This reverts commits 0147fc7, 4567596, aa64f23, and 5ecd018.
There is no longer agreement that introducing this function
was the right way to address the problem. The consensus now
seems to favor trying to make a correct value for MaxBackends
available to mdules executing their _PG_init() functions.
Nathan Bossart
Discussion: http://postgr.es/m/20220323045229.i23skfscdbvrsuxa@jrouhaud
Previously, it was possible for DROP DATABASE, DROP TABLESPACE and ALTER
DATABASE SET TABLESPACE to fail because other backends still had file
handles open for dropped tables. Windows won't allow a directory
containing unlinked-but-still-open files to be unlinked. Tackle this
problem by forcing all backends to close all smgr fds. No change for
Unix systems, which don't suffer from the problem, but the new code path
can be tested by Unix-based developers by defining
USE_BARRIER_SMGRRELEASE explicitly.
It's possible that PROCSIGNAL_BARRIER_SMGRRELEASE will have more
bug-fixing applications soon (under discussion). Note that this is the
first user of the ProcSignalBarrier mechanism from commit 16a4e4aec. It
could in principle be back-patched as far as 14, but since field
complaints are rare and ProcSignalBarrier hasn't been battle-tested,
that seems like a bad idea. Fix in master only, where these failures
have started to show up in automated testing due to new tests.
Suggested-by: Andres Freund <andres@anarazel.de>
Reviewed-by: Andres Freund <andres@anarazel.de>
Reviewed-by: Daniel Gustafsson <daniel@yesql.se>
Reviewed-by: Robert Haas <robertmhaas@gmail.com>
Discussion: https://postgr.es/m/CA+hUKGLdemy2gBm80kz20GTe6hNVwoErE8KwcJk6-U56oStjtg@mail.gmail.com
Previously, it was really easy to write code that accessed MaxBackends
before we'd actually initialized it, especially when coding up an
extension. To make this less error-prune, introduce a new function
GetMaxBackends() which should be used to obtain the correct value.
This will ERROR if called too early. Demote the global variable to
a file-level static, so that nobody can peak at it directly.
Nathan Bossart. Idea by Andres Freund. Review by Greg Sabino Mullane,
by Michael Paquier (who had doubts about the approach), and by me.
Discussion: http://postgr.es/m/20210802224204.bckcikl45uezv5e4@alap3.anarazel.de
Also "make reformat-dat-files".
The only change worthy of note is that pgindent messed up the formatting
of launcher.c's struct LogicalRepWorkerId, which led me to notice that
that struct wasn't used at all anymore, so I just took it out.
Commit 3e98c0bafb added pg_backend_memory_contexts view to display
the memory contexts of the backend process. However its target process
is limited to the backend that is accessing to the view. So this is
not so convenient when investigating the local memory bloat of other
backend process. To improve this situation, this commit adds
pg_log_backend_memory_contexts() function that requests to log
the memory contexts of the specified backend process.
This information can be also collected by calling
MemoryContextStats(TopMemoryContext) via a debugger. But
this technique cannot be used in some environments because no debugger
is available there. So, pg_log_backend_memory_contexts() allows us to
see the memory contexts of specified backend more easily.
Only superusers are allowed to request to log the memory contexts
because allowing any users to issue this request at an unbounded rate
would cause lots of log messages and which can lead to denial of service.
On receipt of the request, at the next CHECK_FOR_INTERRUPTS(),
the target backend logs its memory contexts at LOG_SERVER_ONLY level,
so that these memory contexts will appear in the server log but not
be sent to the client. It logs one message per memory context.
Because if it buffers all memory contexts into StringInfo to log them
as one message, which may require the buffer to be enlarged very much
and lead to OOM error since there can be a large number of memory
contexts in a backend.
When a backend process is consuming huge memory, logging all its
memory contexts might overrun available disk space. To prevent this,
now this patch limits the number of child contexts to log per parent
to 100. As with MemoryContextStats(), it supposes that practical cases
where the log gets long will typically be huge numbers of siblings
under the same parent context; while the additional debugging value
from seeing details about individual siblings beyond 100 will not be large.
There was another proposed patch to add the function to return
the memory contexts of specified backend as the result sets,
instead of logging them, in the discussion. However that patch is
not included in this commit because it had several issues to address.
