#include "exec/translator.h"
#include "internals.h"
/* internal defines */
typedef struct DisasContext {
DisasContextBase base;
const ARMISARegisters *isar;
/* The address of the current instruction being translated. */
target_ulong pc_curr;
target_ulong page_start;
uint32_t insn;
/* Nonzero if this instruction has been conditionally skipped. */
int condjmp;
/* The label that will be jumped to when the instruction is skipped. */
TCGLabel *condlabel;
/* Thumb-2 conditional execution bits. */
int condexec_mask;
int condexec_cond;
target/arm: Add handling for PSR.ECI/ICI On A-profile, PSR bits [15:10][26:25] are always the IT state bits. On M-profile, some of the reserved encodings of the IT state are used to instead indicate partial progress through instructions that were interrupted partway through by an exception and can be resumed. These resumable instructions fall into two categories: (1) load/store multiple instructions, where these bits are called "ICI" and specify the register in the ldm/stm list where execution should resume. (Specifically: LDM, STM, VLDM, VSTM, VLLDM, VLSTM, CLRM, VSCCLRM.) (2) MVE instructions subject to beatwise execution, where these bits are called "ECI" and specify which beats in this and possibly also the following MVE insn have been executed. There are also a few insns (LE, LETP, and BKPT) which do not use the ICI/ECI bits but must leave them alone. Otherwise, we should raise an INVSTATE UsageFault for any attempt to execute an insn with non-zero ICI/ECI bits. So far we have been able to ignore ECI/ICI, because the architecture allows the IMPDEF choice of "always restart load/store multiple from the beginning regardless of ICI state", so the only thing we have been missing is that we don't raise the INVSTATE fault for bad guest code. However, MVE requires that we honour ECI bits and do not rexecute beats of an insn that have already been executed. Add the support in the decoder for handling ECI/ICI: * identify the ECI/ICI case in the CONDEXEC TB flags * when a load/store multiple insn succeeds, it updates the ECI/ICI state (both in DisasContext and in the CPU state), and sets a flag to say that the ECI/ICI state was handled * if we find that the insn we just decoded did not handle the ECI/ICI state, we delete all the code that we just generated for it and instead emit the code to raise the INVFAULT. This allows us to avoid having to update every non-MVE non-LDM/STM insn to make it check for "is ECI/ICI set?". We continue with our existing IMPDEF choice of not caring about the ICI state for the load/store multiples and simply restarting them from the beginning. Because we don't allow interrupts in the middle of an insn, the only way we would see this state is if the guest set ICI manually on return from an exception handler, so it's a corner case which doesn't merit optimisation. ICI update for LDM/STM is simple -- it always zeroes the state. ECI update for MVE beatwise insns will be a little more complex, since the ECI state may include information for the following insn. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20210614151007.4545-5-peter.maydell@linaro.org
2021-06-14 18:09:14 +03:00
/* M-profile ECI/ICI exception-continuable instruction state */
int eci;
/*
* trans_ functions for insns which are continuable should set this true
* after decode (ie after any UNDEF checks)
*/
bool eci_handled;
/* TCG op to rewind to if this turns out to be an invalid ECI state */
TCGOp *insn_eci_rewind;
int thumb;
int sctlr_b;
MemOp be_data;
#if !defined(CONFIG_USER_ONLY)
int user;
#endif
ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
uint8_t tbii; /* TBI1|TBI0 for insns */
uint8_t tbid; /* TBI1|TBI0 for data */
uint8_t tcma; /* TCMA1|TCMA0 for MTE */
bool ns; /* Use non-secure CPREG bank on access */
int fp_excp_el; /* FP exception EL or 0 if enabled */
int sve_excp_el; /* SVE exception EL or 0 if enabled */
int sve_len; /* SVE vector length in bytes */
/* Flag indicating that exceptions from secure mode are routed to EL3. */
bool secure_routed_to_el3;
bool vfp_enabled; /* FP enabled via FPSCR.EN */
int vec_len;
int vec_stride;
bool v7m_handler_mode;
bool v8m_secure; /* true if v8M and we're in Secure mode */
bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
bool v7m_lspact; /* FPCCR.LSPACT set */
/* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
* so that top level loop can generate correct syndrome information.
*/
uint32_t svc_imm;
int aarch64;
int current_el;
/* Debug target exception level for single-step exceptions */
int debug_target_el;
GHashTable *cp_regs;
uint64_t features; /* CPU features bits */
/* Because unallocated encodings generate different exception syndrome
* information from traps due to FP being disabled, we can't do a single
* "is fp access disabled" check at a high level in the decode tree.