Thanks to Tatsuhito Kasahara, Andres Freund, Tom Lane, Tomas Vondra,
Michael Paquier, Kyotaro Horiguchi and Zhihong Yu for the discussion.
Bump catalog version.
Author: Atsushi Torikoshi
Reviewed-by: Kyotaro Horiguchi, Zhihong Yu, Fujii Masao
Discussion: https://postgr.es/m/0271f440ac77f2a4180e0e56ebd944d1@oss.nttdata.com
Traditionally, SIGUSR1 has been overloaded for ad-hoc signals,
procsignal.c signals and latch.c wakeups. Move that last use over to a
new dedicated signal. SIGURG is normally used to report out-of-band
socket data, but PostgreSQL doesn't use that facility.
The signal handler is now installed in all postmaster children by
InitializeLatchSupport(). Those wishing to disconnect from it should
call ShutdownLatchSupport().
Future patches will use this separation of signals to avoid the need for
a signal handler on some operating systems.
Discussion: https://postgr.es/m/CA+hUKGJjxPDpzBE0a3hyUywBvaZuC89yx3jK9RFZgfv_KHU7gg@mail.gmail.com
Previously, the per-barrier-type functions tasked with absorbing
them were expected to always succeed and never throw an error.
However, that's a bit inconvenient. Further study has revealed that
there are realistic cases where it might not be possible to absorb
a ProcSignalBarrier without terminating the transaction, or even
the whole backend. Similarly, for some barrier types, there might
be other reasons where it's not reasonably possible to absorb the
barrier at certain points in the code, so provide a way for a
per-barrier-type function to reject absorbing the barrier.
Unfortunately, there's still no committed code making use of this
infrastructure; hopefully, we'll get there. :-(
Patch by me, reviewed by Andres Freund and Amul Sul.
Discussion: http://postgr.es/m/20200908182005.xya7wetdh3pndzim@alap3.anarazel.de
Discussion: http://postgr.es/m/CA+Tgmob56Pk1-5aTJdVPCWFHon7me4M96ENpGe9n_R4JUjjhZA@mail.gmail.com
On platforms without support for 64bit atomic operations where we also
cannot rely on 64bit reads to have single copy atomicity, such atomics
are implemented using a spinlock based fallback. That means it's not
safe to even read such atomics from within a signal handler (since the
signal handler might run when the spinlock already is held).
To avoid this issue defer global barrier processing out of the signal
handler. Instead of checking local / shared barrier generation to
determine whether to set ProcSignalBarrierPending, introduce
PROCSIGNAL_BARRIER and always set ProcSignalBarrierPending when
receiving such a signal. Additionally avoid redundant work in
ProcessProcSignalBarrier if ProcSignalBarrierPending is unnecessarily.
Also do a small amount of other polishing.
Author: Andres Freund
Reviewed-By: Robert Haas
Discussion: https://postgr.es/m/20200609193723.eu5ilsjxwdpyxhgz@alap3.anarazel.de
Backpatch: 13-, where the code was introduced.
Includes some manual cleanup of places that pgindent messed up,
most of which weren't per project style anyway.
Notably, it seems some people didn't absorb the style rules of
commit c9d297751, because there were a bunch of new occurrences
of function calls with a newline just after the left paren, all
with faulty expectations about how the rest of the call would get
indented.
A new function EmitProcSignalBarrier() can be used to emit a global
barrier which all backends that participate in the ProcSignal
mechanism must absorb, and a new function WaitForProcSignalBarrier()
can be used to wait until all relevant backends have in fact
absorbed the barrier.
This can be used to coordinate global state changes, such as turning
checksums on while the system is running.
There's no real client of this mechanism yet, although two are
proposed, but an enum has to have at least one element, so this
includes a placeholder type (PROCSIGNAL_BARRIER_PLACEHOLDER) which
should be replaced by the first real client of this mechanism to
get committed.
Andres Freund and Robert Haas, reviewed by Daniel Gustafsson and,
in earlier versions, by Magnus Hagander.
Discussion: http://postgr.es/m/CA+TgmoZwDk=BguVDVa+qdA6SBKef=PKbaKDQALTC_9qoz1mJqg@mail.gmail.com
Similar to commits 7e735035f2 and dddf4cdc33, this commit makes the order
of header file inclusion consistent for backend modules.
In the passing, removed a couple of duplicate inclusions.
Author: Vignesh C
Reviewed-by: Kuntal Ghosh and Amit Kapila
Discussion: https://postgr.es/m/CALDaNm2Sznv8RR6Ex-iJO6xAdsxgWhCoETkaYX=+9DW3q0QCfA@mail.gmail.com
When the checkpointer writes the shutdown checkpoint, it checks
afterwards whether any WAL has been written since it started and
throws a PANIC if so. At that point, only walsenders are still
active, so one might think this could not happen, but walsenders can
also generate WAL, for instance in BASE_BACKUP and logical decoding
related commands (e.g. via hint bits). So they can trigger this panic
if such a command is run while the shutdown checkpoint is being
written.
To fix this, divide the walsender shutdown into two phases. First,
checkpointer, itself triggered by postmaster, sends a
PROCSIG_WALSND_INIT_STOPPING signal to all walsenders. If the backend
is idle or runs an SQL query this causes the backend to shutdown, if
logical replication is in progress all existing WAL records are
processed followed by a shutdown. Otherwise this causes the walsender
to switch to the "stopping" state. In this state, the walsender will
reject any further replication commands. The checkpointer begins the
shutdown checkpoint once all walsenders are confirmed as
stopping. When the shutdown checkpoint finishes, the postmaster sends
us SIGUSR2. This instructs walsender to send any outstanding WAL,
including the shutdown checkpoint record, wait for it to be replicated
to the standby, and then exit.
Author: Andres Freund, based on an earlier patch by Michael Paquier
Reported-By: Fujii Masao, Andres Freund
Reviewed-By: Michael Paquier
Discussion: https://postgr.es/m/20170602002912.tqlwn4gymzlxpvs2@alap3.anarazel.de
Backpatch: 9.4, where logical decoding was introduced
This flag has proven to be a recipe for bugs, and it doesn't seem like
it can really buy anything in terms of performance. So let's just
*always* set the process latch when we receive SIGUSR1 instead of
trying to do it only when needed.
Per my recent proposal on pgsql-hackers.
This does four basic things. First, it provides convenience routines
to coordinate the startup and shutdown of parallel workers. Second,
it synchronizes various pieces of state (e.g. GUCs, combo CID
mappings, transaction snapshot) from the parallel group leader to the
worker processes. Third, it prohibits various operations that would
result in unsafe changes to that state while parallelism is active.
Finally, it propagates events that would result in an ErrorResponse,
NoticeResponse, or NotifyResponse message being sent to the client
from the parallel workers back to the master, from which they can then
be sent on to the client.
Robert Haas, Amit Kapila, Noah Misch, Rushabh Lathia, Jeevan Chalke.
Suggestions and review from Andres Freund, Heikki Linnakangas, Noah
Misch, Simon Riggs, Euler Taveira, and Jim Nasby.
To do so, move InitializeLatchSupport() into the new common process
initialization functions, and add a new global variable MyLatch.
MyLatch is usable as soon InitPostmasterChild() has been called
(i.e. very early during startup). Initially it points to a process
local latch that exists in all processes. InitProcess/InitAuxiliaryProcess
then replaces that local latch with PGPROC->procLatch. During shutdown
the reverse happens.
This is primarily advantageous for two reasons: For one it simplifies
dealing with the shared process latch, especially in signal handlers,
because instead of having to check for MyProc, MyLatch can be used
unconditionally. For another, a later patch that makes FEs/BE
communication use latches, now can rely on the existence of a latch,
even before having gone through InitProcess.
Discussion: 20140927191243.GD5423@alap3.anarazel.de
Evidence from buildfarm member crake suggests that the new test_shm_mq
module is routinely crashing the server due to the arrival of a SIGUSR1
after the shared memory segment has been unmapped. Although processes
using the new dynamic background worker facilities are more likely to
receive a SIGUSR1 around this time, the problem is also possible on older
branches, so I'm back-patching the parts of this change that apply to
older branches as far as they apply.
It's already generally the case that code checks whether these pointers
are NULL before deferencing them, so the important thing is mostly to
make sure that they do get set to NULL before they become invalid. But
in master, there's one case in procsignal_sigusr1_handler that lacks a
NULL guard, so add that.
Patch by me; review by Tom Lane.
Using the infrastructure provided by this patch, it's possible either
to wait for the startup of a dynamically-registered background worker,
or to poll the status of such a worker without waiting. In either
case, the current PID of the worker process can also be obtained.