* To help in catching bugs where the access check was forgotten in some
* code path, we set this flag when the access check is done, and assert
* that it is set at the point where we actually touch the FP regs.
*/
bool fp_access_checked;
bool sve_access_checked;
/* ARMv8 single-step state (this is distinct from the QEMU gdbstub
* single-step support).
*/
bool ss_active;
bool pstate_ss;
/* True if the insn just emitted was a load-exclusive instruction
* (necessary for syndrome information for single step exceptions),
* ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
*/
bool is_ldex;
/* True if AccType_UNPRIV should be used for LDTR et al */
bool unpriv;
/* True if v8.3-PAuth is active. */
bool pauth_active;
/* True if v8.5-MTE access to tags is enabled. */
bool ata;
/* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */
bool mte_active[2];
/* True with v8.5-BTI and SCTLR_ELx.BT* set. */
bool bt;
/* True if any CP15 access is trapped by HSTR_EL2 */
bool hstr_active;
/* True if memory operations require alignment */
bool align_mem;
/*
* >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
* < 0, set by the current instruction.
*/
int8_t btype;
/* A copy of cpu->dcz_blocksize. */
uint8_t dcz_blocksize;
/* True if this page is guarded. */
bool guarded_page;
/* Bottom two bits of XScale c15_cpar coprocessor access control reg */
int c15_cpar;
/* TCG op of the current insn_start. */
TCGOp *insn_start;
#define TMP_A64_MAX 16
int tmp_a64_count;
TCGv_i64 tmp_a64[TMP_A64_MAX];
} DisasContext;
typedef struct DisasCompare {
TCGCond cond;
TCGv_i32 value;
bool value_global;
} DisasCompare;
/* Share the TCG temporaries common between 32 and 64 bit modes. */
extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
extern TCGv_i64 cpu_exclusive_addr;
extern TCGv_i64 cpu_exclusive_val;
/*
* Constant expanders for the decoders.
*/
static inline int negate(DisasContext *s, int x)
{
return -x;
}
static inline int plus_1(DisasContext *s, int x)
{
return x + 1;
}
static inline int plus_2(DisasContext *s, int x)
{
return x + 2;
}
static inline int times_2(DisasContext *s, int x)
{
return x * 2;
}
static inline int times_4(DisasContext *s, int x)
{
return x * 4;
}
static inline int times_2_plus_1(DisasContext *s, int x)
{
return x * 2 + 1;
}
static inline int rsub_64(DisasContext *s, int x)
{
return 64 - x;
}
static inline int rsub_32(DisasContext *s, int x)
{
return 32 - x;
}
static inline int rsub_16(DisasContext *s, int x)
{
return 16 - x;
}
static inline int rsub_8(DisasContext *s, int x)
{
return 8 - x;
}
static inline int neon_3same_fp_size(DisasContext *s, int x)
{
/* Convert 0==fp32, 1==fp16 into a MO_* value */
return MO_32 - x;
}
static inline int arm_dc_feature(DisasContext *dc, int feature)
{
return (dc->features & (1ULL << feature)) != 0;
}
static inline int get_mem_index(DisasContext *s)
{
return arm_to_core_mmu_idx(s->mmu_idx);
}
/* Function used to determine the target exception EL when otherwise not known
* or default.
*/
static inline int default_exception_el(DisasContext *s)
{
/* If we are coming from secure EL0 in a system with a 32-bit EL3, then
* there is no secure EL1, so we route exceptions to EL3. Otherwise,
* exceptions can only be routed to ELs above 1, so we target the higher of
* 1 or the current EL.
*/
return (s->mmu_idx == ARMMMUIdx_SE10_0 && s->secure_routed_to_el3)
? 3 : MAX(1, s->current_el);
}
static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
{
/* We don't need to save all of the syndrome so we mask and shift
* out unneeded bits to help the sleb128 encoder do a better job.
*/
syn &= ARM_INSN_START_WORD2_MASK;
syn >>= ARM_INSN_START_WORD2_SHIFT;
/* We check and clear insn_start_idx to catch multiple updates. */
assert(s->insn_start != NULL);
tcg_set_insn_start_param(s->insn_start, 2, syn);
s->insn_start = NULL;
}
/* is_jmp field values */
#define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
/* CPU state was modified dynamically; exit to main loop for interrupts. */
#define DISAS_UPDATE_EXIT DISAS_TARGET_1
/* These instructions trap after executing, so the A32/T32 decoder must
* defer them until after the conditional execution state has been updated.
* WFI also needs special handling when single-stepping.
*/
#define DISAS_WFI DISAS_TARGET_2
#define DISAS_SWI DISAS_TARGET_3
/* WFE */
#define DISAS_WFE DISAS_TARGET_4
#define DISAS_HVC DISAS_TARGET_5
#define DISAS_SMC DISAS_TARGET_6
#define DISAS_YIELD DISAS_TARGET_7
arm: Implement M profile exception return properly On M profile, return from exceptions happen when code in Handler mode executes one of the following function call return instructions: * POP or LDM which loads the PC * LDR to PC * BX register and the new PC value is 0xFFxxxxxx. QEMU tries to implement this by not treating the instruction specially but then catching the attempt to execute from the magic address value. This is not ideal, because: * there are guest visible differences from the architecturally specified behaviour (for instance jumping to 0xFFxxxxxx via a different instruction should not cause an exception return but it will in the QEMU implementation) * we have to account for it in various places (like refusing to take an interrupt if the PC is at a magic value, and making sure that the MPU doesn't deny execution at the magic value addresses) Drop these hacks, and instead implement exception return the way the architecture specifies -- by having the relevant instructions check for the magic value and raise the 'do an exception return' QEMU internal exception immediately. The effect on the generated code is minor: bx lr, old code (and new code for Thread mode): TCG: mov_i32 tmp5,r14 movi_i32 tmp6,$0xfffffffffffffffe and_i32 pc,tmp5,tmp6 movi_i32 tmp6,$0x1 and_i32 tmp5,tmp5,tmp6 st_i32 tmp5,env,$0x218 exit_tb $0x0 set_label $L0 exit_tb $0x7f2aabd61993 x86_64 generated code: 0x7f2aabe87019: mov %ebx,%ebp 0x7f2aabe8701b: and $0xfffffffffffffffe,%ebp 0x7f2aabe8701e: mov %ebp,0x3c(%r14) 0x7f2aabe87022: and $0x1,%ebx 0x7f2aabe87025: mov %ebx,0x218(%r14) 0x7f2aabe8702c: xor %eax,%eax 0x7f2aabe8702e: jmpq 0x7f2aabe7c016 bx lr, new code when in Handler mode: TCG: mov_i32 tmp5,r14 movi_i32 tmp6,$0xfffffffffffffffe and_i32 pc,tmp5,tmp6 movi_i32 tmp6,$0x1 and_i32 tmp5,tmp5,tmp6 st_i32 tmp5,env,$0x218 movi_i32 tmp5,$0xffffffffff000000 brcond_i32 pc,tmp5,geu,$L1 exit_tb $0x0 set_label $L1 movi_i32 tmp5,$0x8 call exception_internal,$0x0,$0,env,tmp5 x86_64 generated code: 0x7fe8fa1264e3: mov %ebp,%ebx 0x7fe8fa1264e5: and $0xfffffffffffffffe,%ebx 0x7fe8fa1264e8: mov %ebx,0x3c(%r14) 0x7fe8fa1264ec: and $0x1,%ebp 0x7fe8fa1264ef: mov %ebp,0x218(%r14) 0x7fe8fa1264f6: cmp $0xff000000,%ebx 0x7fe8fa1264fc: jae 0x7fe8fa126509 0x7fe8fa126502: xor %eax,%eax 0x7fe8fa126504: jmpq 0x7fe8fa122016 0x7fe8fa126509: mov %r14,%rdi 0x7fe8fa12650c: mov $0x8,%esi 0x7fe8fa126511: mov $0x56095dbeccf5,%r10 0x7fe8fa12651b: callq *%r10 which is a difference of one cmp/branch-not-taken. This will be lost in the noise of having to exit generated code and look up the next TB anyway. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-id: 1491844419-12485-9-git-send-email-peter.maydell@linaro.org
2017-04-20 19:32:31 +03:00
/* M profile branch which might be an exception return (and so needs
* custom end-of-TB code)
*/
#define DISAS_BX_EXCRET DISAS_TARGET_8
/*
* For instructions which want an immediate exit to the main loop, as opposed
* to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this
* doesn't write the PC on exiting the translation loop so you need to ensure
* something (gen_a64_set_pc_im or runtime helper) has done so before we reach
* return from cpu_tb_exec.