As usual, worker_spi is updated to demonstrate the new functionality.
Patch by me. Review by Andres Freund.
mdinit() was misusing IsBootstrapProcessingMode() to decide whether to
create an fsync pending-operations table in the current process. This led
to creating a table not only in the startup and checkpointer processes as
intended, but also in the bgwriter process, not to mention other auxiliary
processes such as walwriter and walreceiver. Creation of the table in the
bgwriter is fatal, because it absorbs fsync requests that should have gone
to the checkpointer; instead they just sit in bgwriter local memory and are
never acted on. So writes performed by the bgwriter were not being fsync'd
which could result in data loss after an OS crash. I think there is no
live bug with respect to walwriter and walreceiver because those never
perform any writes of shared buffers; but the potential is there for
future breakage in those processes too.
To fix, make AuxiliaryProcessMain() export the current process's
AuxProcType as a global variable, and then make mdinit() test directly for
the types of aux process that should have a pendingOpsTable. Having done
that, we might as well also get rid of the random bool flags such as
am_walreceiver that some of the aux processes had grown. (Note that we
could not have fixed the bug by examining those variables in mdinit(),
because it's called from BaseInit() which is run by AuxiliaryProcessMain()
before entering any of the process-type-specific code.)
Back-patch to 9.2, where the problem was introduced by the split-up of
bgwriter and checkpointer processes. The bogus pendingOpsTable exists
in walwriter and walreceiver processes in earlier branches, but absent
any evidence that it causes actual problems there, I'll leave the older
branches alone.
walsender.h should depend on xlog.h, not vice versa. (Actually, the
inclusion was circular until a couple hours ago, which was even sillier;
but Bruce broke it in the expedient rather than logically correct
direction.) Because of that poor decision, plus blind application of
pgrminclude, we had a situation where half the system was depending on
xlog.h to include such unrelated stuff as array.h and guc.h. Clean up
the header inclusion, and manually revert a lot of what pgrminclude had
done so things build again.
This episode reinforces my feeling that pgrminclude should not be run
without adult supervision. Inclusion changes in header files in particular
need to be reviewed with great care. More generally, it'd be good if we
had a clearer notion of module layering to dictate which headers can sanely
include which others ... but that's a big task for another day.
wait until it is set. Latches can be used to reliably wait until a signal
arrives, which is hard otherwise because signals don't interrupt select()
on some platforms, and even when they do, there's race conditions.
On Unix, latches use the so called self-pipe trick under the covers to
implement the sleep until the latch is set, without race conditions. On
Windows, Windows events are used.
Use the new latch abstraction to sleep in walsender, so that as soon as
a transaction finishes, walsender is woken up to immediately send the WAL
to the standby. This reduces the latency between master and standby, which
is good.
Preliminary work by Fujii Masao. The latch implementation is by me, with
helpful comments from many people.
process. If startup waits on a buffer pin we send a request to all
backends to cancel themselves if they are holding the buffer pin
required and they are also waiting on a lock. If not, startup waits
until max_standby_delay before cancelling any backend waiting for
the requested buffer pin.
woken by alarm we send SIGUSR1 to all backends requesting that they
check to see if they are blocking Startup process. If so, they throw
ERROR/FATAL as for other conflict resolutions. Deadlock stop gap
removed. max_standby_delay = -1 option removed to prevent deadlock.
Conflict reason is passed through directly to the backend, so we can
take decisions about the effect of the conflict based upon the local
state. No specific changes, as yet, though this prepares for later work.
CancelVirtualTransaction() sends signals while holding ProcArrayLock.
Introduce errdetail_abort() to give message detail explaining that the
abort was caused by conflict processing. Remove CONFLICT_MODE states
in favour of using PROCSIG_RECOVERY_CONFLICT states directly, for clarity.
This patch gets us out from under the Unix limitation of two user-defined
signal types. We already had done something similar for signals directed to
the postmaster process; this adds multiplexing for signals directed to
backends and auxiliary processes (so long as they're connected to shared
memory).
As proof of concept, replace the former usage of SIGUSR1 and SIGUSR2
for backends with use of the multiplexing mechanism. There are still some
hard-wired definitions of SIGUSR1 and SIGUSR2 for other process types,
but getting rid of those doesn't seem interesting at the moment.
Fujii Masao