target/arm: optimize indirect branches Speed up indirect branches by jumping to the target if it is valid. Softmmu measurements (see later commit for user-mode results): Note: baseline (i.e. speedup == 1x) is QEMU v2.9.0. - Impact on Boot time | setup | ARM debian jessie boot+shutdown time | stddev | |--------+--------------------------------------+--------| | v2.9.0 | 8.84 | 0.07 | | +cross | 8.85 | 0.03 | | +jr | 8.83 | 0.06 | - NBench, arm-softmmu (debian jessie guest). Host: Intel i7-4790K @ 4.00GHz 1.3x +-+-------------------------------------------------------------------------------------------------------------+-+ | | | cross #### | 1.25x +cross+jr..........................................................#++#.........................................+-+ | #### # # | | +++# # # # | | +++ **** # # # | 1.2x +-+...................................####............*..*..#......#..#.........................................+-+ | **** # * * # # # #### | | * * # * * # # # # # | 1.15x +-+................................*..*..#............*..*..#......#..#.....#..#................................+-+ | * * # * * # # # # # | | * * # #### * * # # # # # | | * * # # # * * # # # # # #### | 1.1x +-+................................*..*..#......#..#..*..*..#......#..#.....#..#.........................#..#...+-+ | * * # # # * * # # # # # # # | | * * # # # * * # # # # # # # | 1.05x +-+..........................####..*..*..#......#..#..*..*..#......#..#.....#..#......+++............*****..#...+-+ | ***** # * * # # # * * # ***** # # # +++ | ****### * * # | | *+++* # * * # # # * * # *+++* # **** # *****### * * # * * # | | *****### +++#### * * # * * # ***** # * * # * * # * * # * | *++# * * # * * # | 1x +-++-+*+++*-+#++****++#++*+-+*++#+-*++*++#-+*+++*-+#++*++*++#++*+-+*++#+-*++*++#-+*+++*-+#++*++*++#++*+-+*++#+-++-+ | * * # * * # * * # * * # * * # * * # * * # * * # * * # * * # * * # | | * * # * * # * * # * * # * * # * * # * * # * * # * * # * * # * * # | 0.95x +-+---*****###--****###--*****###--****###--*****###--****###--*****###--****###--*****###--****###--*****###---+-+ ASSIGNMENT BITFIELD FOURFP EMULATION HUFFMAN LU DECOMPOSITIONEURAL NNUMERIC SOSTRING SORT hmean png: http://imgur.com/eOLmZNR NB. 'cross' represents the previous commit. Signed-off-by: Emilio G. Cota <cota@braap.org> Message-Id: <1493263764-18657-8-git-send-email-cota@braap.org> [rth: Replace gen_jr global variable with DISAS_EXIT state.] Signed-off-by: Richard Henderson <rth@twiddle.net>
2017-04-27 06:29:20 +03:00
*/
#define DISAS_EXIT DISAS_TARGET_9
/* CPU state was modified dynamically; no need to exit, but do not chain. */
#define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10
#ifdef TARGET_AARCH64
void a64_translate_init(void);
void gen_a64_set_pc_im(uint64_t val);
extern const TranslatorOps aarch64_translator_ops;
#else
static inline void a64_translate_init(void)
{
}
static inline void gen_a64_set_pc_im(uint64_t val)
{
}
#endif
void arm_test_cc(DisasCompare *cmp, int cc);
void arm_free_cc(DisasCompare *cmp);
void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
void arm_gen_test_cc(int cc, TCGLabel *label);
MemOp pow2_align(unsigned i);
void unallocated_encoding(DisasContext *s);
void gen_exception_insn(DisasContext *s, uint64_t pc, int excp,
uint32_t syn, uint32_t target_el);
/* Return state of Alternate Half-precision flag, caller frees result */
static inline TCGv_i32 get_ahp_flag(void)
{
TCGv_i32 ret = tcg_temp_new_i32();
tcg_gen_ld_i32(ret, cpu_env,
offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPSCR]));
tcg_gen_extract_i32(ret, ret, 26, 1);
return ret;
}
/* Set bits within PSTATE. */
static inline void set_pstate_bits(uint32_t bits)
{
TCGv_i32 p = tcg_temp_new_i32();
tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate));
tcg_gen_ori_i32(p, p, bits);
tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate));
tcg_temp_free_i32(p);
}
/* Clear bits within PSTATE. */
static inline void clear_pstate_bits(uint32_t bits)
{
TCGv_i32 p = tcg_temp_new_i32();
tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
tcg_gen_ld_i32(p, cpu_env, offsetof(CPUARMState, pstate));
tcg_gen_andi_i32(p, p, ~bits);
tcg_gen_st_i32(p, cpu_env, offsetof(CPUARMState, pstate));
tcg_temp_free_i32(p);
}
/* If the singlestep state is Active-not-pending, advance to Active-pending. */
static inline void gen_ss_advance(DisasContext *s)
{
if (s->ss_active) {
s->pstate_ss = 0;
clear_pstate_bits(PSTATE_SS);
}
}
static inline void gen_exception(int excp, uint32_t syndrome,
uint32_t target_el)
{
TCGv_i32 tcg_excp = tcg_const_i32(excp);
TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
TCGv_i32 tcg_el = tcg_const_i32(target_el);
gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
tcg_syn, tcg_el);
tcg_temp_free_i32(tcg_el);
tcg_temp_free_i32(tcg_syn);
tcg_temp_free_i32(tcg_excp);
}
/* Generate an architectural singlestep exception */
static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
{
bool same_el = (s->debug_target_el == s->current_el);
/*
* If singlestep is targeting a lower EL than the current one,
* then s->ss_active must be false and we can never get here.
*/
assert(s->debug_target_el >= s->current_el);
gen_exception(EXCP_UDEF, syn_swstep(same_el, isv, ex), s->debug_target_el);
}
/*
* Given a VFP floating point constant encoded into an 8 bit immediate in an
* instruction, expand it to the actual constant value of the specified
* size, as per the VFPExpandImm() pseudocode in the Arm ARM.
*/
uint64_t vfp_expand_imm(int size, uint8_t imm8);
/* Vector operations shared between ARM and AArch64. */
void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
int64_t shift, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
/*
* Forward to the isar_feature_* tests given a DisasContext pointer.
*/
#define dc_isar_feature(name, ctx) \
({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
/* Note that the gvec expanders operate on offsets + sizes. */
typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
uint32_t, uint32_t);
typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
uint32_t, uint32_t, uint32_t);
/* Function prototype for gen_ functions for calling Neon helpers */
typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
TCGv_i32, TCGv_i32);
typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
/**
* arm_tbflags_from_tb:
* @tb: the TranslationBlock
*
* Extract the flag values from @tb.
*/
static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
{
return (CPUARMTBFlags){ tb->flags, tb->cs_base };
}
/*
* Enum for argument to fpstatus_ptr().
*/
typedef enum ARMFPStatusFlavour {
FPST_FPCR,
FPST_FPCR_F16,
FPST_STD,
FPST_STD_F16,
} ARMFPStatusFlavour;
/**
* fpstatus_ptr: return TCGv_ptr to the specified fp_status field
*
* We have multiple softfloat float_status fields in the Arm CPU state struct
* (see the comment in cpu.h for details). Return a TCGv_ptr which has
* been set up to point to the requested field in the CPU state struct.
* The options are:
*
* FPST_FPCR
* for non-FP16 operations controlled by the FPCR
* FPST_FPCR_F16
* for operations controlled by the FPCR where FPCR.FZ16 is to be used
* FPST_STD
* for A32/T32 Neon operations using the "standard FPSCR value"
* FPST_STD_F16
* as FPST_STD, but where FPCR.FZ16 is to be used
*/
static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
{
TCGv_ptr statusptr = tcg_temp_new_ptr();
int offset;
switch (flavour) {
case FPST_FPCR:
offset = offsetof(CPUARMState, vfp.fp_status);
break;
case FPST_FPCR_F16:
offset = offsetof(CPUARMState, vfp.fp_status_f16);
break;
case FPST_STD:
offset = offsetof(CPUARMState, vfp.standard_fp_status);
break;
case FPST_STD_F16:
offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
break;
default:
g_assert_not_reached();
}
tcg_gen_addi_ptr(statusptr, cpu_env, offset);
return statusptr;
}
/**
* finalize_memop:
* @s: DisasContext
* @opc: size+sign+align of the memory operation
*
* Build the complete MemOp for a memory operation, including alignment
* and endianness.
*
* If (op & MO_AMASK) then the operation already contains the required
* alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally
* unaligned operation, e.g. for AccType_NORMAL.
*
* In the latter case, there are configuration bits that require alignment,
* and this is applied here. Note that there is no way to indicate that
* no alignment should ever be enforced; this must be handled manually.
*/
static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
{
if (s->align_mem && !(opc & MO_AMASK)) {
opc |= MO_ALIGN;
}
return opc | s->be_data;
}
/**
* asimd_imm_const: Expand an encoded SIMD constant value
*
* Expand a SIMD constant value. This is essentially the pseudocode
* AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
* VMVN and VBIC (when cmode < 14 && op == 1).
*
* The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
* callers must catch this; we return the 64-bit constant value defined
* for AArch64.
*
* cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
* is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
* we produce an immediate constant value of 0 in these cases.
*/
uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
#endif /* TARGET_ARM_TRANSLATE_H */